Pub Date : 2023-10-13DOI: 10.1016/j.jmro.2023.100137
Maria Anikeeva , Maitreyi Sangal , Andrey N. Pravdivtsev , Maryia S. Pravdivtseva , Eva Peschke , Oliver Speck , Jan-Bernd Hövener
This study investigates the experimental conditions required for magnetic resonance imaging (MRI) of thermally polarized hydrocarbon gas, focusing on ethane. The nuclear magnetic resonance (NMR) spectra and relaxation properties of ethane were analysed at different pressures in the range from 1.5 to 6 bar at 7 T using 1H NMR spectroscopy. The spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) were measured, and their dependence on the pressure was determined, showing that both relaxation times increase with pressure. Using the estimated relaxation times, we adjusted parameters for imaging of static ethane using rapid acquisition with relaxation enhancement (RARE) and fast low-angle shot (FLASH). The signal-to-noise ratio (SNR) of ethane images was evaluated and compared to the calculation for the given range of pressures. Then, we imaged flowing gas using a 2D velocity-encoded pulse sequence, which is usually used for liquid flow studies. The MRI-measured flow rates are compared to those pre-set with a pump, showing good agreement in the slow flow range. Overall, the results provide insights into the feasibility of 1H MRI for imaging and flow measurements of thermally polarized ethane.
以乙烷为研究对象,研究了热极化烃类气体的磁共振成像(MRI)所需的实验条件。在7 T 1.5 ~ 6 bar的不同压力下,用1H NMR谱分析了乙烷的核磁共振波谱和弛豫特性。测量了自旋-晶格弛豫时间(T1)和自旋-自旋弛豫时间(T2),并确定了它们与压力的依赖关系,结果表明,两者的弛豫时间都随压力的增加而增加。利用估计的弛豫时间,我们调整了静态乙烷成像的参数,采用快速弛豫增强采集(RARE)和快速低角度拍摄(FLASH)。评估了乙烷图像的信噪比(SNR),并与给定压力范围内的计算结果进行了比较。然后,我们使用二维速度编码脉冲序列对流动气体进行成像,这通常用于液体流动研究。mri测量的流量与预先设置的泵流量进行比较,在慢流量范围内显示出良好的一致性。总的来说,这些结果为1H MRI用于热极化乙烷成像和流量测量的可行性提供了见解。
{"title":"Magnetic resonance imaging and velocimetry of ethane","authors":"Maria Anikeeva , Maitreyi Sangal , Andrey N. Pravdivtsev , Maryia S. Pravdivtseva , Eva Peschke , Oliver Speck , Jan-Bernd Hövener","doi":"10.1016/j.jmro.2023.100137","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100137","url":null,"abstract":"<div><p>This study investigates the experimental conditions required for magnetic resonance imaging (MRI) of thermally polarized hydrocarbon gas, focusing on ethane. The nuclear magnetic resonance (NMR) spectra and relaxation properties of ethane were analysed at different pressures in the range from 1.5 to 6 bar at 7 T using <sup>1</sup>H NMR spectroscopy. The spin-lattice relaxation time (T<sub>1</sub>) and spin-spin relaxation time (T<sub>2</sub>) were measured, and their dependence on the pressure was determined, showing that both relaxation times increase with pressure. Using the estimated relaxation times, we adjusted parameters for imaging of static ethane using rapid acquisition with relaxation enhancement (RARE) and fast low-angle shot (FLASH). The signal-to-noise ratio (SNR) of ethane images was evaluated and compared to the calculation for the given range of pressures. Then, we imaged flowing gas using a 2D velocity-encoded pulse sequence, which is usually used for liquid flow studies. The MRI-measured flow rates are compared to those pre-set with a pump, showing good agreement in the slow flow range. Overall, the results provide insights into the feasibility of <sup>1</sup>H MRI for imaging and flow measurements of thermally polarized ethane.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100137"},"PeriodicalIF":2.624,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000456/pdfft?md5=ee9e2d935852d4ca5b924b20bb456221&pid=1-s2.0-S2666441023000456-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92087350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-12DOI: 10.1016/j.jmro.2023.100135
Nuwandi M. Ariyasingha , Shiraz Nantogma , Anna Samoilenko , Oleg G. Salnikov , Nikita V. Chukanov , Larisa M. Kovtunova , Igor V. Koptyug , Eduard Y. Chekmenev
Parahydrogen-Induced Polarization (PHIP) is NMR hyperpolarization technique that has matured from fundamental science to a biomedical tool for production of hyperpolarized MRI contrast agents. The spin order of nascent parahydrogen-derived protons can be employed directly for enhancement of their NMR signals or for polarization transfer to other nuclei in the hydrogenation product. In this work, we study the process of pairwise parahydrogen addition to propylene, which results in symmetric propane molecule with substantially enhanced methyl and methylene NMR signals. Specifically, we have synthesized site-selectively isotopically labeled 3-d-propylene molecule to study polarization dynamics in the resulting monodeuterated propane after pairwise parahydrogen addition. The deuterium presence in the hyperpolarized propane product results in a minute isotope chemical shift effect allowing to distinguish the proton resonances of CH3 and CH2D groups at 600 MHz. Pairwise parahydrogen 1,2-addition to 3-d-propylene was first confirmed by performing the reaction inside a 600 MHz NMR spectrometer, i.e., in the weakly-coupled regime at 14 T, where proton polarization dynamics is restricted to the molecular sites of parahydrogen addition. However, when the pairwise parahydrogen addition is performed in the strongly-coupled regime, i.e., at the Earth's magnetic field, efficient polarization transfer to CH2D protons is readily observed, leading to polarization redistribution between the three inequivalent sites. This finding is important as it sheds light on polarization dynamics in the strongly coupled symmetric spin systems such as propane studied here—the presented results are expected to be applicable to other spin systems such as butane.
{"title":"Efficient polarization redistribution in hyperpolarized 1-D-propane produced via pairwise parahydrogen addition","authors":"Nuwandi M. Ariyasingha , Shiraz Nantogma , Anna Samoilenko , Oleg G. Salnikov , Nikita V. Chukanov , Larisa M. Kovtunova , Igor V. Koptyug , Eduard Y. Chekmenev","doi":"10.1016/j.jmro.2023.100135","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100135","url":null,"abstract":"<div><p>Parahydrogen-Induced Polarization (PHIP) is NMR hyperpolarization technique that has matured from fundamental science to a biomedical tool for production of hyperpolarized MRI contrast agents. The spin order of nascent parahydrogen-derived protons can be employed directly for enhancement of their NMR signals or for polarization transfer to other nuclei in the hydrogenation product. In this work, we study the process of pairwise parahydrogen addition to propylene, which results in symmetric propane molecule with substantially enhanced methyl and methylene NMR signals. Specifically, we have synthesized site-selectively isotopically labeled 3-<span>d</span>-propylene molecule to study polarization dynamics in the resulting monodeuterated propane after pairwise parahydrogen addition. The deuterium presence in the hyperpolarized propane product results in a minute isotope chemical shift effect allowing to distinguish the proton resonances of CH<sub>3</sub> and CH<sub>2</sub>D groups at 600 MHz. Pairwise parahydrogen 1,2-addition to 3-<span>d</span>-propylene was first confirmed by performing the reaction inside a 600 MHz NMR spectrometer, <em>i.e</em>., in the weakly-coupled regime at 14 T, where proton polarization dynamics is restricted to the molecular sites of parahydrogen addition. However, when the pairwise parahydrogen addition is performed in the strongly-coupled regime, <em>i.e</em>., at the Earth's magnetic field, efficient polarization transfer to CH<sub>2</sub>D protons is readily observed, leading to polarization redistribution between the three inequivalent sites. This finding is important as it sheds light on polarization dynamics in the strongly coupled symmetric spin systems such as propane studied here—the presented results are expected to be applicable to other spin systems such as butane.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100135"},"PeriodicalIF":2.624,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000432/pdfft?md5=27574b8b0966d42351dc5e56ded5517c&pid=1-s2.0-S2666441023000432-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92087351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-07DOI: 10.1016/j.jmro.2023.100132
Jingyan Xu, Danila A. Barskiy
In this work, we describe essential tools of linear algebra necessary for calculating the effect of chemical exchange on spin dynamics and polarization transfer in various nuclear magnetic resonance (NMR) experiments. We show how to construct matrix representations of Hamiltonian, relaxation, and chemical exchange superoperators in both Hilbert and Liouville space, as well as demonstrate corresponding codes in Python. Examples of applying the code are given for problems involving chemical exchange between NH and NH at zero and high magnetic field and polarization transfer from parahydrogen relevant in SABRE (signal amplification by reversible exchange) at low magnetic field (0-20 mT). The presented methodology finds utility for describing the effect of chemical exchange on NMR spectra and can be extended further by taking into account non-linearities in the master equation.
{"title":"Essential tools of linear algebra for calculating nuclear spin dynamics of chemically exchanging systems","authors":"Jingyan Xu, Danila A. Barskiy","doi":"10.1016/j.jmro.2023.100132","DOIUrl":"10.1016/j.jmro.2023.100132","url":null,"abstract":"<div><p>In this work, we describe essential tools of linear algebra necessary for calculating the effect of chemical exchange on spin dynamics and polarization transfer in various nuclear magnetic resonance (NMR) experiments. We show how to construct matrix representations of Hamiltonian, relaxation, and chemical exchange superoperators in both Hilbert and Liouville space, as well as demonstrate corresponding codes in Python. Examples of applying the code are given for problems involving chemical exchange between NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and NH<span><math><msubsup><mrow></mrow><mrow><mn>4</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> at zero and high magnetic field and polarization transfer from parahydrogen relevant in SABRE (signal amplification by reversible exchange) at low magnetic field (0-20<!--> <!-->mT). The presented methodology finds utility for describing the effect of chemical exchange on NMR spectra and can be extended further by taking into account non-linearities in the master equation.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100132"},"PeriodicalIF":2.624,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000407/pdfft?md5=48d5ddc0968c74dfc974a98139168acd&pid=1-s2.0-S2666441023000407-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91472861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-26DOI: 10.1016/j.jmro.2023.100133
Aharon Blank, Boaz Koren, Alexander Sherman
Magnetic resonance offers an invaluable testbed for observing and studying the fundamental concepts of quantum cavity interactions with two-level systems in the microwave regime. Typically, these experiments are conducted at low cryogenic temperatures, utilizing spin systems embedded within a high-quality (Q-factor) superconducting cavity. Recent studies indicate that under these conditions, especially in a high-cooperativity regime with strong collective coupling between an electron spin system and a microwave cavity, multiple spin echoes can be detected. These echoes are interpreted as manifestations of coherent quantum effects. To put it simply, photons within the cavity can excite the spin system, which subsequently can stimulate the cavity, creating a feedback loop. In our research, we demonstrate that a specially designed moderate-Q cavity, paired with diamond crystals rich in nitrogen vacancy (NV) centers, allows us to observe such nonlinear quantum phenomena, even at ambient temperatures. Crucially, our experimental design necessitates amplifying the net number of spins for a specific, limited spin concentration. This is achieved by lowering the spins' thermodynamic temperature (as opposed to their physical temperature) to a few kelvins. Notably, we find that maintaining high cooperativity or strong coupling is not essential for these observations. The potential to observe significant microwave cavity quantum effects at room temperature could be useful for future applications, such as quantum memories and quantum sensing.
{"title":"Multiple electron spin resonance echoes observed for paramagnetic defects in diamond at room temperature","authors":"Aharon Blank, Boaz Koren, Alexander Sherman","doi":"10.1016/j.jmro.2023.100133","DOIUrl":"10.1016/j.jmro.2023.100133","url":null,"abstract":"<div><p>Magnetic resonance offers an invaluable testbed for observing and studying the fundamental concepts of quantum cavity interactions with two-level systems in the microwave regime. Typically, these experiments are conducted at low cryogenic temperatures, utilizing spin systems embedded within a high-quality (Q-factor) superconducting cavity. Recent studies indicate that under these conditions, especially in a high-cooperativity regime with strong collective coupling between an electron spin system and a microwave cavity, multiple spin echoes can be detected. These echoes are interpreted as manifestations of coherent quantum effects. To put it simply, photons within the cavity can excite the spin system, which subsequently can stimulate the cavity, creating a feedback loop. In our research, we demonstrate that a specially designed moderate-Q cavity, paired with diamond crystals rich in nitrogen vacancy (NV) centers, allows us to observe such nonlinear quantum phenomena, even at ambient temperatures. Crucially, our experimental design necessitates amplifying the net number of spins for a specific, limited spin concentration. This is achieved by lowering the spins' thermodynamic temperature (as opposed to their physical temperature) to a few kelvins. Notably, we find that maintaining high cooperativity or strong coupling is not essential for these observations. The potential to observe significant microwave cavity quantum effects at room temperature could be useful for future applications, such as quantum memories and quantum sensing.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100133"},"PeriodicalIF":2.624,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000419/pdfft?md5=de70c9a0e7b49643a6f7c5503ac0bcc2&pid=1-s2.0-S2666441023000419-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78958023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-08DOI: 10.1016/j.jmro.2023.100131
T.B.W. Mathiassen , A.E. Høgh , M. Karlsson , S. Katsikis , K. Wang , M. Pennestri , J.H. Ardenkjær-Larsen , P.R. Jensen
Hyperpolarization with the dissolution dynamic nuclear polarization (dDNP) technique yields > 10,000-fold signal increases for NMR-active nuclei (e.g. 13C). Hyperpolarized 13C-labeled metabolic tracer molecules thus allow real-time observations of biochemical pathways in living cellular systems without interfering background. This methodology lends itself to the direct observation of altered intracellular reaction chemistry imparted for instance by drug treatment, infections, or other diseases. A reoccurring challenge for longitudinal cell studies of mammalian cells with NMR and dDNP-NMR is maintaining cell viability in the NMR spectrometer. 3D cell culture methods are increasing in popularity because they provide a physiologically more relevant environment compared to 2D cell cultures. Based on such strategies a mobile 3D culture system was devised. The clinical drug etoposide was used to treat cancer cells (HeLa) and the resulting altered metabolism was measured using hyperpolarized [1–13C]pyruvate. We show that sustaining the cell cultivation in cell incubators and only transferring the cells to the NMR spectrometer for the few minutes required for the dDNP-NMR measurements is an attractive alternative to cell maintenance in the NMR tube. High cell viability is sustained, and experimental throughput is many doubled.
{"title":"Hyperpolarized 13C NMR for longitudinal in-cell metabolism using a mobile 3D cell culture system","authors":"T.B.W. Mathiassen , A.E. Høgh , M. Karlsson , S. Katsikis , K. Wang , M. Pennestri , J.H. Ardenkjær-Larsen , P.R. Jensen","doi":"10.1016/j.jmro.2023.100131","DOIUrl":"10.1016/j.jmro.2023.100131","url":null,"abstract":"<div><p>Hyperpolarization with the dissolution dynamic nuclear polarization (dDNP) technique yields > 10,000-fold signal increases for NMR-active nuclei (e.g. <sup>13</sup>C). Hyperpolarized <sup>13</sup>C-labeled metabolic tracer molecules thus allow real-time observations of biochemical pathways in living cellular systems without interfering background. This methodology lends itself to the direct observation of altered intracellular reaction chemistry imparted for instance by drug treatment, infections, or other diseases. A reoccurring challenge for longitudinal cell studies of mammalian cells with NMR and dDNP-NMR is maintaining cell viability in the NMR spectrometer. 3D cell culture methods are increasing in popularity because they provide a physiologically more relevant environment compared to 2D cell cultures. Based on such strategies a mobile 3D culture system was devised. The clinical drug etoposide was used to treat cancer cells (HeLa) and the resulting altered metabolism was measured using hyperpolarized [1–<sup>13</sup>C]pyruvate. We show that sustaining the cell cultivation in cell incubators and only transferring the cells to the NMR spectrometer for the few minutes required for the dDNP-NMR measurements is an attractive alternative to cell maintenance in the NMR tube. High cell viability is sustained, and experimental throughput is many doubled.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100131"},"PeriodicalIF":2.624,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000390/pdfft?md5=1fb698b32491f80f5153bc638f0b5899&pid=1-s2.0-S2666441023000390-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86035083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-06DOI: 10.1016/j.jmro.2023.100130
Elena Vinogradov
Novel MRI contrast methods, such as Chemical Exchange Saturation Transfer (CEST), rely on previously developed theory and approaches, often introduced first in solidstate NMR. Understanding or at least connecting the basic principles and original works to the modern-day contrast methods in MRI is instructive. The work brings together concepts in relaxation, saturation, and spin lock experiments in the dynamic (exchanging) systems. The work describes how basic principles and theory are translated and being applied to MRI contrast, including MT and CEST. Finally, we review select papers generalizing concepts of relaxation under periodic RF.
{"title":"A brisk walk through the fields of relaxation, saturation, and exchange: From solid state NMR to in-vivo imaging","authors":"Elena Vinogradov","doi":"10.1016/j.jmro.2023.100130","DOIUrl":"10.1016/j.jmro.2023.100130","url":null,"abstract":"<div><p>Novel MRI contrast methods, such as Chemical Exchange Saturation Transfer (CEST), rely on previously developed theory and approaches, often introduced first in solidstate NMR. Understanding or at least connecting the basic principles and original works to the modern-day contrast methods in MRI is instructive. The work brings together concepts in relaxation, saturation, and spin lock experiments in the dynamic (exchanging) systems. The work describes how basic principles and theory are translated and being applied to MRI contrast, including MT and CEST. Finally, we review select papers generalizing concepts of relaxation under periodic RF.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100130"},"PeriodicalIF":2.624,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000389/pdfft?md5=5cac507629ee325b6dadfb0d3027b863&pid=1-s2.0-S2666441023000389-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80779800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-22DOI: 10.1016/j.jmro.2023.100128
Jérôme Hirschinger, Jésus Raya
In this work, several exact and approximate analytical solutions to the quantum master equation are derived using both classical and non-classical coupling models to describe the kinetics of Hartmann-Hahn cross-polarization (HHCP) and multiple-contact CP (MCCP). Moreover, the analytical solution originally obtained by Naito and McDowell [J. Chem. Phys. 84 (1986) 4181.] is shown to be incorrect and the different regimes of spin diffusion and relaxation are characterized by the amplitude of the second stage of the HHCP dynamics and the HHCP/MCCP crossing time. The analysis of the 1H–13C HHCP and MCCP dynamics together with (Lee-Goldburg) 1H relaxation experimental data provides a consistent picture of spin dynamics in solid alanine and explains the apparent discrepancies previously observed between and relaxation measurements. The CH and CH3 protons relax as expected via spin diffusion towards the NH3 protons but the assumption of common proton spin temperature, in which the bottleneck of relaxation is at the NH3 sites, generally valid for relaxation breaks down for relaxation. A diffusion-limited situation in which nuclear Zeeman energy is transferred to the lattice faster than can be supplied by spin diffusion is observed instead.
{"title":"Analytical descriptions of (multiple-contact) cross-polarization dynamics and spin-lattice relaxation in solid alanine","authors":"Jérôme Hirschinger, Jésus Raya","doi":"10.1016/j.jmro.2023.100128","DOIUrl":"10.1016/j.jmro.2023.100128","url":null,"abstract":"<div><p>In this work, several exact and approximate analytical solutions to the quantum master equation are derived using both classical and non-classical coupling models to describe the kinetics of Hartmann-Hahn cross-polarization (HHCP) and multiple-contact CP (MC<img>CP). Moreover, the analytical solution originally obtained by Naito and McDowell [J. Chem. Phys. 84 (1986) 4181.] is shown to be incorrect and the different regimes of spin diffusion and <span><math><msub><mi>T</mi><mrow><mn>1</mn><mi>ρ</mi></mrow></msub></math></span> relaxation are characterized by the amplitude of the second stage of the HHCP dynamics and the HHCP/MC<img>CP crossing time. The analysis of the <sup>1</sup>H–<sup>13</sup>C HHCP and MC<img>CP dynamics together with (Lee-Goldburg) <sup>1</sup>H <span><math><msub><mi>T</mi><mrow><mn>1</mn><mi>ρ</mi></mrow></msub></math></span> relaxation experimental data provides a consistent picture of spin dynamics in solid alanine and explains the apparent discrepancies previously observed between <span><math><msub><mi>T</mi><mrow><mn>1</mn><mi>ρ</mi></mrow></msub></math></span> and <span><math><msub><mi>T</mi><mn>1</mn></msub></math></span> relaxation measurements. The CH and CH<sub>3</sub> protons relax as expected <em>via</em> spin diffusion towards the NH<sub>3</sub> protons but the assumption of common proton spin temperature, in which the bottleneck of relaxation is at the NH<sub>3</sub> sites, generally valid for <span><math><msub><mi>T</mi><mn>1</mn></msub></math></span> relaxation breaks down for <span><math><msub><mi>T</mi><mrow><mn>1</mn><mi>ρ</mi></mrow></msub></math></span> relaxation. A diffusion-limited situation in which nuclear Zeeman energy is transferred to the lattice faster than can be supplied by spin diffusion is observed instead.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100128"},"PeriodicalIF":2.624,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000365/pdfft?md5=8634b4f0bfee2e20f4a4370925e073c3&pid=1-s2.0-S2666441023000365-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78948571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-13DOI: 10.1016/j.jmro.2023.100129
Keilian MacCulloch , Austin Browning , David O. Guarin Bedoya , Stephen J. McBride , Mustapha B. Abdulmojeed , Carlos Dedesma , Boyd M. Goodson , Matthew S. Rosen , Eduard Y. Chekmenev , Yi-Fen Yen , Patrick TomHon , Thomas Theis
Hyperpolarization chemistry based on reversible exchange of parahydrogen, also known as Signal Amplification By Reversible Exchange (SABRE), is a particularly simple approach to attain high levels of nuclear spin hyperpolarization, which can enhance NMR and MRI signals by many orders of magnitude. SABRE has received significant attention in the scientific community since its inception because of its relative experimental simplicity and its broad applicability to a wide range of molecules, however, in vivo detection of molecular probes hyperpolarized by SABRE has remained elusive. Here we describe a first demonstration of SABRE-hyperpolarized contrast detected in vivo, specifically using hyperpolarized [1–13C]pyruvate. Biocompatible formulations of hyperpolarized [1–13C]pyruvate in, both, methanol-water, and ethanol-water mixtures followed by dilution with saline and catalyst filtration were prepared and injected into healthy Sprague Dawley and Wistar rats. Effective hyperpolarization-catalyst removal was performed with silica filters without major losses in hyperpolarization. Metabolic conversion of pyruvate to lactate, alanine, and bicarbonate was detected in vivo. Pyruvate-hydrate was also observed as a minor byproduct. Measurements were performed on the liver and kidney at 4.7 T via time-resolved spectroscopy and chemical-shift-resolved MRI. In addition, whole-body metabolic measurements were obtained using a cryogen-free 1.5 T MRI system, illustrating the utility of combining lower-cost MRI systems with simple, low-cost hyperpolarization chemistry to develop safe and scalable molecular imaging.
基于对氢可逆交换的超极化化学,也称为可逆交换信号放大(SABRE),是获得高水平核自旋超极化的一种特别简单的方法,可以将核磁共振和核磁共振信号增强许多数量级。自SABRE问世以来,由于其相对简单的实验和广泛的分子适用性,在科学界受到了极大的关注,然而,通过SABRE进行超极化分子探针的体内检测仍然难以捉摸。在这里,我们描述了首次在体内检测sabre超偏振造影剂的演示,特别是使用超极化[1-13C]丙酮酸。在甲醇-水和乙醇-水混合物中制备具有生物相容性的超极化[1-13C]丙酮酸制剂,然后用生理盐水稀释和催化剂过滤,并注射到健康的Sprague Dawley和Wistar大鼠体内。用二氧化硅过滤器进行了有效的超极化-催化剂去除,而超极化损失不大。在体内检测了丙酮酸转化为乳酸、丙氨酸和碳酸氢盐的代谢。水合物丙酮酸也被观察到是一个次要的副产物。在4.7 T时,通过时间分辨光谱和化学位移分辨MRI对肝脏和肾脏进行测量。此外,使用无低温1.5 T MRI系统获得了全身代谢测量,说明了将低成本MRI系统与简单,低成本的超极化化学相结合以开发安全且可扩展的分子成像的有效性。
{"title":"Facile hyperpolarization chemistry for molecular imaging and metabolic tracking of [1–13C]pyruvate in vivo","authors":"Keilian MacCulloch , Austin Browning , David O. Guarin Bedoya , Stephen J. McBride , Mustapha B. Abdulmojeed , Carlos Dedesma , Boyd M. Goodson , Matthew S. Rosen , Eduard Y. Chekmenev , Yi-Fen Yen , Patrick TomHon , Thomas Theis","doi":"10.1016/j.jmro.2023.100129","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100129","url":null,"abstract":"<div><p>Hyperpolarization chemistry based on reversible exchange of parahydrogen, also known as Signal Amplification By Reversible Exchange (SABRE), is a particularly simple approach to attain high levels of nuclear spin hyperpolarization, which can enhance NMR and MRI signals by many orders of magnitude. SABRE has received significant attention in the scientific community since its inception because of its relative experimental simplicity and its broad applicability to a wide range of molecules, however, <em>in vivo</em> detection of molecular probes hyperpolarized by SABRE has remained elusive. Here we describe a first demonstration of SABRE-hyperpolarized contrast detected <em>in vivo</em>, specifically using hyperpolarized [1–<sup>13</sup>C]pyruvate. Biocompatible formulations of hyperpolarized [1–<sup>13</sup>C]pyruvate in, both, methanol-water, and ethanol-water mixtures followed by dilution with saline and catalyst filtration were prepared and injected into healthy Sprague Dawley and Wistar rats. Effective hyperpolarization-catalyst removal was performed with silica filters without major losses in hyperpolarization. Metabolic conversion of pyruvate to lactate, alanine, and bicarbonate was detected <em>in vivo</em>. Pyruvate-hydrate was also observed as a minor byproduct. Measurements were performed on the liver and kidney at 4.7 T via time-resolved spectroscopy and chemical-shift-resolved MRI. In addition, whole-body metabolic measurements were obtained using a cryogen-free 1.5 T MRI system, illustrating the utility of combining lower-cost MRI systems with simple, low-cost hyperpolarization chemistry to develop safe and scalable molecular imaging.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100129"},"PeriodicalIF":2.624,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3266171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-09DOI: 10.1016/j.jmro.2023.100127
Xinyu Liu , Jasna Brčić , Gail H. Cassell , Lynette Cegelski
Tuberculosis and non-tuberculosis mycobacterial infections are rising each year and often result in chronic incurable disease. Important antibiotics target cell-wall biosynthesis, yet some mycobacteria are alarmingly resistant or tolerant to currently available antibiotics. This resistance is often attributed to assumed differences in composition of the complex cell wall of different mycobacterial strains and species. However, due to the highly crosslinked and insoluble nature of mycobacterial cell walls, direct comparative determinations of cell-wall composition pose a challenge to analysis through conventional biochemical analyses. We introduce an approach to directly observe the chemical composition of mycobacterial cell walls using solid-state NMR spectroscopy. 13C CPMAS spectra are provided of individual components (peptidoglycan, arabinogalactan, and mycolic acids) and of in situ cell-wall complexes. We assigned the spectroscopic contributions of each component in the cell-wall spectrum. We uncovered a higher arabinogalactan-to-peptidoglycan ratio in the cell wall of M. abscessus, an organism noted for its antibiotic resistance, relative to M. smegmatis. Furthermore, differentiating influences of different types of cell-wall targeting antibiotics were observed in spectra of antibiotic-treated whole cells. This platform will be of value in evaluating cell-wall composition and antibiotic activity among different mycobacteria and in considering the most effective combination treatment regimens.
{"title":"CPMAS NMR platform for direct compositional analysis of mycobacterial cell-wall complexes and whole cells","authors":"Xinyu Liu , Jasna Brčić , Gail H. Cassell , Lynette Cegelski","doi":"10.1016/j.jmro.2023.100127","DOIUrl":"10.1016/j.jmro.2023.100127","url":null,"abstract":"<div><p>Tuberculosis and non-tuberculosis mycobacterial infections are rising each year and often result in chronic incurable disease. Important antibiotics target cell-wall biosynthesis, yet some mycobacteria are alarmingly resistant or tolerant to currently available antibiotics. This resistance is often attributed to assumed differences in composition of the complex cell wall of different mycobacterial strains and species. However, due to the highly crosslinked and insoluble nature of mycobacterial cell walls, direct comparative determinations of cell-wall composition pose a challenge to analysis through conventional biochemical analyses. We introduce an approach to directly observe the chemical composition of mycobacterial cell walls using solid-state NMR spectroscopy. <sup>13</sup>C CPMAS spectra are provided of individual components (peptidoglycan, arabinogalactan, and mycolic acids) and of <em>in situ</em> cell-wall complexes. We assigned the spectroscopic contributions of each component in the cell-wall spectrum. We uncovered a higher arabinogalactan-to-peptidoglycan ratio in the cell wall of <em>M. abscessus</em>, an organism noted for its antibiotic resistance, relative to <em>M. smegmatis</em>. Furthermore, differentiating influences of different types of cell-wall targeting antibiotics were observed in spectra of antibiotic-treated whole cells. This platform will be of value in evaluating cell-wall composition and antibiotic activity among different mycobacteria and in considering the most effective combination treatment regimens.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100127"},"PeriodicalIF":2.624,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000353/pdfft?md5=b8e77d4be33bc168b0286ba8cff3b61a&pid=1-s2.0-S2666441023000353-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85315161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although very effective in decreasing NMR relaxation of large proteins, homogeneous deuteration can be costly, and anyway unsuitable for recombinant production in metazoan systems. We sought to explore other deuteration schemes, which would be adapted to protein expression in mammalian cells. Here, we evaluate the benefits of the deuteration on alpha- and beta-positions of amino acids for a typical middle size protein domain, namely the model 40 kDa-large kinase p38α. We report the position-specific deuteration of free amino acids by using enzyme-assisted H/D exchange, executed by the cystathionine gamma-synthase and a newly designed high-performance mutant E325A. Then, we used cell-free expression in bacterial extracts to avoid any scrambling and back-protonation of the tested isotopically labelled amino acids (Ala, Leu, Lys, Ser, Asp, Glu, Gly). Our results show signal enhancements up to three in 1H-15N spectra when these α/β-deuterated amino acids are integrated. Because our approach relies on single 2Hα/β-15N-amino acid labeling, an additional three-fold increase in sensitivity is obtained by the possible use of moderate resolution SOFAST-HMQC instead of the classical HSQC or TROSY experiments. This allows recording residue-resolved solution 1H-15N NMR spectra of 100 μg of p38α in one hour with S/N∼10.
{"title":"Affordable amino acid α/β-deuteration and specific labeling for NMR signal enhancement: Evaluation on the kinase p38α","authors":"Rania Ghouil , Chafiaa Bouguechtouli , Hélène Chérot , Agathe Marcelot , Maxime Roche , Francois-Xavier Theillet","doi":"10.1016/j.jmro.2023.100126","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100126","url":null,"abstract":"<div><p>Although very effective in decreasing NMR relaxation of large proteins, homogeneous deuteration can be costly, and anyway unsuitable for recombinant production in metazoan systems. We sought to explore other deuteration schemes, which would be adapted to protein expression in mammalian cells. Here, we evaluate the benefits of the deuteration on alpha- and beta-positions of amino acids for a typical middle size protein domain, namely the model 40 kDa-large kinase p38α. We report the position-specific deuteration of free amino acids by using enzyme-assisted H/D exchange, executed by the cystathionine gamma-synthase and a newly designed high-performance mutant E325A. Then, we used cell-free expression in bacterial extracts to avoid any scrambling and back-protonation of the tested isotopically labelled amino acids (Ala, Leu, Lys, Ser, Asp, Glu, Gly). Our results show signal enhancements up to three in <sup>1</sup>H-<sup>15</sup>N spectra when these α/β-deuterated amino acids are integrated. Because our approach relies on single <sup>2</sup>H<sub>α/β</sub>-<sup>15</sup>N-amino acid labeling, an additional three-fold increase in sensitivity is obtained by the possible use of moderate resolution SOFAST-HMQC instead of the classical HSQC or TROSY experiments. This allows recording residue-resolved solution <sup>1</sup>H-<sup>15</sup>N NMR spectra of 100 μg of p38α in one hour with S/N∼10.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100126"},"PeriodicalIF":2.624,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1826370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}