首页 > 最新文献

Journal of Magnetic Resonance Open最新文献

英文 中文
Conformational dynamics and kinetics of protein interactions by nuclear magnetic resonance 核磁共振研究蛋白质相互作用的构象动力学和动力学
IF 2.624 Pub Date : 2023-06-01 DOI: 10.1016/j.jmro.2023.100093
Adolfo H. Moraes , Ana Paula Valente

Structural information of protein complexes is fundamental for the rational drug design and improvement of vaccines and biosensors. Also, protein misassembly can have severe biological consequences. Here we discuss the challenges of studying protein complexes and show examples of systems characterized using NMR.

蛋白质复合物的结构信息是合理设计药物、改进疫苗和生物传感器的基础。此外,蛋白质错误组装会产生严重的生物学后果。在这里,我们讨论了研究蛋白质复合物的挑战,并展示了使用核磁共振表征的系统的例子。
{"title":"Conformational dynamics and kinetics of protein interactions by nuclear magnetic resonance","authors":"Adolfo H. Moraes ,&nbsp;Ana Paula Valente","doi":"10.1016/j.jmro.2023.100093","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100093","url":null,"abstract":"<div><p>Structural information of protein complexes is fundamental for the rational drug design and improvement of vaccines and biosensors. Also, protein misassembly can have severe biological consequences. Here we discuss the challenges of studying protein complexes and show examples of systems characterized using NMR.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"14 ","pages":"Article 100093"},"PeriodicalIF":2.624,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1826376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conducting a three-pulse DEER experiment without dead time: A review 无死时间三脉冲DEER实验研究综述
IF 2.624 Pub Date : 2023-06-01 DOI: 10.1016/j.jmro.2023.100100
Sergei A. Dzuba

Double electron-electron resonance spectroscopy (DEER, also known as PELDOR) is used to study spin-spin dipolar interactions between spin labels, at the nanoscale range of distances. The DEER effect is obtained as a signal generated by echo-forming microwave (mw) pulses with an additional mw pump pulse applied at a different frequency. It is important to carry out measurements without artefacts induced by overlap of the pulses in the time scale. Such an experiment without the dead-time effect is achieved using the 4-pulse (4p) DEER method. The analysis of the literature performed here shows however that the 3-pulse (3p) DEER can also be free of the dead time problem, for which there are two possibilities. The first occurs using a specially designed bimodal resonator, for which the two frequencies are completely decoupled. The second possibility, which can be implemented for any commercial spectrometer, involves the signal correction based on an additional “blank” measurement with the pump pulse applied outside the EPR resonance. A detailed comparison of the 3p and 4p DEER data obtained previously by Milov et al. [Appl. Magn. Reson. 41 (2011) 59–67] shows that 3p and 4p approaches give similar results. The advantages of the 3p DEER techniques are discussed.

双电子-电子共振光谱(DEER,也称为PELDOR)用于研究纳米级距离范围内自旋标签之间的自旋-自旋偶极相互作用。DEER效应是由形成回波的微波(mw)脉冲和附加的不同频率的mw泵浦脉冲产生的信号。重要的是,在进行测量时,要避免脉冲在时间尺度上的重叠引起的伪影。采用4脉冲(4p) DEER方法实现了无死区效应的实验。然而,本文对文献的分析表明,3脉冲(3p) DEER也可以不存在死区问题,这有两种可能性。第一种是使用特殊设计的双峰谐振器,两个频率完全解耦。第二种可能是任何商用光谱仪都可以实现的,它涉及到在EPR共振外施加泵浦脉冲的额外“空白”测量基础上的信号校正。Milov等人先前获得的3p和4p DEER数据的详细比较。粉剂。reason . 41(2011) 59-67]表明3p和4p方法给出了相似的结果。讨论了3p DEER技术的优点。
{"title":"Conducting a three-pulse DEER experiment without dead time: A review","authors":"Sergei A. Dzuba","doi":"10.1016/j.jmro.2023.100100","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100100","url":null,"abstract":"<div><p>Double electron-electron resonance spectroscopy (DEER, also known as PELDOR) is used to study spin-spin dipolar interactions between spin labels, at the nanoscale range of distances. The DEER effect is obtained as a signal generated by echo-forming microwave (mw) pulses with an additional mw pump pulse applied at a different frequency. It is important to carry out measurements without artefacts induced by overlap of the pulses in the time scale. Such an experiment without the dead-time effect is achieved using the 4-pulse (4p) DEER method. The analysis of the literature performed here shows however that the 3-pulse (3p) DEER can also be free of the dead time problem, for which there are two possibilities. The first occurs using a specially designed bimodal resonator, for which the two frequencies are completely decoupled. The second possibility, which can be implemented for any commercial spectrometer, involves the signal correction based on an additional “blank” measurement with the pump pulse applied outside the EPR resonance. A detailed comparison of the 3p and 4p DEER data obtained previously by Milov et al. [Appl. Magn. Reson. 41 (2011) 59–67] shows that 3p and 4p approaches give similar results. The advantages of the 3p DEER techniques are discussed.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"14 ","pages":"Article 100100"},"PeriodicalIF":2.624,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1826378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A broadband pulse EPR spectrometer for high-throughput measurements in the X-band 用于x波段高通量测量的宽带脉冲EPR光谱仪
IF 2.624 Pub Date : 2023-06-01 DOI: 10.1016/j.jmro.2022.100092
Nikolay P. Isaev , Anatoly R. Melnikov , Konstantin A. Lomanovich , Mikhail V. Dugin , Mikhail Yu. Ivanov , Dmitriy N. Polovyanenko , Sergey L. Veber , Michael K. Bowman , Elena G. Bagryanskaya

We present an X-band pulse EPR spectrometer with high throughput and excellent sensitivity in the 8.5-11.5GHz range. It is designed for high stability and low noise Fourier Transform measurements for applications in pulse dipolar spectroscopy, pulse hyperfine spectroscopy, and spin relaxation from cryogenic temperatures to room temperature. An arbitrary waveform generator is used to generate pulses of any frequency and shape for multiple resonance experiments or for uniform broadband excitation with bandwidths exceeding 350 MHz. We illustrate the capabilities and performance of the spectrometer by measurements on free radicals and biradicals in solids and liquids. Relaxation times of radicals in liquid solution are measured for fewer than 30,000,000 spins (less than 3 nanomoles per liter). Non-uniform acquisition provides higher throughput for mixtures of radicals with quite different relaxation rates. Conventional DEER measurements on a rigid biradical have good modulation depth. Broadband SIFTER with chirped adiabatic WURST pulses demonstrates versatility for the latest broadband pulse schemes. A broadband ESEEM measurement correlates ESEEM and EPR frequencies which characterize the conformation of a nitroxide radical. The entire EPR spectrum with a width approaching 300 MHz was excited and detected throughout the measurement. The spectrometer supports the operator in tuning, setting up experiments and monitoring their progress so that even novice users consistently can obtain optimal results.

在8.5-11.5GHz范围内,我们设计了一种高通量、高灵敏度的x波段脉冲EPR光谱仪。它是专为高稳定性和低噪声傅立叶变换测量应用于脉冲偶极光谱,脉冲超精细光谱,自旋弛豫从低温到室温。任意波形发生器用于产生任意频率和形状的脉冲,用于多次共振实验或带宽超过350 MHz的均匀宽带激励。我们通过测量固体和液体中的自由基和双自由基来说明光谱仪的能力和性能。自由基在液体溶液中的弛豫时间被测量小于3000万自旋(小于3纳摩尔每升)。非均匀获取为具有不同弛豫速率的自由基混合物提供了更高的通量。在刚性双基上的传统DEER测量具有良好的调制深度。具有啁啾绝热WURST脉冲的宽带SIFTER展示了最新宽带脉冲方案的多功能性。宽带ESEEM测量将表征氮氧化物自由基构象的ESEEM和EPR频率联系起来。整个EPR频谱宽度接近300 MHz,在整个测量过程中被激发和检测。该光谱仪支持操作员调整,设置实验和监测其进展,以便即使是新手用户也能始终如一地获得最佳结果。
{"title":"A broadband pulse EPR spectrometer for high-throughput measurements in the X-band","authors":"Nikolay P. Isaev ,&nbsp;Anatoly R. Melnikov ,&nbsp;Konstantin A. Lomanovich ,&nbsp;Mikhail V. Dugin ,&nbsp;Mikhail Yu. Ivanov ,&nbsp;Dmitriy N. Polovyanenko ,&nbsp;Sergey L. Veber ,&nbsp;Michael K. Bowman ,&nbsp;Elena G. Bagryanskaya","doi":"10.1016/j.jmro.2022.100092","DOIUrl":"https://doi.org/10.1016/j.jmro.2022.100092","url":null,"abstract":"<div><p>We present an X-band pulse EPR spectrometer with high throughput and excellent sensitivity in the 8.5-11.5GHz range. It is designed for high stability and low noise Fourier Transform measurements for applications in pulse dipolar spectroscopy, pulse hyperfine spectroscopy, and spin relaxation from cryogenic temperatures to room temperature. An arbitrary waveform generator is used to generate pulses of any frequency and shape for multiple resonance experiments or for uniform broadband excitation with bandwidths exceeding 350 MHz. We illustrate the capabilities and performance of the spectrometer by measurements on free radicals and biradicals in solids and liquids. Relaxation times of radicals in liquid solution are measured for fewer than 30,000,000 spins (less than 3 nanomoles per liter). Non-uniform acquisition provides higher throughput for mixtures of radicals with quite different relaxation rates. Conventional DEER measurements on a rigid biradical have good modulation depth. Broadband SIFTER with chirped adiabatic WURST pulses demonstrates versatility for the latest broadband pulse schemes. A broadband ESEEM measurement correlates ESEEM and EPR frequencies which characterize the conformation of a nitroxide radical. The entire EPR spectrum with a width approaching 300 MHz was excited and detected throughout the measurement. The spectrometer supports the operator in tuning, setting up experiments and monitoring their progress so that even novice users consistently can obtain optimal results.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"14 ","pages":"Article 100092"},"PeriodicalIF":2.624,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3451239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Inductively coupled, transmit-receive coils for proton MRI and X-nucleus MRI/MRS in small animals 小动物质子MRI和x核MRI/MRS的电感耦合收发线圈
IF 2.624 Pub Date : 2023-05-20 DOI: 10.1016/j.jmro.2023.100123
Atsushi M. Takahashi , Jitendra Sharma , David O. Guarin , Julie Miller , Hiroaki Wakimoto , Daniel P. Cahill , Yi-Fen Yen

We report several inductively coupled RF coil designs that are very easy to construct, produce high signal-to-noise ratio (SNR) and high spatial resolution while accommodating life support, anesthesia and monitoring in small animals. Inductively coupled surface coils were designed for hyperpolarized 13 C MR spectroscopic imaging (MRSI) of mouse brain, with emphases on the simplicity of the circuit design, ease of use, whole-brain coverage, and high SNR. The simplest form was a resonant loop designed to crown the mouse head for a snug fit to achieve full coverage of the brain with high sensitivity when inductively coupled to a broadband pick-up coil. Here, we demonstrated the coil's performance in hyperpolarized 13 C MRSI of a normal mouse and a glioblastoma mouse model at 4.7 T. High SNR exceeding 70:1 was obtained in the brain with good spatial resolution (1.53 mm x 1.53 mm). Similar inductively coupled loop for other X-nuclei can be made very easily in a few minutes and achieve high performance, as demonstrated in 31 P spectroscopy. Similar design concept was expanded to splitable, inductively coupled volume coils for high-resolution proton MRI of marmoset at 3T and 9.4T, to easily accommodate head restraint, vital-sign monitoring, and anesthesia delivery.

我们报告了几种电感耦合射频线圈设计,它们非常容易构建,产生高信噪比(SNR)和高空间分辨率,同时适用于小动物的生命支持,麻醉和监测。设计了用于小鼠脑超极化13c磁共振成像(MRSI)的电感耦合表面线圈,重点是电路设计简单、易于使用、全脑覆盖和高信噪比。最简单的形式是一个谐振回路,设计在鼠标头的顶部,当电感耦合到宽带拾取线圈时,以高灵敏度实现对大脑的全覆盖。在这里,我们展示了线圈在正常小鼠和胶质母细胞瘤小鼠模型4.7 t的超极化13c磁共振成像中的表现,在大脑中获得了超过70:1的高信噪比,具有良好的空间分辨率(1.53 mm x 1.53 mm)。类似的电感耦合环可以很容易地在几分钟内制成其他x核,并达到高性能,如31 P光谱所示。类似的设计概念被扩展到可分裂的电感耦合容积线圈,用于3T和9.4T的狨猴高分辨率质子MRI,以方便地适应头部约束、生命体征监测和麻醉输送。
{"title":"Inductively coupled, transmit-receive coils for proton MRI and X-nucleus MRI/MRS in small animals","authors":"Atsushi M. Takahashi ,&nbsp;Jitendra Sharma ,&nbsp;David O. Guarin ,&nbsp;Julie Miller ,&nbsp;Hiroaki Wakimoto ,&nbsp;Daniel P. Cahill ,&nbsp;Yi-Fen Yen","doi":"10.1016/j.jmro.2023.100123","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100123","url":null,"abstract":"<div><p>We report several inductively coupled RF coil designs that are very easy to construct, produce high signal-to-noise ratio (SNR) and high spatial resolution while accommodating life support, anesthesia and monitoring in small animals. Inductively coupled surface coils were designed for hyperpolarized <sup>13</sup> C MR spectroscopic imaging (MRSI) of mouse brain, with emphases on the simplicity of the circuit design, ease of use, whole-brain coverage, and high SNR. The simplest form was a resonant loop designed to crown the mouse head for a snug fit to achieve full coverage of the brain with high sensitivity when inductively coupled to a broadband pick-up coil. Here, we demonstrated the coil's performance in hyperpolarized <sup>13</sup> C MRSI of a normal mouse and a glioblastoma mouse model at 4.7 T. High SNR exceeding 70:1 was obtained in the brain with good spatial resolution (1.53 mm x 1.53 mm). Similar inductively coupled loop for other X-nuclei can be made very easily in a few minutes and achieve high performance, as demonstrated in <sup>31</sup> P spectroscopy. Similar design concept was expanded to splitable, inductively coupled volume coils for high-resolution proton MRI of marmoset at 3T and 9.4T, to easily accommodate head restraint, vital-sign monitoring, and anesthesia delivery.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100123"},"PeriodicalIF":2.624,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3135445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal control derived sensitivity-enhanced CA-CO mixing sequences for MAS solid-state NMR – Applications in sequential protein backbone assignments 最优控制衍生的灵敏度增强CA-CO混合序列用于MAS固态核磁共振-在序列蛋白质骨架分配中的应用
IF 2.624 Pub Date : 2023-05-06 DOI: 10.1016/j.jmro.2023.100122
Jan Blahut , Matthias J. Brandl , Riddhiman Sarkar , Bernd Reif , Zdeněk Tošner

We have recently introduced optimal-control derived pulse sequences for sensitivity-enhanced heteronuclear correlation NMR experiments of solid proteins. Preservation of equivalent coherence transfer pathways using transverse-mixing pulses (TROP) in multidimensional pulse schemes allows to increase the sensitivity of the experiments by more than a factor of 2 per each indirect dimension. In this article, we present homonuclear CA-CO transverse-mixing elements (homoTROP) that are based on dipolar interactions and achieve similar gains as the heteronuclear TROP pulses described previously. Both transfer elements were subsequently implemented in 3D se-hCAcoNH and se-hCOcaNH, that together with the previously introduced 3D se-hCANH and se-hCONH experiments yield a complete set of sensitivity-enhanced protein backbone assignment experiments. In contrast to the J-coupling based methods that are used at fast (60 kHz) and ultrafast MAS (>100 kHz), the homoTROP experiments employ about 10-times shorter mixing times making use of the larger magnitude of the dipolar coupling in comparison to the J couplings. The experiments are demonstrated using a microcrystalline, perdeuterated sample of the chicken alpha-spectrin SH3 domain in which all exchangeable sites are fully back-substituted with protons. We evaluated the gains in efficiency in all experiments site-specifically observing that the se-hCAcoNH and se-hCOcaNH experiments yield an increase in sensitivity by a factor of 1.36±0.09 and at least a factor of 1.8 with respect to the conventional hcoCAcoNH and hCOcaNH J-based experiments.

我们最近引入了最优控制衍生脉冲序列,用于固体蛋白质的灵敏度增强异核相关NMR实验。在多维脉冲方案中使用横向混合脉冲(TROP)保留等效相干转移路径,可以将实验的灵敏度提高到每个间接维度的2倍以上。在这篇文章中,我们提出了基于偶极相互作用的同核CA-CO横向混合元素(homoTROP),并获得了与之前描述的异核TROP脉冲相似的增益。这两种转移元件随后在3D se-hCAcoNH和se-hCOcaNH中实现,与之前介绍的3D se-hCANH和se-hCONH实验一起,形成了一套完整的敏感性增强蛋白骨架分配实验。与在快速(60 kHz)和超快MAS (>100 kHz)下使用的基于J耦合的方法相比,同色差实验使用了大约10倍的混合时间,与J耦合相比,利用了更大的偶极耦合幅度。该实验使用鸡α -谱蛋白SH3结构域的微晶,渗透样品进行了验证,其中所有可交换位点都被质子完全反取代。我们评估了所有实验现场的效率增益,特别是观察到se-hCAcoNH和se-hCOcaNH实验产生的灵敏度增加了1.36±0.09倍,与传统的hcoCAcoNH和hCOcaNH j实验相比,至少增加了1.8倍。
{"title":"Optimal control derived sensitivity-enhanced CA-CO mixing sequences for MAS solid-state NMR – Applications in sequential protein backbone assignments","authors":"Jan Blahut ,&nbsp;Matthias J. Brandl ,&nbsp;Riddhiman Sarkar ,&nbsp;Bernd Reif ,&nbsp;Zdeněk Tošner","doi":"10.1016/j.jmro.2023.100122","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100122","url":null,"abstract":"<div><p>We have recently introduced optimal-control derived pulse sequences for sensitivity-enhanced heteronuclear correlation NMR experiments of solid proteins. Preservation of equivalent coherence transfer pathways using transverse-mixing pulses (TROP) in multidimensional pulse schemes allows to increase the sensitivity of the experiments by more than a factor of <span><math><msqrt><mn>2</mn></msqrt></math></span> per each indirect dimension. In this article, we present homonuclear CA-CO transverse-mixing elements (homoTROP) that are based on dipolar interactions and achieve similar gains as the heteronuclear TROP pulses described previously. Both transfer elements were subsequently implemented in 3D se-hCAcoNH and se-hCOcaNH, that together with the previously introduced 3D se-hCANH and se-hCONH experiments yield a complete set of sensitivity-enhanced protein backbone assignment experiments. In contrast to the J-coupling based methods that are used at fast (60 kHz) and ultrafast MAS (&gt;100 kHz), the homoTROP experiments employ about 10-times shorter mixing times making use of the larger magnitude of the dipolar coupling in comparison to the J couplings. The experiments are demonstrated using a microcrystalline, perdeuterated sample of the chicken alpha-spectrin SH3 domain in which all exchangeable sites are fully back-substituted with protons. We evaluated the gains in efficiency in all experiments site-specifically observing that the se-hCAcoNH and se-hCOcaNH experiments yield an increase in sensitivity by a factor of 1.36±0.09 and at least a factor of 1.8 with respect to the conventional hcoCAcoNH and hCOcaNH J-based experiments.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100122"},"PeriodicalIF":2.624,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3451237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Solid state nuclear magnetic resonance of polymers 聚合物的固态核磁共振
IF 2.624 Pub Date : 2023-05-02 DOI: 10.1016/j.jmro.2023.100119
Gustavo Alberto Monti , Rodolfo Héctor Acosta , Ana Karina Chattah , Yamila Garro Linck

The development of Solid-State Nuclear Magnetic Resonance (SSNMR) in Argentina took a great buster at the beginning of the 1990s along with the acquisition of many “state-of-the-art” high-field NMR spectrometers, two of them multipurpose solid-liquid spectrometers. From then to nowadays, the study of solid samples, including polymers, has been a current topic at the NMR group of the Facultad de Matemática, Astronomía, Física y Computación of Universidad Nacional de Córdoba, in Argentina. In this work, we propose a review approach of several research works on solid polymers performed in our group, covering low-field relaxation studies and high-resolution SSNMR.

20世纪90年代初,随着许多“最先进的”高场核磁共振光谱仪(其中两台是多用途固液光谱仪)的收购,阿根廷固态核磁共振(SSNMR)的发展受到了极大的打击。从那时到现在,包括聚合物在内的固体样品的研究一直是阿根廷国立大学Córdoba学院Matemática, Astronomía, Física y Computación核磁共振组的当前主题。在这项工作中,我们提出了几个研究工作的回顾方法在固体聚合物进行了我们的小组,包括低场弛豫研究和高分辨率的SSNMR。
{"title":"Solid state nuclear magnetic resonance of polymers","authors":"Gustavo Alberto Monti ,&nbsp;Rodolfo Héctor Acosta ,&nbsp;Ana Karina Chattah ,&nbsp;Yamila Garro Linck","doi":"10.1016/j.jmro.2023.100119","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100119","url":null,"abstract":"<div><p>The development of Solid-State Nuclear Magnetic Resonance (SSNMR) in Argentina took a great buster at the beginning of the 1990s along with the acquisition of many “state-of-the-art” high-field NMR spectrometers, two of them multipurpose solid-liquid spectrometers. From then to nowadays, the study of solid samples, including polymers, has been a current topic at the NMR group of the Facultad de Matemática, Astronomía, Física y Computación of Universidad Nacional de Córdoba, in Argentina. In this work, we propose a review approach of several research works on solid polymers performed in our group, covering low-field relaxation studies and high-resolution SSNMR.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100119"},"PeriodicalIF":2.624,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1826465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The application of solution NMR spectroscopy to study dynamics of two-domain calcium-binding proteins 溶液核磁共振波谱技术在两畴钙结合蛋白动力学研究中的应用
IF 2.624 Pub Date : 2023-05-01 DOI: 10.1016/j.jmro.2023.100120
Roberto Kopke Salinas

Protein dynamics due to flexible linkers connecting otherwise rigid domains may be critical for the functioning of a variety of biological systems, ranging from membrane transporters to calcium-signaling and the formation of intercellular junctions. Considering that NMR spectroscopy is extremely powerful to characterize dynamics at various time scales, this manuscript brings an overview of the main strategies that have been employed to characterize inter-domain dynamics in relevant biological systems. Emphasis was given to the calcium binding proteins: calmodulin, cadherin, and the Na+/Ca2+ exchanger calcium-sensor domain. The introduction of paramagnetic centers in diamagnetic proteins is seen as key to obtaining unambiguous information about inter-domain dynamics. This is because the self-alignment of one of the domains in multi-domain proteins avoids the problem of dealing with alignment tensor fluctuations in dynamic systems. The combination of residual dipolar couplings (RDCs) and pseudocontact shifts (PCSs) with computational strategies aiming to provide an ensemble description of protein dynamics is seen as the most powerful strategy to gain detailed atomistic information on inter-domain motions. It is noteworthy that the cadherin ectodomains and the Na+/Ca2+ exchanger calcium sensor respond in the same way upon calcium-binding: in the absence of calcium the two domains are flexibly linked to one another and may preferentially sample kinked inter-domain arrangements, while calcium binding stabilizes a rigid and extended inter-domain arrangement. It is thus remarkable that nature chose the same molecular mechanism to promote two very different biological functions that are triggered by calcium signaling: intercellular adhesion by the formation of cadherin dimers and the allosteric regulation of a membrane transporter in the case of the Na+/Ca2+ exchanger.

由于柔性连接体连接刚性结构域的蛋白质动力学可能对多种生物系统的功能至关重要,包括从膜转运体到钙信号传导和细胞间连接的形成。考虑到核磁共振波谱在各种时间尺度上的动力学特征是非常强大的,本文概述了用于表征相关生物系统中域间动力学的主要策略。重点是钙结合蛋白:钙调蛋白、钙粘蛋白和Na+/Ca2+交换器钙传感器结构域。在抗磁性蛋白质中引入顺磁中心被认为是获得关于结构域间动力学的明确信息的关键。这是因为在多结构域蛋白质中,其中一个结构域的自对准避免了处理动态系统中对准张量波动的问题。残差偶极耦合(rdc)和伪接触位移(PCSs)与计算策略的结合,旨在提供蛋白质动力学的整体描述,被认为是获得详细的域间运动原子信息的最有效策略。值得注意的是,钙粘蛋白外结构域和Na+/Ca2+交换器钙传感器在钙结合时以相同的方式响应:在没有钙的情况下,两个结构域彼此灵活地连接在一起,并可能优先样品弯曲的结构域间排列,而钙结合稳定了刚性和扩展的结构域间排列。因此,值得注意的是,大自然选择了相同的分子机制来促进钙信号触发的两种截然不同的生物功能:钙粘蛋白二聚体形成的细胞间粘附和Na+/Ca2+交换器中膜转运体的变构调节。
{"title":"The application of solution NMR spectroscopy to study dynamics of two-domain calcium-binding proteins","authors":"Roberto Kopke Salinas","doi":"10.1016/j.jmro.2023.100120","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100120","url":null,"abstract":"<div><p>Protein dynamics due to flexible linkers connecting otherwise rigid domains may be critical for the functioning of a variety of biological systems, ranging from membrane transporters to calcium-signaling and the formation of intercellular junctions. Considering that NMR spectroscopy is extremely powerful to characterize dynamics at various time scales, this manuscript brings an overview of the main strategies that have been employed to characterize inter-domain dynamics in relevant biological systems. Emphasis was given to the calcium binding proteins: calmodulin, cadherin, and the Na<sup>+</sup>/Ca<sup>2+</sup> exchanger calcium-sensor domain. The introduction of paramagnetic centers in diamagnetic proteins is seen as key to obtaining unambiguous information about inter-domain dynamics. This is because the self-alignment of one of the domains in multi-domain proteins avoids the problem of dealing with alignment tensor fluctuations in dynamic systems. The combination of residual dipolar couplings (RDCs) and pseudocontact shifts (PCSs) with computational strategies aiming to provide an ensemble description of protein dynamics is seen as the most powerful strategy to gain detailed atomistic information on inter-domain motions. It is noteworthy that the cadherin ectodomains and the Na<sup>+</sup>/Ca<sup>2+</sup> exchanger calcium sensor respond in the same way upon calcium-binding: in the absence of calcium the two domains are flexibly linked to one another and may preferentially sample kinked inter-domain arrangements, while calcium binding stabilizes a rigid and extended inter-domain arrangement. It is thus remarkable that nature chose the same molecular mechanism to promote two very different biological functions that are triggered by calcium signaling: intercellular adhesion by the formation of cadherin dimers and the allosteric regulation of a membrane transporter in the case of the Na<sup>+</sup>/Ca<sup>2+</sup> exchanger.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100120"},"PeriodicalIF":2.624,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3266170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A 3D method called mdMRS for post-processing Magnetic Resonance Spectroscopy data 一种称为mdMRS的3D方法,用于后处理磁共振波谱数据
IF 2.624 Pub Date : 2023-04-28 DOI: 10.1016/j.jmro.2023.100116
Dale H. Mugler , Dorothea D. Jenkins

The data obtained from a scanner for Magnetic Resonance Spectroscopy (MRS) is three-dimensional (3D) since the FID data from the scanner has spectrum values which are 2D complex numbers and 1D time values. This paper describes an MRS frequency-based post-processing method that has the advantage that it quickly determines the values needed for metabolite intensities and concentrations, even for most overlapping spectral terms.

The method of this paper does not depend on area under a curve or a user-chosen basis set. As few as three valid points corresponding to a peak on the spectral curve are all that is needed, other than similar information on a reference metabolite, for concentration determination of the associated metabolite. All four of the key values of peak location, amplitude, phase angle, and damping constant are determined simultaneously with high accuracy, dependent upon noise, and with computational simplicity from only three complex-valued constants. The theory behind mdMRS uses the knowledge that the projection of the 3D spectrum to the complex plane is a simple circle. Several concepts from complex variables theory are important, such as the Linear Fractional Transformation (LFT) that maps the frequency axis to that circle. The duality linking an LFT with a 2 × 2 Moebius matrix enables a fast iteration process that sharpens the four key value estimates on each iteration. The iteration removes all other terms when considering one of them. Applied to initial estimates, this leads to increasingly accurate output.

To be useful to clinicians and to researchers developing treatments based on metabolite concentrations, the goal for post-processing of the data include both fast and accurate computations, with speed sufficient to provide results “on console” and output provided as concentrations. Besides the number of protons associated with a metabolite, concentrations are determined using both amplitude and damping constant values. Since the methods of mdMRS provide both of those characteristics simultaneously, the time from data collection to metabolite concentration output is minimized. The name of this new post-processing method was chosen since the attributes of the method help bring that goal closer to reality for Medical Doctors.

从磁共振波谱(MRS)扫描仪获得的数据是三维的(3D),因为扫描仪的FID数据具有二维复数和一维时间值的光谱值。本文描述了一种基于MRS频率的后处理方法,其优点是它可以快速确定代谢物强度和浓度所需的值,即使对于大多数重叠的光谱项也是如此。本文的方法不依赖于曲线下的面积或用户选择的基集。对于相关代谢物的浓度测定,除了参考代谢物的类似信息外,只需在光谱曲线上对应一个峰的三个有效点即可。峰值位置、振幅、相位角和阻尼常数的所有四个关键值同时确定,具有高精度,依赖于噪声,并且仅从三个复值常数计算简单。mdMRS背后的理论利用了三维光谱在复平面上的投影是一个简单圆的知识。复变量理论中的几个概念很重要,例如将频率轴映射到该圆的线性分数变换(LFT)。将LFT与2x2莫比乌斯矩阵连接起来的对偶性使得快速迭代过程能够在每次迭代中锐化四个关键值的估计。当考虑其中一项时,迭代会删除所有其他项。应用于初始估计,这将导致越来越准确的输出。为了对临床医生和基于代谢物浓度开发治疗方法的研究人员有用,数据后处理的目标包括快速准确的计算,其速度足以“在控制台”提供结果并作为浓度提供输出。除了与代谢物相关的质子数外,浓度还可以使用振幅和阻尼常数值来确定。由于mdMRS方法同时提供这两种特征,从数据收集到代谢物浓度输出的时间被最小化。之所以选择这种新的后处理方法的名称,是因为该方法的属性有助于使医生更接近于实现这一目标。
{"title":"A 3D method called mdMRS for post-processing Magnetic Resonance Spectroscopy data","authors":"Dale H. Mugler ,&nbsp;Dorothea D. Jenkins","doi":"10.1016/j.jmro.2023.100116","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100116","url":null,"abstract":"<div><p>The data obtained from a scanner for Magnetic Resonance Spectroscopy (MRS) is three-dimensional (3D) since the FID data from the scanner has spectrum values which are 2D complex numbers and 1D time values. This paper describes an MRS frequency-based post-processing method that has the advantage that it quickly determines the values needed for metabolite intensities and concentrations, even for most overlapping spectral terms.</p><p>The method of this paper does not depend on area under a curve or a user-chosen basis set. As few as three valid points corresponding to a peak on the spectral curve are all that is needed, other than similar information on a reference metabolite, for concentration determination of the associated metabolite. All four of the key values of peak location, amplitude, phase angle, and damping constant are determined simultaneously with high accuracy, dependent upon noise, and with computational simplicity from only three complex-valued constants. The theory behind <em>mdMRS</em> uses the knowledge that the projection of the 3D spectrum to the complex plane is a simple circle. Several concepts from complex variables theory are important, such as the Linear Fractional Transformation (LFT) that maps the frequency axis to that circle. The duality linking an LFT with a 2 <span><math><mo>×</mo></math></span> 2 Moebius matrix enables a fast iteration process that sharpens the four key value estimates on each iteration. The iteration removes all other terms when considering one of them. Applied to initial estimates, this leads to increasingly accurate output.</p><p>To be useful to clinicians and to researchers developing treatments based on metabolite concentrations, the goal for post-processing of the data include both fast and accurate computations, with speed sufficient to provide results “on console” and output provided as concentrations. Besides the number of protons associated with a metabolite, concentrations are determined using both amplitude and damping constant values. Since the methods of <em>mdMRS</em> provide both of those characteristics simultaneously, the time from data collection to metabolite concentration output is minimized. The name of this new post-processing method was chosen since the attributes of the method help bring that goal closer to reality for <u>M</u>edical <u>D</u>octors.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100116"},"PeriodicalIF":2.624,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3135444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
X-nuclear MRS and MRI on a standard clinical proton-only MRI scanner 在标准的临床质子核磁共振扫描仪上的x核MRS和MRI
IF 2.624 Pub Date : 2023-04-24 DOI: 10.1016/j.jmro.2023.100118
Yi-Fen Yen , Atsushi M. Takahashi , Jerome L. Ackerman

In light of the growing interest in-vivo deuterium metabolic imaging, hyperpolarized 13C, 15N, 3He, and 129Xe imaging, as well as 31P spectroscopy and imaging in large animals on clinical MR scanners, we demonstrate the use of a (radio)frequency converter system to allow X-nuclear MR spectroscopy (MRS) and MR imaging (MRI) on standard clinical MRI scanners without multinuclear capability. This is not only an economical alternative to the multinuclear system (MNS) provided by the scanner vendors, but also overcomes the frequency bandwidth problem of some vendor-provided MNSs that prohibit users from applications with X-nuclei of low magnetogyric ratio, such as deuterium (6.536 MHz/Tesla) and 15N (-4.316 MHz/Tesla). Here we illustrate the design of the frequency converter system and demonstrate its feasibility for 31P (17.235 MHz/Tesla), 13C (10.708 MHz/Tesla), and 15N MRS and MRI on a clinical MRI scanner without vendor-provided multinuclear hardware.

鉴于人们对体内氘代谢成像、超极化13C、15N、3He和129Xe成像以及31P光谱和大型动物临床磁共振扫描仪成像的兴趣日益浓厚,我们演示了使用(无线电)变频器系统在标准临床磁共振扫描仪上实现x核磁共振光谱(MRS)和磁共振成像(MRI),而不需要多核能力。这不仅是扫描仪供应商提供的多核系统(MNS)的经济替代方案,而且还克服了一些供应商提供的MNS的频率带宽问题,这些MNS禁止用户使用低磁重比的x核,例如氘(6.536 MHz/Tesla)和15N (-4.316 MHz/Tesla)。在这里,我们演示了变频器系统的设计,并证明了其在临床MRI扫描仪上用于31P (17.235 MHz/Tesla), 13C (10.708 MHz/Tesla)和15N MRS和MRI的可行性,而无需供应商提供的多核硬件。
{"title":"X-nuclear MRS and MRI on a standard clinical proton-only MRI scanner","authors":"Yi-Fen Yen ,&nbsp;Atsushi M. Takahashi ,&nbsp;Jerome L. Ackerman","doi":"10.1016/j.jmro.2023.100118","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100118","url":null,"abstract":"<div><p>In light of the growing interest <em>in-vivo</em> deuterium metabolic imaging, hyperpolarized <sup>13</sup>C, <sup>15</sup>N, <sup>3</sup>He, and <sup>129</sup>Xe imaging, as well as <sup>31</sup>P spectroscopy and imaging in large animals on clinical MR scanners, we demonstrate the use of a (radio)frequency converter system to allow X-nuclear MR spectroscopy (MRS) and MR imaging (MRI) on standard clinical MRI scanners without multinuclear capability. This is not only an economical alternative to the multinuclear system (MNS) provided by the scanner vendors, but also overcomes the frequency bandwidth problem of some vendor-provided MNSs that prohibit users from applications with X-nuclei of low magnetogyric ratio, such as deuterium (6.536 MHz/Tesla) and <sup>15</sup>N (-4.316 MHz/Tesla). Here we illustrate the design of the frequency converter system and demonstrate its feasibility for <sup>31</sup>P (17.235 MHz/Tesla), <sup>13</sup>C (10.708 MHz/Tesla), and <sup>15</sup>N MRS and MRI on a clinical MRI scanner without vendor-provided multinuclear hardware.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100118"},"PeriodicalIF":2.624,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3138358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous-wave electron paramagnetic resonance (CW-EPR) for studying structure-function relationships in a Cu-containing nitrite reductase and a Mo-containing aldehyde oxidoreductase 连续波电子顺磁共振(CW-EPR)用于研究含cu亚硝酸盐还原酶和含mo醛氧化还原酶的结构-功能关系
IF 2.624 Pub Date : 2023-04-13 DOI: 10.1016/j.jmro.2023.100117
Pablo J. González, María G. Rivas, Ana L. Pérez, Carlos D. Brondino

Transition metal ion-containing oxidoreductases, which carry out long-distance electron transfer reactions, are a large family of metalloproteins that are widely distributed in nature. The metal ions are either present as mononuclear centers or are organized in clusters. One of the metal cofactors is the active site of the enzyme where the substrate is converted to a product, while the others serve as electron transfer centers. Metal cofactors are paramagnetic in certain protein redox states and may additionally exhibit different relaxation rates and weak superexchange interactions transferred via intraprotein electron transfer pathways. Cu-containing nitrite reductase and Mo-containing aldehyde oxidoreductase are two representative examples of oxidoreductases in which these phenomena occur, making them interesting systems to study using electron magnetic resonance techniques. We summarize here several X-band Continuous-Wave Electron Paramagnetic Resonance (CW-EPR) studies that have allowed insights into structural and functional aspects of these two proteins and may help characterize closely related systems.

含过渡金属离子的氧化还原酶是广泛分布于自然界的金属蛋白大家族,可进行远距离电子转移反应。金属离子要么以单核中心形式存在,要么以团簇形式存在。其中一个金属辅因子是酶的活性位点,在那里底物被转化为产物,而其他的则作为电子转移中心。金属辅因子在某些蛋白质氧化还原状态下具有顺磁性,并且可能另外表现出不同的弛豫速率和通过蛋白质内电子转移途径传递的弱超交换相互作用。含cu亚硝酸盐还原酶和含mo醛氧化还原酶是氧化还原酶的两个典型例子,它们发生这些现象,使它们成为利用电子磁共振技术研究的有趣系统。我们在此总结了几个x波段连续波电子顺磁共振(CW-EPR)研究,这些研究使我们能够深入了解这两种蛋白质的结构和功能方面,并可能有助于表征密切相关的系统。
{"title":"Continuous-wave electron paramagnetic resonance (CW-EPR) for studying structure-function relationships in a Cu-containing nitrite reductase and a Mo-containing aldehyde oxidoreductase","authors":"Pablo J. González,&nbsp;María G. Rivas,&nbsp;Ana L. Pérez,&nbsp;Carlos D. Brondino","doi":"10.1016/j.jmro.2023.100117","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100117","url":null,"abstract":"<div><p>Transition metal ion-containing oxidoreductases, which carry out long-distance electron transfer reactions, are a large family of metalloproteins that are widely distributed in nature. The metal ions are either present as mononuclear centers or are organized in clusters. One of the metal cofactors is the active site of the enzyme where the substrate is converted to a product, while the others serve as electron transfer centers. Metal cofactors are paramagnetic in certain protein redox states and may additionally exhibit different relaxation rates and weak superexchange interactions transferred via intraprotein electron transfer pathways. Cu-containing nitrite reductase and Mo-containing aldehyde oxidoreductase are two representative examples of oxidoreductases in which these phenomena occur, making them interesting systems to study using electron magnetic resonance techniques. We summarize here several X-band Continuous-Wave Electron Paramagnetic Resonance (CW-EPR) studies that have allowed insights into structural and functional aspects of these two proteins and may help characterize closely related systems.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100117"},"PeriodicalIF":2.624,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1826463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Magnetic Resonance Open
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1