Pub Date : 2023-08-06DOI: 10.1016/j.jmro.2023.100130
Elena Vinogradov
Novel MRI contrast methods, such as Chemical Exchange Saturation Transfer (CEST), rely on previously developed theory and approaches, often introduced first in solidstate NMR. Understanding or at least connecting the basic principles and original works to the modern-day contrast methods in MRI is instructive. The work brings together concepts in relaxation, saturation, and spin lock experiments in the dynamic (exchanging) systems. The work describes how basic principles and theory are translated and being applied to MRI contrast, including MT and CEST. Finally, we review select papers generalizing concepts of relaxation under periodic RF.
{"title":"A brisk walk through the fields of relaxation, saturation, and exchange: From solid state NMR to in-vivo imaging","authors":"Elena Vinogradov","doi":"10.1016/j.jmro.2023.100130","DOIUrl":"10.1016/j.jmro.2023.100130","url":null,"abstract":"<div><p>Novel MRI contrast methods, such as Chemical Exchange Saturation Transfer (CEST), rely on previously developed theory and approaches, often introduced first in solidstate NMR. Understanding or at least connecting the basic principles and original works to the modern-day contrast methods in MRI is instructive. The work brings together concepts in relaxation, saturation, and spin lock experiments in the dynamic (exchanging) systems. The work describes how basic principles and theory are translated and being applied to MRI contrast, including MT and CEST. Finally, we review select papers generalizing concepts of relaxation under periodic RF.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100130"},"PeriodicalIF":2.624,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000389/pdfft?md5=5cac507629ee325b6dadfb0d3027b863&pid=1-s2.0-S2666441023000389-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80779800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-22DOI: 10.1016/j.jmro.2023.100128
Jérôme Hirschinger, Jésus Raya
In this work, several exact and approximate analytical solutions to the quantum master equation are derived using both classical and non-classical coupling models to describe the kinetics of Hartmann-Hahn cross-polarization (HHCP) and multiple-contact CP (MCCP). Moreover, the analytical solution originally obtained by Naito and McDowell [J. Chem. Phys. 84 (1986) 4181.] is shown to be incorrect and the different regimes of spin diffusion and relaxation are characterized by the amplitude of the second stage of the HHCP dynamics and the HHCP/MCCP crossing time. The analysis of the 1H–13C HHCP and MCCP dynamics together with (Lee-Goldburg) 1H relaxation experimental data provides a consistent picture of spin dynamics in solid alanine and explains the apparent discrepancies previously observed between and relaxation measurements. The CH and CH3 protons relax as expected via spin diffusion towards the NH3 protons but the assumption of common proton spin temperature, in which the bottleneck of relaxation is at the NH3 sites, generally valid for relaxation breaks down for relaxation. A diffusion-limited situation in which nuclear Zeeman energy is transferred to the lattice faster than can be supplied by spin diffusion is observed instead.
{"title":"Analytical descriptions of (multiple-contact) cross-polarization dynamics and spin-lattice relaxation in solid alanine","authors":"Jérôme Hirschinger, Jésus Raya","doi":"10.1016/j.jmro.2023.100128","DOIUrl":"10.1016/j.jmro.2023.100128","url":null,"abstract":"<div><p>In this work, several exact and approximate analytical solutions to the quantum master equation are derived using both classical and non-classical coupling models to describe the kinetics of Hartmann-Hahn cross-polarization (HHCP) and multiple-contact CP (MC<img>CP). Moreover, the analytical solution originally obtained by Naito and McDowell [J. Chem. Phys. 84 (1986) 4181.] is shown to be incorrect and the different regimes of spin diffusion and <span><math><msub><mi>T</mi><mrow><mn>1</mn><mi>ρ</mi></mrow></msub></math></span> relaxation are characterized by the amplitude of the second stage of the HHCP dynamics and the HHCP/MC<img>CP crossing time. The analysis of the <sup>1</sup>H–<sup>13</sup>C HHCP and MC<img>CP dynamics together with (Lee-Goldburg) <sup>1</sup>H <span><math><msub><mi>T</mi><mrow><mn>1</mn><mi>ρ</mi></mrow></msub></math></span> relaxation experimental data provides a consistent picture of spin dynamics in solid alanine and explains the apparent discrepancies previously observed between <span><math><msub><mi>T</mi><mrow><mn>1</mn><mi>ρ</mi></mrow></msub></math></span> and <span><math><msub><mi>T</mi><mn>1</mn></msub></math></span> relaxation measurements. The CH and CH<sub>3</sub> protons relax as expected <em>via</em> spin diffusion towards the NH<sub>3</sub> protons but the assumption of common proton spin temperature, in which the bottleneck of relaxation is at the NH<sub>3</sub> sites, generally valid for <span><math><msub><mi>T</mi><mn>1</mn></msub></math></span> relaxation breaks down for <span><math><msub><mi>T</mi><mrow><mn>1</mn><mi>ρ</mi></mrow></msub></math></span> relaxation. A diffusion-limited situation in which nuclear Zeeman energy is transferred to the lattice faster than can be supplied by spin diffusion is observed instead.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100128"},"PeriodicalIF":2.624,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000365/pdfft?md5=8634b4f0bfee2e20f4a4370925e073c3&pid=1-s2.0-S2666441023000365-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78948571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-13DOI: 10.1016/j.jmro.2023.100129
Keilian MacCulloch , Austin Browning , David O. Guarin Bedoya , Stephen J. McBride , Mustapha B. Abdulmojeed , Carlos Dedesma , Boyd M. Goodson , Matthew S. Rosen , Eduard Y. Chekmenev , Yi-Fen Yen , Patrick TomHon , Thomas Theis
Hyperpolarization chemistry based on reversible exchange of parahydrogen, also known as Signal Amplification By Reversible Exchange (SABRE), is a particularly simple approach to attain high levels of nuclear spin hyperpolarization, which can enhance NMR and MRI signals by many orders of magnitude. SABRE has received significant attention in the scientific community since its inception because of its relative experimental simplicity and its broad applicability to a wide range of molecules, however, in vivo detection of molecular probes hyperpolarized by SABRE has remained elusive. Here we describe a first demonstration of SABRE-hyperpolarized contrast detected in vivo, specifically using hyperpolarized [1–13C]pyruvate. Biocompatible formulations of hyperpolarized [1–13C]pyruvate in, both, methanol-water, and ethanol-water mixtures followed by dilution with saline and catalyst filtration were prepared and injected into healthy Sprague Dawley and Wistar rats. Effective hyperpolarization-catalyst removal was performed with silica filters without major losses in hyperpolarization. Metabolic conversion of pyruvate to lactate, alanine, and bicarbonate was detected in vivo. Pyruvate-hydrate was also observed as a minor byproduct. Measurements were performed on the liver and kidney at 4.7 T via time-resolved spectroscopy and chemical-shift-resolved MRI. In addition, whole-body metabolic measurements were obtained using a cryogen-free 1.5 T MRI system, illustrating the utility of combining lower-cost MRI systems with simple, low-cost hyperpolarization chemistry to develop safe and scalable molecular imaging.
基于对氢可逆交换的超极化化学,也称为可逆交换信号放大(SABRE),是获得高水平核自旋超极化的一种特别简单的方法,可以将核磁共振和核磁共振信号增强许多数量级。自SABRE问世以来,由于其相对简单的实验和广泛的分子适用性,在科学界受到了极大的关注,然而,通过SABRE进行超极化分子探针的体内检测仍然难以捉摸。在这里,我们描述了首次在体内检测sabre超偏振造影剂的演示,特别是使用超极化[1-13C]丙酮酸。在甲醇-水和乙醇-水混合物中制备具有生物相容性的超极化[1-13C]丙酮酸制剂,然后用生理盐水稀释和催化剂过滤,并注射到健康的Sprague Dawley和Wistar大鼠体内。用二氧化硅过滤器进行了有效的超极化-催化剂去除,而超极化损失不大。在体内检测了丙酮酸转化为乳酸、丙氨酸和碳酸氢盐的代谢。水合物丙酮酸也被观察到是一个次要的副产物。在4.7 T时,通过时间分辨光谱和化学位移分辨MRI对肝脏和肾脏进行测量。此外,使用无低温1.5 T MRI系统获得了全身代谢测量,说明了将低成本MRI系统与简单,低成本的超极化化学相结合以开发安全且可扩展的分子成像的有效性。
{"title":"Facile hyperpolarization chemistry for molecular imaging and metabolic tracking of [1–13C]pyruvate in vivo","authors":"Keilian MacCulloch , Austin Browning , David O. Guarin Bedoya , Stephen J. McBride , Mustapha B. Abdulmojeed , Carlos Dedesma , Boyd M. Goodson , Matthew S. Rosen , Eduard Y. Chekmenev , Yi-Fen Yen , Patrick TomHon , Thomas Theis","doi":"10.1016/j.jmro.2023.100129","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100129","url":null,"abstract":"<div><p>Hyperpolarization chemistry based on reversible exchange of parahydrogen, also known as Signal Amplification By Reversible Exchange (SABRE), is a particularly simple approach to attain high levels of nuclear spin hyperpolarization, which can enhance NMR and MRI signals by many orders of magnitude. SABRE has received significant attention in the scientific community since its inception because of its relative experimental simplicity and its broad applicability to a wide range of molecules, however, <em>in vivo</em> detection of molecular probes hyperpolarized by SABRE has remained elusive. Here we describe a first demonstration of SABRE-hyperpolarized contrast detected <em>in vivo</em>, specifically using hyperpolarized [1–<sup>13</sup>C]pyruvate. Biocompatible formulations of hyperpolarized [1–<sup>13</sup>C]pyruvate in, both, methanol-water, and ethanol-water mixtures followed by dilution with saline and catalyst filtration were prepared and injected into healthy Sprague Dawley and Wistar rats. Effective hyperpolarization-catalyst removal was performed with silica filters without major losses in hyperpolarization. Metabolic conversion of pyruvate to lactate, alanine, and bicarbonate was detected <em>in vivo</em>. Pyruvate-hydrate was also observed as a minor byproduct. Measurements were performed on the liver and kidney at 4.7 T via time-resolved spectroscopy and chemical-shift-resolved MRI. In addition, whole-body metabolic measurements were obtained using a cryogen-free 1.5 T MRI system, illustrating the utility of combining lower-cost MRI systems with simple, low-cost hyperpolarization chemistry to develop safe and scalable molecular imaging.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100129"},"PeriodicalIF":2.624,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3266171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-09DOI: 10.1016/j.jmro.2023.100127
Xinyu Liu , Jasna Brčić , Gail H. Cassell , Lynette Cegelski
Tuberculosis and non-tuberculosis mycobacterial infections are rising each year and often result in chronic incurable disease. Important antibiotics target cell-wall biosynthesis, yet some mycobacteria are alarmingly resistant or tolerant to currently available antibiotics. This resistance is often attributed to assumed differences in composition of the complex cell wall of different mycobacterial strains and species. However, due to the highly crosslinked and insoluble nature of mycobacterial cell walls, direct comparative determinations of cell-wall composition pose a challenge to analysis through conventional biochemical analyses. We introduce an approach to directly observe the chemical composition of mycobacterial cell walls using solid-state NMR spectroscopy. 13C CPMAS spectra are provided of individual components (peptidoglycan, arabinogalactan, and mycolic acids) and of in situ cell-wall complexes. We assigned the spectroscopic contributions of each component in the cell-wall spectrum. We uncovered a higher arabinogalactan-to-peptidoglycan ratio in the cell wall of M. abscessus, an organism noted for its antibiotic resistance, relative to M. smegmatis. Furthermore, differentiating influences of different types of cell-wall targeting antibiotics were observed in spectra of antibiotic-treated whole cells. This platform will be of value in evaluating cell-wall composition and antibiotic activity among different mycobacteria and in considering the most effective combination treatment regimens.
{"title":"CPMAS NMR platform for direct compositional analysis of mycobacterial cell-wall complexes and whole cells","authors":"Xinyu Liu , Jasna Brčić , Gail H. Cassell , Lynette Cegelski","doi":"10.1016/j.jmro.2023.100127","DOIUrl":"10.1016/j.jmro.2023.100127","url":null,"abstract":"<div><p>Tuberculosis and non-tuberculosis mycobacterial infections are rising each year and often result in chronic incurable disease. Important antibiotics target cell-wall biosynthesis, yet some mycobacteria are alarmingly resistant or tolerant to currently available antibiotics. This resistance is often attributed to assumed differences in composition of the complex cell wall of different mycobacterial strains and species. However, due to the highly crosslinked and insoluble nature of mycobacterial cell walls, direct comparative determinations of cell-wall composition pose a challenge to analysis through conventional biochemical analyses. We introduce an approach to directly observe the chemical composition of mycobacterial cell walls using solid-state NMR spectroscopy. <sup>13</sup>C CPMAS spectra are provided of individual components (peptidoglycan, arabinogalactan, and mycolic acids) and of <em>in situ</em> cell-wall complexes. We assigned the spectroscopic contributions of each component in the cell-wall spectrum. We uncovered a higher arabinogalactan-to-peptidoglycan ratio in the cell wall of <em>M. abscessus</em>, an organism noted for its antibiotic resistance, relative to <em>M. smegmatis</em>. Furthermore, differentiating influences of different types of cell-wall targeting antibiotics were observed in spectra of antibiotic-treated whole cells. This platform will be of value in evaluating cell-wall composition and antibiotic activity among different mycobacteria and in considering the most effective combination treatment regimens.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100127"},"PeriodicalIF":2.624,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000353/pdfft?md5=b8e77d4be33bc168b0286ba8cff3b61a&pid=1-s2.0-S2666441023000353-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85315161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although very effective in decreasing NMR relaxation of large proteins, homogeneous deuteration can be costly, and anyway unsuitable for recombinant production in metazoan systems. We sought to explore other deuteration schemes, which would be adapted to protein expression in mammalian cells. Here, we evaluate the benefits of the deuteration on alpha- and beta-positions of amino acids for a typical middle size protein domain, namely the model 40 kDa-large kinase p38α. We report the position-specific deuteration of free amino acids by using enzyme-assisted H/D exchange, executed by the cystathionine gamma-synthase and a newly designed high-performance mutant E325A. Then, we used cell-free expression in bacterial extracts to avoid any scrambling and back-protonation of the tested isotopically labelled amino acids (Ala, Leu, Lys, Ser, Asp, Glu, Gly). Our results show signal enhancements up to three in 1H-15N spectra when these α/β-deuterated amino acids are integrated. Because our approach relies on single 2Hα/β-15N-amino acid labeling, an additional three-fold increase in sensitivity is obtained by the possible use of moderate resolution SOFAST-HMQC instead of the classical HSQC or TROSY experiments. This allows recording residue-resolved solution 1H-15N NMR spectra of 100 μg of p38α in one hour with S/N∼10.
{"title":"Affordable amino acid α/β-deuteration and specific labeling for NMR signal enhancement: Evaluation on the kinase p38α","authors":"Rania Ghouil , Chafiaa Bouguechtouli , Hélène Chérot , Agathe Marcelot , Maxime Roche , Francois-Xavier Theillet","doi":"10.1016/j.jmro.2023.100126","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100126","url":null,"abstract":"<div><p>Although very effective in decreasing NMR relaxation of large proteins, homogeneous deuteration can be costly, and anyway unsuitable for recombinant production in metazoan systems. We sought to explore other deuteration schemes, which would be adapted to protein expression in mammalian cells. Here, we evaluate the benefits of the deuteration on alpha- and beta-positions of amino acids for a typical middle size protein domain, namely the model 40 kDa-large kinase p38α. We report the position-specific deuteration of free amino acids by using enzyme-assisted H/D exchange, executed by the cystathionine gamma-synthase and a newly designed high-performance mutant E325A. Then, we used cell-free expression in bacterial extracts to avoid any scrambling and back-protonation of the tested isotopically labelled amino acids (Ala, Leu, Lys, Ser, Asp, Glu, Gly). Our results show signal enhancements up to three in <sup>1</sup>H-<sup>15</sup>N spectra when these α/β-deuterated amino acids are integrated. Because our approach relies on single <sup>2</sup>H<sub>α/β</sub>-<sup>15</sup>N-amino acid labeling, an additional three-fold increase in sensitivity is obtained by the possible use of moderate resolution SOFAST-HMQC instead of the classical HSQC or TROSY experiments. This allows recording residue-resolved solution <sup>1</sup>H-<sup>15</sup>N NMR spectra of 100 μg of p38α in one hour with S/N∼10.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100126"},"PeriodicalIF":2.624,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1826370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-08DOI: 10.1016/j.jmro.2023.100125
Lydia Gkoura , Asif Equbal
Dynamic Nuclear Polarization (DNP) is transforming the landscape of solid-state characterization for both biological solids and functional materials. By transferring electron spin polarization to coupled nuclear spins under microwave irradiation, DNP increases NMR sensitivity by several orders of magnitude. However, the mechanism of DNP transfer and its efficiency under magic-angle spinning (MAS) significantly differs from that under static conditions. This primer article provides a comprehensive and pedagogical explanation of the theoretical aspects of MAS-DNP, with a specific focus on the cross-effect mechanism. A clear understanding of the nuances of MAS-DNP is crucial for improving its efficiency and extending its application to high magnetic fields and fast MAS conditions. To this end, the article proposes a guideline for synthetic chemists to develop DNP polarizing agents under these experimental conditions.
{"title":"A primer to polarizing agent design: Quantum mechanical understanding of cross effect magic-angle spinning Dynamic Nuclear Polarization","authors":"Lydia Gkoura , Asif Equbal","doi":"10.1016/j.jmro.2023.100125","DOIUrl":"10.1016/j.jmro.2023.100125","url":null,"abstract":"<div><p>Dynamic Nuclear Polarization (DNP) is transforming the landscape of solid-state characterization for both biological solids and functional materials. By transferring electron spin polarization to coupled nuclear spins under microwave irradiation, DNP increases NMR sensitivity by several orders of magnitude. However, the mechanism of DNP transfer and its efficiency under magic-angle spinning (MAS) significantly differs from that under static conditions. This primer article provides a comprehensive and pedagogical explanation of the theoretical aspects of MAS-DNP, with a specific focus on the cross-effect mechanism. A clear understanding of the nuances of MAS-DNP is crucial for improving its efficiency and extending its application to high magnetic fields and fast MAS conditions. To this end, the article proposes a guideline for synthetic chemists to develop DNP polarizing agents under these experimental conditions.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100125"},"PeriodicalIF":2.624,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266644102300033X/pdfft?md5=04fd482932dc3eae839d2bc3109ace6b&pid=1-s2.0-S266644102300033X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86288119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.1016/j.jmro.2023.100124
Rutger R. Tromp, Leo Pel, David M.J. Smeulders
In this article we use numerical simulations to study the effect of T1 dispersion on fluid polarization buildup in oil flow to characterize the sensitivity of both a conventional NMR concept (ROI located inside the polarization magnet) and a Earth's field NMR concept (ROI outside and downstream of the polarization magnet) to T1 dispersion of flowing samples. As a polarization field in both concepts we use a 90 cm long Halbach magnet. The T1 dispersion behavior of the oils is based on a set of crude oils that span a viscosity range of 0.7 cP up to 2·104 cP and T1 relaxation measurements for Larmor frequencies between 10 kHz and 20 MHz. Numerical simulations based on solving the Bloch-Torrey equation for the longitudinal magnetization component show that fluid polarization levels in a ROI of a Earth's field NMR system concept are much more strongly affected by T1 dispersion than in the conventional NMR system concept. As a result, we may conclude that the Earth's field NMR system design is less robust for measuring flowing samples that show strong T1 dispersion behavior. In comparison, the conventional NMR system design is relatively insensitive to the effect of T1 dispersion, as T1 dispersion effects were found to form a relatively small correction to the magnetization buildup. The conventional NMR system design consequently is the preferred implementation of a NMR system that operates on fluids with strong T1 dispersion behavior. We show that in the presence of T1 dispersion s = vT1(0)/Lm* may be used as a governing parameter for fluid polarization buildup, where T1(0) is the T1 relaxation time in the center of the polarization magnet, and we show how an modified analytical uniform field model can be used to describe fluid polarization for a uniform flow velocity distribution in the presence of T1 dispersion with an accuracy within 1% for the samples and field distribution considered in this study at industrially relevant flow velocities.
{"title":"Modelling of T1 dispersion effects on fluid polarization in oil flow","authors":"Rutger R. Tromp, Leo Pel, David M.J. Smeulders","doi":"10.1016/j.jmro.2023.100124","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100124","url":null,"abstract":"<div><p>In this article we use numerical simulations to study the effect of <em>T</em><sub>1</sub> dispersion on fluid polarization buildup in oil flow to characterize the sensitivity of both a conventional NMR concept (ROI located inside the polarization magnet) and a Earth's field NMR concept (ROI outside and downstream of the polarization magnet) to <em>T</em><sub>1</sub> dispersion of flowing samples. As a polarization field in both concepts we use a 90 cm long Halbach magnet. The <em>T</em><sub>1</sub> dispersion behavior of the oils is based on a set of crude oils that span a viscosity range of 0.7 cP up to 2·10<sup>4</sup> cP and <em>T</em><sub>1</sub> relaxation measurements for Larmor frequencies between 10 kHz and 20 MHz. Numerical simulations based on solving the Bloch-Torrey equation for the longitudinal magnetization component show that fluid polarization levels in a ROI of a Earth's field NMR system concept are much more strongly affected by <em>T</em><sub>1</sub> dispersion than in the conventional NMR system concept. As a result, we may conclude that the Earth's field NMR system design is less robust for measuring flowing samples that show strong <em>T</em><sub>1</sub> dispersion behavior. In comparison, the conventional NMR system design is relatively insensitive to the effect of <em>T</em><sub>1</sub> dispersion, as <em>T</em><sub>1</sub> dispersion effects were found to form a relatively small correction to the magnetization buildup. The conventional NMR system design consequently is the preferred implementation of a NMR system that operates on fluids with strong <em>T</em><sub>1</sub> dispersion behavior. We show that in the presence of <em>T</em><sub>1</sub> dispersion <em>s</em> = <em>vT</em><sub>1</sub>(0)/<em>L<sub>m</sub>*</em> may be used as a governing parameter for fluid polarization buildup, where <em>T</em><sub>1</sub>(0) is the <em>T</em><sub>1</sub> relaxation time in the center of the polarization magnet, and we show how an modified analytical uniform field model can be used to describe fluid polarization for a uniform flow velocity distribution in the presence of <em>T</em><sub>1</sub> dispersion with an accuracy within 1% for the samples and field distribution considered in this study at industrially relevant flow velocities.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100124"},"PeriodicalIF":2.624,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3451238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-03DOI: 10.1016/j.jmro.2023.100121
Florian Johannsen, Malte Drescher
Rapid-scan electron paramagnetic resonance spectroscopy is an emerging technique which substantially improves the signal-to-noise ratio and time resolution compared to conventional continuous-wave experiments. This allows the investigation of spin-labeled biomolecules and their structural dynamics on much shorter time scales than usually accessible. The EPR spectrum however is superimposed by a strong background that is caused by microphonic effects of the alternating magnetic field. This article discusses the use of non-quadratic cost functions for background removal of rapid-scan spectra. The method is validated for the most prominent type of spin-probes in the field of biochemistry: the nitroxide spin-label.
{"title":"Background removal from rapid-scan EPR spectra of nitroxide-based spin labels by minimizing non-quadratic cost functions","authors":"Florian Johannsen, Malte Drescher","doi":"10.1016/j.jmro.2023.100121","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100121","url":null,"abstract":"<div><p>Rapid-scan electron paramagnetic resonance spectroscopy is an emerging technique which substantially improves the signal-to-noise ratio and time resolution compared to conventional continuous-wave experiments. This allows the investigation of spin-labeled biomolecules and their structural dynamics on much shorter time scales than usually accessible. The EPR spectrum however is superimposed by a strong background that is caused by microphonic effects of the alternating magnetic field. This article discusses the use of non-quadratic cost functions for background removal of rapid-scan spectra. The method is validated for the most prominent type of spin-probes in the field of biochemistry: the nitroxide spin-label.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100121"},"PeriodicalIF":2.624,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1826466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The receptivity of NMR spectroscopy is low when compared to other techniques. Historically, increasing the strength of the static magnetic field has been the major approach to increase NMR sensitivity. In recent years several polarization transfer protocols have been used to enhance the signal-to-noise ratio (SNR), although they require special accessories and/or sample preparation. In this paper, we consider both the challenges and opportunities of steady-state free precession (SSFP) pulse sequences as a simple and efficient alternative to enhance SNR, in standard high-resolution and benchtop low-resolution NMR spectrometers. The maximum gain in these sequences is obtained with the shortest time between the pulses (Tp). However, when Tp<T2, the SSFP signal contains FID and echo components which lead to phase, intensity, and truncation artifacts on spectra obtained by Fast Fourier transform (FT). Several phase alternation SSFP sequences were used to cancel the echo component and minimize these problems in the FT spectra. Krylov base diagonalization method (KBDM) was used to eliminate the phase and truncation problems in spectra acquired by SSFP pulse sequences and can be a viable alternative to FT. The experiments were performed in high and low resolution (bench top) NMR spectrometers and significant enhancements in SNR of low receptivity nuclei such as 13C and 15N could be achieved. The SSFP sequences were also shown to enhance SNR in nuclei with high receptivity such as 19F and 31P, in very dilute samples, as is common in environmental and biological samples.
{"title":"Steady-State Free Precession sequences for high and low field NMR spectroscopy in solution: Challenges and opportunities","authors":"Tiago Bueno Moraes , Flávio Vinícius Crizóstomo Kock , Kahlil Schwanka Salome , Andersson Barison , Andre Simpson , Luiz Alberto Colnago","doi":"10.1016/j.jmro.2022.100090","DOIUrl":"https://doi.org/10.1016/j.jmro.2022.100090","url":null,"abstract":"<div><p>The receptivity of NMR spectroscopy is low when compared to other techniques. Historically, increasing the strength of the static magnetic field has been the major approach to increase NMR sensitivity. In recent years several polarization transfer protocols have been used to enhance the signal-to-noise ratio (SNR), although they require special accessories and/or sample preparation. In this paper, we consider both the challenges and opportunities of steady-state free precession (SSFP) pulse sequences as a simple and efficient alternative to enhance SNR, in standard high-resolution and benchtop low-resolution NMR spectrometers. The maximum gain in these sequences is obtained with the shortest time between the pulses (Tp). However, when Tp<T<sub>2</sub>, the SSFP signal contains FID and echo components which lead to phase, intensity, and truncation artifacts on spectra obtained by Fast Fourier transform (FT). Several phase alternation SSFP sequences were used to cancel the echo component and minimize these problems in the FT spectra. Krylov base diagonalization method (KBDM) was used to eliminate the phase and truncation problems in spectra acquired by SSFP pulse sequences and can be a viable alternative to FT. The experiments were performed in high and low resolution (bench top) NMR spectrometers and significant enhancements in SNR of low receptivity nuclei such as <sup>13</sup>C and <sup>15</sup>N could be achieved. The SSFP sequences were also shown to enhance SNR in nuclei with high receptivity such as <sup>19</sup>F and <sup>31</sup>P, in very dilute samples, as is common in environmental and biological samples.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"14 ","pages":"Article 100090"},"PeriodicalIF":2.624,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1826375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1016/j.jmro.2023.100095
Yady García , Luca Porcarelli , Haijin Zhu , Maria Forsyth , David Mecerreyes , Luke A. O'Dell
Solid composite electrolytes combining an ionic molecular phase to facilitate ion transport with a polymeric component to provide mechanical strength are promising material for solid-state batteries. However, the structure-property relationships of these complex composites are not fully understood. Herein we study composites combining the non-flammability and thermal stability of the organic ionic plastic crystal (OIPC) N-methyl-N-ethylpyrrolidinium bis(trifluoromethanesulfonyl) amide [C2mpyr][TFSI] with the mechanical strength of acrylic polymer nanoparticles functionalised with sulphonamide groups having lithium counter-cations. The effect of the formation of interfaces and interfacial regions between the OIPC and polymer nanoparticle on the thermal stability, ion transport, morphology and ion dynamics were studied. It was found that the composites where an interphase was formed by local mixing of the polymer with the OIPC upon heating showed higher local disorder in the OIPC phase and enhanced ion transport in comparison with the as-prepared composites. In addition, doping the composite with LiTFSI salt led to further structural disorder in the OIPC and a selective increase in lithium-ion mobility. Such an improved fundamental understanding of structure, dynamics and interfacial regions in solid electrolyte composites can inform the design of OIPC-polymer nanoparticle composites with enhanced properties for application as solid electrolyte in batteries.
{"title":"Probing disorder and dynamics in composite electrolytes of an organic ionic plastic crystal and lithium functionalised acrylic polymer nanoparticles","authors":"Yady García , Luca Porcarelli , Haijin Zhu , Maria Forsyth , David Mecerreyes , Luke A. O'Dell","doi":"10.1016/j.jmro.2023.100095","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100095","url":null,"abstract":"<div><p>Solid composite electrolytes combining an ionic molecular phase to facilitate ion transport with a polymeric component to provide mechanical strength are promising material for solid-state batteries. However, the structure-property relationships of these complex composites are not fully understood. Herein we study composites combining the non-flammability and thermal stability of the organic ionic plastic crystal (OIPC) N-methyl-N-ethylpyrrolidinium bis(trifluoromethanesulfonyl) amide [C<sub>2</sub>mpyr][TFSI] with the mechanical strength of acrylic polymer nanoparticles functionalised with sulphonamide groups having lithium counter-cations. The effect of the formation of interfaces and interfacial regions between the OIPC and polymer nanoparticle on the thermal stability, ion transport, morphology and ion dynamics were studied. It was found that the composites where an interphase was formed by local mixing of the polymer with the OIPC upon heating showed higher local disorder in the OIPC phase and enhanced ion transport in comparison with the as-prepared composites. In addition, doping the composite with LiTFSI salt led to further structural disorder in the OIPC and a selective increase in lithium-ion mobility. Such an improved fundamental understanding of structure, dynamics and interfacial regions in solid electrolyte composites can inform the design of OIPC-polymer nanoparticle composites with enhanced properties for application as solid electrolyte in batteries.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"14 ","pages":"Article 100095"},"PeriodicalIF":2.624,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3135447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}