首页 > 最新文献

Journal of Magnetic Resonance Open最新文献

英文 中文
Magnetic resonance in Latin America 拉丁美洲的磁共振
IF 2.624 Pub Date : 2023-12-01 DOI: 10.1016/j.jmro.2023.100107
Tito J. Bonagamba , Alfredo Odon Rodriguez , Alejandro Vila , Analia Zwick , Lucio Frydman
{"title":"Magnetic resonance in Latin America","authors":"Tito J. Bonagamba , Alfredo Odon Rodriguez , Alejandro Vila , Analia Zwick , Lucio Frydman","doi":"10.1016/j.jmro.2023.100107","DOIUrl":"10.1016/j.jmro.2023.100107","url":null,"abstract":"","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100107"},"PeriodicalIF":2.624,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000158/pdfft?md5=11d24af1eea2343e7479c01e4acc31f2&pid=1-s2.0-S2666441023000158-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77813243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adiabatic approach for heteronuclear SABRE hyperpolarization at high magnetic field 高磁场下异核SABRE超极化的绝热方法
IF 2.624 Pub Date : 2023-11-19 DOI: 10.1016/j.jmro.2023.100139
Danil A. Markelov , Vitaly P. Kozinenko , Alexandra V. Yurkovskaya , Konstantin L. Ivanov

Signal Amplification By Reversible Exchange (SABRE) is a technique aimed at enhancing weak NMR signals of heteronuclei by utilizing the non-equilibrium spin order of parahydrogen. SABRE polarization transfer takes place by means of metalorganic complexes that interact with parahydrogen and the substrate to be polarized in a reversible manner. To achieve substrate hyperpolarization in the high magnetic field of an NMR magnet, radiofrequency (RF) excitation is required. There are two general options for the RF field amplitude: constant or modulated. To date, there has been limited optimization of the adiabatic SABRE conditions. In SABRE, the presence of chemical exchange significantly complicates the spin dynamics involved in polarization transfer and the optimization of adiabatic RF sweeps. We conducted a comprehensive analysis of high-field SABRE pulse sequences with RF sweeps on the heteronuclear channel, specifically 15N. We proposed a simple method for optimizing the amplitude modulation profile of the RF field, which is efficient for systems undergoing chemical exchange. Our approach involved utilizing the dependence of 15N polarization on the amplitude of the constant RF field on the 15N channel. By employing the "optimal" adiabatic RF profile, we achieved a 2.5-fold increase in 15N SABRE-derived polarization at high magnetic field compared to a linear sweep. We theoretically assessed the benefit of RF sweeps over constant RF fields for SABRE at high magnetic field. We demonstrated experimentally that at temperatures 5C - +10C RF sweeps are more efficient than constant RF field. Maximal increase in 15N polarization achieved was 1.7-fold for bound and 1.4-fold for free substrate. We attribute this increase in polarization to the adiabaticity of the polarization transfer process. This behavior was explained via numerical solution of SABRE master equation for different dissociation rate constants.

可逆交换信号放大(SABRE)是利用对氢的非平衡自旋序增强异核弱核磁共振信号的一种技术。SABRE极化转移是通过金属有机配合物与对氢相互作用和基底以可逆方式极化而发生的。为了在核磁共振磁体的高磁场中实现衬底超极化,需要射频(RF)激励。射频场振幅一般有两种选择:恒定或调制。迄今为止,对SABRE绝热条件的优化还很有限。在SABRE中,化学交换的存在显著地使极化传递和绝热射频扫描优化中的自旋动力学复杂化。我们对高场SABRE脉冲序列在异核通道(特别是15N)上进行了射频扫描的综合分析。我们提出了一种简单的方法来优化射频场的调幅曲线,这是有效的系统进行化学交换。我们的方法涉及利用15N极化对15N通道上恒定射频场振幅的依赖性。通过采用“最佳”绝热射频剖面,在高磁场下,与线性扫描相比,我们实现了15N sabre衍生极化增加2.5倍。我们从理论上评估了在高磁场下恒定射频场的射频扫描对SABRE的好处。我们通过实验证明,在−5°C - +10°C的温度下,射频扫描比恒定的射频场更有效。得到的15N极化最大增幅为束缚基板的1.7倍和自由基板的1.4倍。我们把这种极化的增加归因于极化传递过程的绝热性。通过SABRE主方程在不同解离速率常数下的数值解来解释这一行为。
{"title":"Adiabatic approach for heteronuclear SABRE hyperpolarization at high magnetic field","authors":"Danil A. Markelov ,&nbsp;Vitaly P. Kozinenko ,&nbsp;Alexandra V. Yurkovskaya ,&nbsp;Konstantin L. Ivanov","doi":"10.1016/j.jmro.2023.100139","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100139","url":null,"abstract":"<div><p>Signal Amplification By Reversible Exchange (SABRE) is a technique aimed at enhancing weak NMR signals of heteronuclei by utilizing the non-equilibrium spin order of parahydrogen. SABRE polarization transfer takes place by means of metalorganic complexes that interact with parahydrogen and the substrate to be polarized in a reversible manner. To achieve substrate hyperpolarization in the high magnetic field of an NMR magnet, radiofrequency (RF) excitation is required. There are two general options for the RF field amplitude: constant or modulated. To date, there has been limited optimization of the adiabatic SABRE conditions. In SABRE, the presence of chemical exchange significantly complicates the spin dynamics involved in polarization transfer and the optimization of adiabatic RF sweeps. We conducted a comprehensive analysis of high-field SABRE pulse sequences with RF sweeps on the heteronuclear channel, specifically <sup>15</sup>N. We proposed a simple method for optimizing the amplitude modulation profile of the RF field, which is efficient for systems undergoing chemical exchange. Our approach involved utilizing the dependence of <sup>15</sup>N polarization on the amplitude of the constant RF field on the <sup>15</sup>N channel. By employing the \"optimal\" adiabatic RF profile, we achieved a 2.5-fold increase in <sup>15</sup>N SABRE-derived polarization at high magnetic field compared to a linear sweep. We theoretically assessed the benefit of RF sweeps over constant RF fields for SABRE at high magnetic field. We demonstrated experimentally that at temperatures <span><math><mrow><mo>−</mo><msup><mn>5</mn><mo>∘</mo></msup></mrow></math></span>C - <span><math><mrow><mo>+</mo><msup><mn>10</mn><mo>∘</mo></msup></mrow></math></span>C RF sweeps are more efficient than constant RF field. Maximal increase in <sup>15</sup>N polarization achieved was 1.7-fold for bound and 1.4-fold for free substrate. We attribute this increase in polarization to the adiabaticity of the polarization transfer process. This behavior was explained via numerical solution of SABRE master equation for different dissociation rate constants.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100139"},"PeriodicalIF":2.624,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266644102300047X/pdfft?md5=a7009ba898d68748a02dd027da6afc07&pid=1-s2.0-S266644102300047X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138395667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MR based magnetic susceptibility measurements of 3D printing materials at 3 Tesla 基于磁流变的3D打印材料在3特斯拉的磁化率测量
IF 2.624 Pub Date : 2023-11-14 DOI: 10.1016/j.jmro.2023.100138
Maitreyi Sangal , Maria Anikeeva , Simon C. Priese , Hendrik Mattern , Jan-Bernd Hövener , Oliver Speck

Commercial availability, ease of printing and cost effectiveness have rendered 3D printing an essential part of magnetic resonance (MR) experimental design. However, the magnetic properties of several materials contemporarily used for 3D printing are lacking in literature to some extent. A database of the magnetic susceptibilities of several commonly used 3D printing materials is provided, which may aid MR experiment design. Here, we exploit the capability of magnetic resonance imaging (MRI) to map the local magnetic field variations caused by these materials when placed in the scanner's B0 field. Exact analytical solutions of the magnetic flux density distribution for a cylindrical geometry are utilized to fit experimentally obtained data with theory in order to quantify the magnetic susceptibilities. A detailed explanation of the data processing and fitting procedure is presented and validated by measuring the susceptibility of air along with high resolution MR measurements. Furthermore, an initiative is taken to address the need for a comprehensive database comprising of not only the magnetic susceptibilities of 3D printing materials, but also information on the 3D printing parameters, the printers used, and other information available for the materials that may also influence the measured magnetic properties. An open platform with the magnetic susceptibilities of materials reported in this work besides existing literature values is provided here, with the aim to invite researchers to enable further extension and development towards an open database to characterize commonly used 3D printing materials based on their magnetic properties.

商业可用性,易于打印和成本效益使3D打印成为磁共振(MR)实验设计的重要组成部分。然而,目前几种用于3D打印的材料的磁性在一定程度上缺乏文献。提供了几种常用3D打印材料的磁化率数据库,为磁共振实验设计提供参考。在这里,我们利用磁共振成像(MRI)的能力来绘制这些材料在扫描仪的B0场中引起的局部磁场变化。利用圆柱结构的磁通密度分布的精确解析解,将实验得到的数据与理论拟合,以量化磁化率。详细解释了数据处理和拟合程序,并通过测量空气的敏感性以及高分辨率MR测量进行了验证。此外,还采取了一项举措,以满足对综合数据库的需求,该数据库不仅包括3D打印材料的磁化率,还包括3D打印参数信息、所使用的打印机以及可能影响所测磁性能的材料的其他可用信息。这里提供了一个开放的平台,除了现有的文献价值外,还提供了本工作中报道的材料的磁化率,目的是邀请研究人员进一步扩展和发展一个开放的数据库,以根据其磁性来表征常用的3D打印材料。
{"title":"MR based magnetic susceptibility measurements of 3D printing materials at 3 Tesla","authors":"Maitreyi Sangal ,&nbsp;Maria Anikeeva ,&nbsp;Simon C. Priese ,&nbsp;Hendrik Mattern ,&nbsp;Jan-Bernd Hövener ,&nbsp;Oliver Speck","doi":"10.1016/j.jmro.2023.100138","DOIUrl":"10.1016/j.jmro.2023.100138","url":null,"abstract":"<div><p>Commercial availability, ease of printing and cost effectiveness have rendered 3D printing an essential part of magnetic resonance (MR) experimental design. However, the magnetic properties of several materials contemporarily used for 3D printing are lacking in literature to some extent. A database of the magnetic susceptibilities of several commonly used 3D printing materials is provided, which may aid MR experiment design. Here, we exploit the capability of magnetic resonance imaging (MRI) to map the local magnetic field variations caused by these materials when placed in the scanner's <strong>B<sub>0</sub></strong> field. Exact analytical solutions of the magnetic flux density distribution for a cylindrical geometry are utilized to fit experimentally obtained data with theory in order to quantify the magnetic susceptibilities. A detailed explanation of the data processing and fitting procedure is presented and validated by measuring the susceptibility of air along with high resolution MR measurements. Furthermore, an initiative is taken to address the need for a comprehensive database comprising of not only the magnetic susceptibilities of 3D printing materials, but also information on the 3D printing parameters, the printers used, and other information available for the materials that may also influence the measured magnetic properties. An open platform with the magnetic susceptibilities of materials reported in this work besides existing literature values is provided here, with the aim to invite researchers to enable further extension and development towards an open database to characterize commonly used 3D printing materials based on their magnetic properties.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100138"},"PeriodicalIF":2.624,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000468/pdfft?md5=7059452703c1c655bfc9078a4bbb9143&pid=1-s2.0-S2666441023000468-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135763368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cumulant expansion framework for internal gradient distributions tensors 内梯度分布张量的累积展开框架
IF 2.624 Pub Date : 2023-10-16 DOI: 10.1016/j.jmro.2023.100136
Leonardo A. Pedraza Pérez , Gonzalo A. Álvarez

Magnetic resonance imaging is a powerful, non invasive tool for medical diagnosis. The low sensitivity for detecting the nuclear spin signals, typically limits the image resolution to several tens of micrometers in preclinical systems and millimeters in clinical scanners. Other sources of information, derived from diffusion processes of intrinsic molecules such as water in the tissues, allow getting morphological information at micrometric and submicrometric scales as potential biomarkers of several pathologies. Here we consider extracting this morphological information by probing the distribution of internal magnetic field gradients induced by the heterogeneous magnetic susceptibility of the medium. We use a cumulant expansion to derive the dephasing on the spin signal induced by the molecules that explore these internal gradients while diffusing. Based on the cumulant expansion, we define internal gradient distributions tensors (IGDT) and propose modulating gradient spin echo sequences to probe them. These IGDT contain microstructural morphological information that characterize porous media and biological tissues. We evaluate the IGDT effects on the magnetization decay with typical conditions of brain tissue and show that their effects can be experimentally observed. Our results thus provide a framework for exploiting IGDT as quantitative diagnostic tools.

磁共振成像是一种强大的、非侵入性的医学诊断工具。检测核自旋信号的低灵敏度通常限制了临床前系统的图像分辨率为几十微米,临床扫描仪的图像分辨率为毫米。其他信息来源,来自内部分子的扩散过程,如组织中的水,允许在微米和亚微米尺度上获得形态学信息,作为几种病理的潜在生物标志物。在这里,我们考虑通过探测由介质的非均质磁化率引起的内部磁场梯度分布来提取这些形态信息。我们使用累积展开来推导由分子在扩散时探索这些内部梯度所引起的自旋信号的消相。在累积展开的基础上,定义了内部梯度分布张量(IGDT),并提出了调制梯度自旋回波序列来探测它们。这些IGDT包含表征多孔介质和生物组织的微观结构形态学信息。我们在典型的脑组织条件下评估了IGDT对磁化衰减的影响,并表明它们的影响可以在实验中观察到。因此,我们的结果为利用IGDT作为定量诊断工具提供了一个框架。
{"title":"Cumulant expansion framework for internal gradient distributions tensors","authors":"Leonardo A. Pedraza Pérez ,&nbsp;Gonzalo A. Álvarez","doi":"10.1016/j.jmro.2023.100136","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100136","url":null,"abstract":"<div><p>Magnetic resonance imaging is a powerful, non invasive tool for medical diagnosis. The low sensitivity for detecting the nuclear spin signals, typically limits the image resolution to several tens of micrometers in preclinical systems and millimeters in clinical scanners. Other sources of information, derived from diffusion processes of intrinsic molecules such as water in the tissues, allow getting morphological information at micrometric and submicrometric scales as potential biomarkers of several pathologies. Here we consider extracting this morphological information by probing the distribution of internal magnetic field gradients induced by the heterogeneous magnetic susceptibility of the medium. We use a cumulant expansion to derive the dephasing on the spin signal induced by the molecules that explore these internal gradients while diffusing. Based on the cumulant expansion, we define internal gradient distributions tensors (IGDT) and propose modulating gradient spin echo sequences to probe them. These IGDT contain microstructural morphological information that characterize porous media and biological tissues. We evaluate the IGDT effects on the magnetization decay with typical conditions of brain tissue and show that their effects can be experimentally observed. Our results thus provide a framework for exploiting IGDT as quantitative diagnostic tools.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100136"},"PeriodicalIF":2.624,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000444/pdfft?md5=ba2ece990376de71fb8be126e3b4c3ef&pid=1-s2.0-S2666441023000444-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92145634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A nitroxide-containing cathode material for organic radical batteries studied with pulsed EPR spectroscopy 用脉冲EPR光谱研究了一种含氮氧化物的有机自由基电池正极材料
IF 2.624 Pub Date : 2023-10-13 DOI: 10.1016/j.jmro.2023.100134
Ilia Kulikov , Anatoliy A. Vereshchagin , Daniil A. Lukianov , Oleg V. Levin , Jan Behrends

An electron spin echo in a nitroxide-containing polymer cathode film for organic radical batteries is observed for various states of charge at cryogenic temperatures. The EPR-detected state of charge (ESOC), as inferred from the number of paramagnetic centers in the film, is compared to the results of Coulomb counting based on galvanostatic charging. Spin concentration, longitudinal relaxation times T1 and phase memory times Tm strongly correlate with the ESOC. In the discharged film, the spin concentration reaches 5±3×1020 cm−3, causing a phase memory time Tm 100 ns (shorter than the resonator ring-down time) that hinders the detection of the spin echo. In the charged film, the decreased spin concentration results in a longer Tm between 100 ns and 300 ns that enables spin-echo detection, yet limits the length of the microwave pulse sequence. The short, broad-band pulses cause instantaneous diffusion in the unoxidized domains across the oxidized film, affecting the relative peak intensities in the pulsed EPR spectrum. By simulating the spectral distortion caused by instantaneous diffusion, we obtain information on the local spin concentration, which complements the information on the ‘bulk’ spin concentration determined by electrochemistry and continuous-wave EPR spectroscopy.

在低温条件下,观察了含氮聚合物有机自由基电池阴极膜中不同电荷状态下的电子自旋回波。epr检测到的电荷状态(ESOC)是由薄膜中顺磁中心的数量推断出来的,并与基于恒流充电的库仑计数结果进行比较。自旋浓度、纵向弛豫时间T1和相记忆时间Tm与ESOC密切相关。在放电薄膜中,自旋浓度达到5±3×1020 cm−3,导致相记忆时间Tm≪100 ns(比谐振器衰落时间短),这阻碍了自旋回波的检测。在带电膜中,自旋浓度的降低使Tm在100 ~ 300 ns之间变长,这使得自旋回波检测成为可能,但也限制了微波脉冲序列的长度。短而宽的脉冲在氧化膜上的未氧化区域引起瞬时扩散,影响脉冲EPR谱中的相对峰强度。通过模拟瞬时扩散引起的光谱畸变,我们获得了局部自旋浓度的信息,补充了电化学和连续波EPR光谱测定的“体”自旋浓度的信息。
{"title":"A nitroxide-containing cathode material for organic radical batteries studied with pulsed EPR spectroscopy","authors":"Ilia Kulikov ,&nbsp;Anatoliy A. Vereshchagin ,&nbsp;Daniil A. Lukianov ,&nbsp;Oleg V. Levin ,&nbsp;Jan Behrends","doi":"10.1016/j.jmro.2023.100134","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100134","url":null,"abstract":"<div><p>An electron spin echo in a nitroxide-containing polymer cathode film for organic radical batteries is observed for various states of charge at cryogenic temperatures. The EPR-detected state of charge (ESOC), as inferred from the number of paramagnetic centers in the film, is compared to the results of Coulomb counting based on galvanostatic charging. Spin concentration, longitudinal relaxation times <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and phase memory times <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> strongly correlate with the ESOC. In the discharged film, the spin concentration reaches <span><math><mrow><mfenced><mrow><mn>5</mn><mo>±</mo><mn>3</mn></mrow></mfenced><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>20</mn></mrow></msup></mrow></math></span> cm<sup>−3</sup>, causing a phase memory time <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>≪</mo></mrow></math></span> 100 ns (shorter than the resonator ring-down time) that hinders the detection of the spin echo. In the charged film, the decreased spin concentration results in a longer <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> between 100 ns and 300 ns that enables spin-echo detection, yet limits the length of the microwave pulse sequence. The short, broad-band pulses cause instantaneous diffusion in the unoxidized domains across the oxidized film, affecting the relative peak intensities in the pulsed EPR spectrum. By simulating the spectral distortion caused by instantaneous diffusion, we obtain information on the local spin concentration, which complements the information on the ‘bulk’ spin concentration determined by electrochemistry and continuous-wave EPR spectroscopy.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100134"},"PeriodicalIF":2.624,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000420/pdfft?md5=88af9c2697fd9712c8b322df95896bb8&pid=1-s2.0-S2666441023000420-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91962567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic resonance imaging and velocimetry of ethane 乙烷的核磁共振成像和测速
IF 2.624 Pub Date : 2023-10-13 DOI: 10.1016/j.jmro.2023.100137
Maria Anikeeva , Maitreyi Sangal , Andrey N. Pravdivtsev , Maryia S. Pravdivtseva , Eva Peschke , Oliver Speck , Jan-Bernd Hövener

This study investigates the experimental conditions required for magnetic resonance imaging (MRI) of thermally polarized hydrocarbon gas, focusing on ethane. The nuclear magnetic resonance (NMR) spectra and relaxation properties of ethane were analysed at different pressures in the range from 1.5 to 6 bar at 7 T using 1H NMR spectroscopy. The spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) were measured, and their dependence on the pressure was determined, showing that both relaxation times increase with pressure. Using the estimated relaxation times, we adjusted parameters for imaging of static ethane using rapid acquisition with relaxation enhancement (RARE) and fast low-angle shot (FLASH). The signal-to-noise ratio (SNR) of ethane images was evaluated and compared to the calculation for the given range of pressures. Then, we imaged flowing gas using a 2D velocity-encoded pulse sequence, which is usually used for liquid flow studies. The MRI-measured flow rates are compared to those pre-set with a pump, showing good agreement in the slow flow range. Overall, the results provide insights into the feasibility of 1H MRI for imaging and flow measurements of thermally polarized ethane.

以乙烷为研究对象,研究了热极化烃类气体的磁共振成像(MRI)所需的实验条件。在7 T 1.5 ~ 6 bar的不同压力下,用1H NMR谱分析了乙烷的核磁共振波谱和弛豫特性。测量了自旋-晶格弛豫时间(T1)和自旋-自旋弛豫时间(T2),并确定了它们与压力的依赖关系,结果表明,两者的弛豫时间都随压力的增加而增加。利用估计的弛豫时间,我们调整了静态乙烷成像的参数,采用快速弛豫增强采集(RARE)和快速低角度拍摄(FLASH)。评估了乙烷图像的信噪比(SNR),并与给定压力范围内的计算结果进行了比较。然后,我们使用二维速度编码脉冲序列对流动气体进行成像,这通常用于液体流动研究。mri测量的流量与预先设置的泵流量进行比较,在慢流量范围内显示出良好的一致性。总的来说,这些结果为1H MRI用于热极化乙烷成像和流量测量的可行性提供了见解。
{"title":"Magnetic resonance imaging and velocimetry of ethane","authors":"Maria Anikeeva ,&nbsp;Maitreyi Sangal ,&nbsp;Andrey N. Pravdivtsev ,&nbsp;Maryia S. Pravdivtseva ,&nbsp;Eva Peschke ,&nbsp;Oliver Speck ,&nbsp;Jan-Bernd Hövener","doi":"10.1016/j.jmro.2023.100137","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100137","url":null,"abstract":"<div><p>This study investigates the experimental conditions required for magnetic resonance imaging (MRI) of thermally polarized hydrocarbon gas, focusing on ethane. The nuclear magnetic resonance (NMR) spectra and relaxation properties of ethane were analysed at different pressures in the range from 1.5 to 6 bar at 7 T using <sup>1</sup>H NMR spectroscopy. The spin-lattice relaxation time (T<sub>1</sub>) and spin-spin relaxation time (T<sub>2</sub>) were measured, and their dependence on the pressure was determined, showing that both relaxation times increase with pressure. Using the estimated relaxation times, we adjusted parameters for imaging of static ethane using rapid acquisition with relaxation enhancement (RARE) and fast low-angle shot (FLASH). The signal-to-noise ratio (SNR) of ethane images was evaluated and compared to the calculation for the given range of pressures. Then, we imaged flowing gas using a 2D velocity-encoded pulse sequence, which is usually used for liquid flow studies. The MRI-measured flow rates are compared to those pre-set with a pump, showing good agreement in the slow flow range. Overall, the results provide insights into the feasibility of <sup>1</sup>H MRI for imaging and flow measurements of thermally polarized ethane.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100137"},"PeriodicalIF":2.624,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000456/pdfft?md5=ee9e2d935852d4ca5b924b20bb456221&pid=1-s2.0-S2666441023000456-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92087350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient polarization redistribution in hyperpolarized 1-D-propane produced via pairwise parahydrogen addition 通过对氢加成制备的超极化一维丙烷的高效极化重分布
IF 2.624 Pub Date : 2023-10-12 DOI: 10.1016/j.jmro.2023.100135
Nuwandi M. Ariyasingha , Shiraz Nantogma , Anna Samoilenko , Oleg G. Salnikov , Nikita V. Chukanov , Larisa M. Kovtunova , Igor V. Koptyug , Eduard Y. Chekmenev

Parahydrogen-Induced Polarization (PHIP) is NMR hyperpolarization technique that has matured from fundamental science to a biomedical tool for production of hyperpolarized MRI contrast agents. The spin order of nascent parahydrogen-derived protons can be employed directly for enhancement of their NMR signals or for polarization transfer to other nuclei in the hydrogenation product. In this work, we study the process of pairwise parahydrogen addition to propylene, which results in symmetric propane molecule with substantially enhanced methyl and methylene NMR signals. Specifically, we have synthesized site-selectively isotopically labeled 3-d-propylene molecule to study polarization dynamics in the resulting monodeuterated propane after pairwise parahydrogen addition. The deuterium presence in the hyperpolarized propane product results in a minute isotope chemical shift effect allowing to distinguish the proton resonances of CH3 and CH2D groups at 600 MHz. Pairwise parahydrogen 1,2-addition to 3-d-propylene was first confirmed by performing the reaction inside a 600 MHz NMR spectrometer, i.e., in the weakly-coupled regime at 14 T, where proton polarization dynamics is restricted to the molecular sites of parahydrogen addition. However, when the pairwise parahydrogen addition is performed in the strongly-coupled regime, i.e., at the Earth's magnetic field, efficient polarization transfer to CH2D protons is readily observed, leading to polarization redistribution between the three inequivalent sites. This finding is important as it sheds light on polarization dynamics in the strongly coupled symmetric spin systems such as propane studied here—the presented results are expected to be applicable to other spin systems such as butane.

对氢诱导极化(PHIP)是核磁共振超极化技术,已经从基础科学发展成为生产超极化MRI造影剂的生物医学工具。新生的对氢衍生质子的自旋顺序可以直接用于增强其核磁共振信号或用于极化转移到氢化产物中的其他原子核。在这项工作中,我们研究了丙烯的成对对氢加成过程,该过程导致丙烷分子对称,甲基和亚甲基核磁共振信号显著增强。具体来说,我们合成了位置选择性同位素标记的三维丙烯分子,以研究成对对氢加成后所得一氘化丙烷的极化动力学。氘在超极化丙烷产物中的存在导致了微小的同位素化学位移效应,使得在600 MHz时可以区分CH3和CH2D基团的质子共振。在600 MHz核磁共振波谱仪内进行反应,即在14t弱耦合状态下,质子极化动力学仅限于对氢加成的分子位点,首次证实了对氢1,2加成到3-丙烯的反应。然而,当在强耦合条件下,即在地球磁场下进行成对对氢加成时,很容易观察到CH2D质子的有效极化转移,导致三个不相等位点之间的极化重新分布。这一发现很重要,因为它揭示了强耦合对称自旋系统(如丙烷)的极化动力学,所提出的结果有望适用于其他自旋系统(如丁烷)。
{"title":"Efficient polarization redistribution in hyperpolarized 1-D-propane produced via pairwise parahydrogen addition","authors":"Nuwandi M. Ariyasingha ,&nbsp;Shiraz Nantogma ,&nbsp;Anna Samoilenko ,&nbsp;Oleg G. Salnikov ,&nbsp;Nikita V. Chukanov ,&nbsp;Larisa M. Kovtunova ,&nbsp;Igor V. Koptyug ,&nbsp;Eduard Y. Chekmenev","doi":"10.1016/j.jmro.2023.100135","DOIUrl":"https://doi.org/10.1016/j.jmro.2023.100135","url":null,"abstract":"<div><p>Parahydrogen-Induced Polarization (PHIP) is NMR hyperpolarization technique that has matured from fundamental science to a biomedical tool for production of hyperpolarized MRI contrast agents. The spin order of nascent parahydrogen-derived protons can be employed directly for enhancement of their NMR signals or for polarization transfer to other nuclei in the hydrogenation product. In this work, we study the process of pairwise parahydrogen addition to propylene, which results in symmetric propane molecule with substantially enhanced methyl and methylene NMR signals. Specifically, we have synthesized site-selectively isotopically labeled 3-<span>d</span>-propylene molecule to study polarization dynamics in the resulting monodeuterated propane after pairwise parahydrogen addition. The deuterium presence in the hyperpolarized propane product results in a minute isotope chemical shift effect allowing to distinguish the proton resonances of CH<sub>3</sub> and CH<sub>2</sub>D groups at 600 MHz. Pairwise parahydrogen 1,2-addition to 3-<span>d</span>-propylene was first confirmed by performing the reaction inside a 600 MHz NMR spectrometer, <em>i.e</em>., in the weakly-coupled regime at 14 T, where proton polarization dynamics is restricted to the molecular sites of parahydrogen addition. However, when the pairwise parahydrogen addition is performed in the strongly-coupled regime, <em>i.e</em>., at the Earth's magnetic field, efficient polarization transfer to CH<sub>2</sub>D protons is readily observed, leading to polarization redistribution between the three inequivalent sites. This finding is important as it sheds light on polarization dynamics in the strongly coupled symmetric spin systems such as propane studied here—the presented results are expected to be applicable to other spin systems such as butane.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100135"},"PeriodicalIF":2.624,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000432/pdfft?md5=27574b8b0966d42351dc5e56ded5517c&pid=1-s2.0-S2666441023000432-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92087351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Essential tools of linear algebra for calculating nuclear spin dynamics of chemically exchanging systems 计算化学交换体系核自旋动力学的线性代数基本工具
IF 2.624 Pub Date : 2023-09-07 DOI: 10.1016/j.jmro.2023.100132
Jingyan Xu, Danila A. Barskiy

In this work, we describe essential tools of linear algebra necessary for calculating the effect of chemical exchange on spin dynamics and polarization transfer in various nuclear magnetic resonance (NMR) experiments. We show how to construct matrix representations of Hamiltonian, relaxation, and chemical exchange superoperators in both Hilbert and Liouville space, as well as demonstrate corresponding codes in Python. Examples of applying the code are given for problems involving chemical exchange between NH3 and NH4+ at zero and high magnetic field and polarization transfer from parahydrogen relevant in SABRE (signal amplification by reversible exchange) at low magnetic field (0-20 mT). The presented methodology finds utility for describing the effect of chemical exchange on NMR spectra and can be extended further by taking into account non-linearities in the master equation.

在这项工作中,我们描述了在各种核磁共振(NMR)实验中计算化学交换对自旋动力学和极化转移的影响所需的基本线性代数工具。我们展示了如何在Hilbert和Liouville空间中构造哈密顿、弛豫和化学交换超算子的矩阵表示,并在Python中演示了相应的代码。文中给出了应用该代码解决零磁场和高磁场下NH3和NH4+之间的化学交换以及低磁场(0-20 mT)下SABRE(可逆交换信号放大)中对氢的极化转移问题的实例。所提出的方法在描述化学交换对核磁共振光谱的影响方面具有实用性,并且可以通过考虑主方程中的非线性进一步扩展。
{"title":"Essential tools of linear algebra for calculating nuclear spin dynamics of chemically exchanging systems","authors":"Jingyan Xu,&nbsp;Danila A. Barskiy","doi":"10.1016/j.jmro.2023.100132","DOIUrl":"10.1016/j.jmro.2023.100132","url":null,"abstract":"<div><p>In this work, we describe essential tools of linear algebra necessary for calculating the effect of chemical exchange on spin dynamics and polarization transfer in various nuclear magnetic resonance (NMR) experiments. We show how to construct matrix representations of Hamiltonian, relaxation, and chemical exchange superoperators in both Hilbert and Liouville space, as well as demonstrate corresponding codes in Python. Examples of applying the code are given for problems involving chemical exchange between NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and NH<span><math><msubsup><mrow></mrow><mrow><mn>4</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> at zero and high magnetic field and polarization transfer from parahydrogen relevant in SABRE (signal amplification by reversible exchange) at low magnetic field (0-20<!--> <!-->mT). The presented methodology finds utility for describing the effect of chemical exchange on NMR spectra and can be extended further by taking into account non-linearities in the master equation.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100132"},"PeriodicalIF":2.624,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000407/pdfft?md5=48d5ddc0968c74dfc974a98139168acd&pid=1-s2.0-S2666441023000407-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91472861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple electron spin resonance echoes observed for paramagnetic defects in diamond at room temperature 室温下金刚石顺磁性缺陷的多重电子自旋共振回波观察
IF 2.624 Pub Date : 2023-08-26 DOI: 10.1016/j.jmro.2023.100133
Aharon Blank, Boaz Koren, Alexander Sherman

Magnetic resonance offers an invaluable testbed for observing and studying the fundamental concepts of quantum cavity interactions with two-level systems in the microwave regime. Typically, these experiments are conducted at low cryogenic temperatures, utilizing spin systems embedded within a high-quality (Q-factor) superconducting cavity. Recent studies indicate that under these conditions, especially in a high-cooperativity regime with strong collective coupling between an electron spin system and a microwave cavity, multiple spin echoes can be detected. These echoes are interpreted as manifestations of coherent quantum effects. To put it simply, photons within the cavity can excite the spin system, which subsequently can stimulate the cavity, creating a feedback loop. In our research, we demonstrate that a specially designed moderate-Q cavity, paired with diamond crystals rich in nitrogen vacancy (NV) centers, allows us to observe such nonlinear quantum phenomena, even at ambient temperatures. Crucially, our experimental design necessitates amplifying the net number of spins for a specific, limited spin concentration. This is achieved by lowering the spins' thermodynamic temperature (as opposed to their physical temperature) to a few kelvins. Notably, we find that maintaining high cooperativity or strong coupling is not essential for these observations. The potential to observe significant microwave cavity quantum effects at room temperature could be useful for future applications, such as quantum memories and quantum sensing.

磁共振为观察和研究微波条件下量子腔与两能级系统相互作用的基本概念提供了一个宝贵的实验平台。通常,这些实验是在低温下进行的,利用嵌入在高质量(q因子)超导腔中的自旋系统。最近的研究表明,在这些条件下,特别是在电子自旋系统与微波腔之间具有强集体耦合的高协同机制下,可以检测到多个自旋回波。这些回声被解释为相干量子效应的表现。简单地说,腔内的光子可以激发自旋系统,自旋系统随后可以刺激腔,形成一个反馈回路。在我们的研究中,我们证明了一个特殊设计的中q腔,与富含氮空位(NV)中心的金刚石晶体配对,即使在环境温度下也可以观察到这种非线性量子现象。至关重要的是,我们的实验设计需要放大特定的、有限的自旋浓度的净自旋数。这是通过降低自旋的热力学温度(相对于它们的物理温度)到几个开尔文来实现的。值得注意的是,我们发现保持高协同性或强耦合对于这些观察来说并不是必需的。在室温下观察到显著的微波腔量子效应的潜力可能对未来的应用有用,例如量子记忆和量子传感。
{"title":"Multiple electron spin resonance echoes observed for paramagnetic defects in diamond at room temperature","authors":"Aharon Blank,&nbsp;Boaz Koren,&nbsp;Alexander Sherman","doi":"10.1016/j.jmro.2023.100133","DOIUrl":"10.1016/j.jmro.2023.100133","url":null,"abstract":"<div><p>Magnetic resonance offers an invaluable testbed for observing and studying the fundamental concepts of quantum cavity interactions with two-level systems in the microwave regime. Typically, these experiments are conducted at low cryogenic temperatures, utilizing spin systems embedded within a high-quality (Q-factor) superconducting cavity. Recent studies indicate that under these conditions, especially in a high-cooperativity regime with strong collective coupling between an electron spin system and a microwave cavity, multiple spin echoes can be detected. These echoes are interpreted as manifestations of coherent quantum effects. To put it simply, photons within the cavity can excite the spin system, which subsequently can stimulate the cavity, creating a feedback loop. In our research, we demonstrate that a specially designed moderate-Q cavity, paired with diamond crystals rich in nitrogen vacancy (NV) centers, allows us to observe such nonlinear quantum phenomena, even at ambient temperatures. Crucially, our experimental design necessitates amplifying the net number of spins for a specific, limited spin concentration. This is achieved by lowering the spins' thermodynamic temperature (as opposed to their physical temperature) to a few kelvins. Notably, we find that maintaining high cooperativity or strong coupling is not essential for these observations. The potential to observe significant microwave cavity quantum effects at room temperature could be useful for future applications, such as quantum memories and quantum sensing.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100133"},"PeriodicalIF":2.624,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000419/pdfft?md5=de70c9a0e7b49643a6f7c5503ac0bcc2&pid=1-s2.0-S2666441023000419-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78958023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperpolarized 13C NMR for longitudinal in-cell metabolism using a mobile 3D cell culture system 超极化13C核磁共振纵向细胞内代谢使用移动3D细胞培养系统
IF 2.624 Pub Date : 2023-08-08 DOI: 10.1016/j.jmro.2023.100131
T.B.W. Mathiassen , A.E. Høgh , M. Karlsson , S. Katsikis , K. Wang , M. Pennestri , J.H. Ardenkjær-Larsen , P.R. Jensen

Hyperpolarization with the dissolution dynamic nuclear polarization (dDNP) technique yields > 10,000-fold signal increases for NMR-active nuclei (e.g. 13C). Hyperpolarized 13C-labeled metabolic tracer molecules thus allow real-time observations of biochemical pathways in living cellular systems without interfering background. This methodology lends itself to the direct observation of altered intracellular reaction chemistry imparted for instance by drug treatment, infections, or other diseases. A reoccurring challenge for longitudinal cell studies of mammalian cells with NMR and dDNP-NMR is maintaining cell viability in the NMR spectrometer. 3D cell culture methods are increasing in popularity because they provide a physiologically more relevant environment compared to 2D cell cultures. Based on such strategies a mobile 3D culture system was devised. The clinical drug etoposide was used to treat cancer cells (HeLa) and the resulting altered metabolism was measured using hyperpolarized [1–13C]pyruvate. We show that sustaining the cell cultivation in cell incubators and only transferring the cells to the NMR spectrometer for the few minutes required for the dDNP-NMR measurements is an attractive alternative to cell maintenance in the NMR tube. High cell viability is sustained, and experimental throughput is many doubled.

超极化与溶解动态核极化(dDNP)技术产生>核磁共振活性核(如13C)信号增加10000倍。因此,超极化13c标记的代谢示踪剂分子可以在没有干扰背景的情况下实时观察活细胞系统中的生化途径。这种方法适用于直接观察药物治疗、感染或其他疾病引起的细胞内化学反应的改变。利用核磁共振和dDNP-NMR对哺乳动物细胞进行纵向细胞研究时,一个反复出现的挑战是在核磁共振波谱仪中保持细胞活力。3D细胞培养方法越来越受欢迎,因为与2D细胞培养相比,它们提供了更相关的生理环境。基于这些策略,设计了一个移动三维文化系统。使用临床药物依托泊苷治疗癌细胞(HeLa),并使用超极化[1-13C]丙酮酸测定由此产生的代谢改变。我们表明,在细胞培养箱中维持细胞培养,仅将细胞转移到核磁共振波谱仪中进行dnp -NMR测量所需的几分钟,是核磁共振管中细胞维持的一个有吸引力的选择。维持高细胞活力,实验吞吐量翻了许多倍。
{"title":"Hyperpolarized 13C NMR for longitudinal in-cell metabolism using a mobile 3D cell culture system","authors":"T.B.W. Mathiassen ,&nbsp;A.E. Høgh ,&nbsp;M. Karlsson ,&nbsp;S. Katsikis ,&nbsp;K. Wang ,&nbsp;M. Pennestri ,&nbsp;J.H. Ardenkjær-Larsen ,&nbsp;P.R. Jensen","doi":"10.1016/j.jmro.2023.100131","DOIUrl":"10.1016/j.jmro.2023.100131","url":null,"abstract":"<div><p>Hyperpolarization with the dissolution dynamic nuclear polarization (dDNP) technique yields &gt; 10,000-fold signal increases for NMR-active nuclei (e.g. <sup>13</sup>C). Hyperpolarized <sup>13</sup>C-labeled metabolic tracer molecules thus allow real-time observations of biochemical pathways in living cellular systems without interfering background. This methodology lends itself to the direct observation of altered intracellular reaction chemistry imparted for instance by drug treatment, infections, or other diseases. A reoccurring challenge for longitudinal cell studies of mammalian cells with NMR and dDNP-NMR is maintaining cell viability in the NMR spectrometer. 3D cell culture methods are increasing in popularity because they provide a physiologically more relevant environment compared to 2D cell cultures. Based on such strategies a mobile 3D culture system was devised. The clinical drug etoposide was used to treat cancer cells (HeLa) and the resulting altered metabolism was measured using hyperpolarized [1–<sup>13</sup>C]pyruvate. We show that sustaining the cell cultivation in cell incubators and only transferring the cells to the NMR spectrometer for the few minutes required for the dDNP-NMR measurements is an attractive alternative to cell maintenance in the NMR tube. High cell viability is sustained, and experimental throughput is many doubled.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"16 ","pages":"Article 100131"},"PeriodicalIF":2.624,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000390/pdfft?md5=1fb698b32491f80f5153bc638f0b5899&pid=1-s2.0-S2666441023000390-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86035083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Magnetic Resonance Open
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1