This study focused on the effect of hydrothermal (HT) treatment at 180 – 210 °C for holding 0 - 15 min on the solubilization of rice straw and the changes of HT residue. The optimum treatment conditions for the highest solubilization and solid reduction of rice straw was 210 °C for holding 0 min. Under this condition, the extraction yield and total organic carbon (TOC) concentration of the HT liquid part were the highest, about 44% and 7850 mg/L, respectively. The dry residue showed that the HT conditions above 200 °C for holding a short time were more efficient, which was confirmed by FT-IR and the changes of surface morphology under microscope. The reactor headspace could be an important factor because HT treatment with a lower headspace (HTp210-0(15)) yielded more soluble carbohydrate under the test conditions. Also, energy input calculated based on the 1 ton removed hemicellulose (extraction yield) in the headspace experiments proved this finding.
{"title":"Hydrothermal treatment of rice straw for carbohydrate production","authors":"Enkhtur Munkhbat, Z. Lei","doi":"10.5564/mjc.v24i50.2425","DOIUrl":"https://doi.org/10.5564/mjc.v24i50.2425","url":null,"abstract":" This study focused on the effect of hydrothermal (HT) treatment at 180 – 210 °C for holding 0 - 15 min on the solubilization of rice straw and the changes of HT residue. The optimum treatment conditions for the highest solubilization and solid reduction of rice straw was 210 °C for holding 0 min. Under this condition, the extraction yield and total organic carbon (TOC) concentration of the HT liquid part were the highest, about 44% and 7850 mg/L, respectively. The dry residue showed that the HT conditions above 200 °C for holding a short time were more efficient, which was confirmed by FT-IR and the changes of surface morphology under microscope. The reactor headspace could be an important factor because HT treatment with a lower headspace (HTp210-0(15)) yielded more soluble carbohydrate under the test conditions. Also, energy input calculated based on the 1 ton removed hemicellulose (extraction yield) in the headspace experiments proved this finding.","PeriodicalId":36661,"journal":{"name":"Mongolian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47159870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Calculations using density functional theory (DFT) and Monte Carlo methods were performed on 2-methylbenzimidazole, 2-mercaptobenzimidazole, 2-aminobenzimidazole, benzotriazole, and benzimidazole to determine their corrosion inhibition efficiency. The molecular structure was optimized geometrically using DFT calculations at the B3LYP/6– 311 G++(d,p) and b2plypd3/aug-cc-pvdz basis set level in protonated and non-protonated species in gas and water. In this study, HOMO, LUMO, bandgap, ionization energy, electronegativity, hardness, softness, electrophilicity and nucleophilicity, electron transfer, back donation energy and condensed Fukui indices are used to assess a molecule's local reactivity. Theoretical investigations can precisely establish the geometrical dimensions of a molecule and correctly explain the quantum properties of inhibitors. The mechanism of interaction between inhibitors and metal surfaces in a specified molecule is studied using molecular dynamics. The benzimidazole functional groups absorbed energy linearly on metal surfaces, with quantum characteristics determined using density functional theory and an ab initio technique. Importantly, the findings of this conceptual model are consistent with the corrosion inhibition efficiency of earlier experimental investigations.
{"title":"Monte Carlo and DFT calculations on the corrosion inhibition efficiency of some benzimide molecules","authors":"D. Mamand, Y. H. Azeez, H. Qadr","doi":"10.5564/mjc.v24i50.2435","DOIUrl":"https://doi.org/10.5564/mjc.v24i50.2435","url":null,"abstract":"Calculations using density functional theory (DFT) and Monte Carlo methods were performed on 2-methylbenzimidazole, 2-mercaptobenzimidazole, 2-aminobenzimidazole, benzotriazole, and benzimidazole to determine their corrosion inhibition efficiency. The molecular structure was optimized geometrically using DFT calculations at the B3LYP/6– 311 G++(d,p) and b2plypd3/aug-cc-pvdz basis set level in protonated and non-protonated species in gas and water. In this study, HOMO, LUMO, bandgap, ionization energy, electronegativity, hardness, softness, electrophilicity and nucleophilicity, electron transfer, back donation energy and condensed Fukui indices are used to assess a molecule's local reactivity. Theoretical investigations can precisely establish the geometrical dimensions of a molecule and correctly explain the quantum properties of inhibitors. The mechanism of interaction between inhibitors and metal surfaces in a specified molecule is studied using molecular dynamics. The benzimidazole functional groups absorbed energy linearly on metal surfaces, with quantum characteristics determined using density functional theory and an ab initio technique. Importantly, the findings of this conceptual model are consistent with the corrosion inhibition efficiency of earlier experimental investigations.","PeriodicalId":36661,"journal":{"name":"Mongolian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44274571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Message from the Editor-in-Chief","authors":"J. Temuujin","doi":"10.5564/mjc.v23i49.2450","DOIUrl":"https://doi.org/10.5564/mjc.v23i49.2450","url":null,"abstract":"No abstract in English","PeriodicalId":36661,"journal":{"name":"Mongolian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48212873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Stelmakh, O. Ochirov, M. Grigor’eva, A. Tykheev, S. Lebedeva, V. Okladnikova, S. Zhamsaranova
The results of a study of the wound healing activity of a composition based on the hydrogel of polyhexamethylene guanidine hydrochloride and Bergenia crassifolia extract, under conditions of modeling thermal burns in laboratory animals (rats), are presented. It was found that the composition affects the change in the summary antioxidant and leukocyte activity towards the normalization of these indicators. Morphological analysis of the slices showed that, under the influence of a polyhexamethylene guanidine hydrogel composition and B.crassifolia extract, healing proceeds more intensively than in the control group and is manifested by a smaller thickness of the leukocyte-necrotic scab, accelerated epithelization, and complete closure of the skin defect.
{"title":"Wound-healing activity of polyhexamethyleneguanidine hydrochloride hydrogel and extract of Bergenia crassifolia on thermal burn simulation","authors":"S. Stelmakh, O. Ochirov, M. Grigor’eva, A. Tykheev, S. Lebedeva, V. Okladnikova, S. Zhamsaranova","doi":"10.5564/mjc.v23i49.2049","DOIUrl":"https://doi.org/10.5564/mjc.v23i49.2049","url":null,"abstract":"The results of a study of the wound healing activity of a composition based on the hydrogel of polyhexamethylene guanidine hydrochloride and Bergenia crassifolia extract, under conditions of modeling thermal burns in laboratory animals (rats), are presented. It was found that the composition affects the change in the summary antioxidant and leukocyte activity towards the normalization of these indicators. Morphological analysis of the slices showed that, under the influence of a polyhexamethylene guanidine hydrogel composition and B.crassifolia extract, healing proceeds more intensively than in the control group and is manifested by a smaller thickness of the leukocyte-necrotic scab, accelerated epithelization, and complete closure of the skin defect.","PeriodicalId":36661,"journal":{"name":"Mongolian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44716496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Altantuya Ochirkhuyag, Ulambayar Rentsennorov, Davaabal Batmunkh, Oyun-Erdene Gendenjamts, E. Odbaatar, Tserendagva Tsend-Ayush, J. Temuujin
In developed countries, nanoparticles derived from natural minerals and high-purity chemicals both are widely studied, while in developing countries like Mongolia, the natural minerals-based nanoparticles have more interest because of the low production cost and applicability of domestic natural minerals for their production. For the synthesis of natural mineral-based nanomaterials, it is important first to define the chemical composition and physical structure of local minerals and their possible processing route. We employed an environmentally friendly alkaline leaching procedure to recover silica from the clay mineral at 90°C for 24 hours. We applied an organic surfactant (CTAB) and a simple coprecipitation approach to form iron-doped silica nanoparticles. Consequently, we used iron-doped silica nanoparticles as a substrate and catalyst for the synthesis of carbon nanosphere at 750 °C for 1 hour in an argon and acetylene gas atmosphere. As a result, vast quantities of superhydrophobic carbon nanospheres (CNS) were obtained. The physicochemical properties of nanosilica substrate, non-functionalized carbon nanosphere, and functionalized carbon nanosphere (CNS) samples were characterized using XRD, XRF, SEM, EDS, TEM, and FTIR spectrometer. Iron-doped mineral-derived nanosilica particles demonstrated high catalytic efficiency and the potential to produce a large amount of value-added carbon nanospheres. Superhydrophobic CNS can be used in a variety of applications, particularly drug delivery; however, to use CNS in both aqueous and non-aqueous media, the superhydrophobic properties of CNS can be modified using different oxidizers. The changes in hydrophobicity of the CNS were examined and suggested possible oxidizing agents.
{"title":"Preparation of catalyst from natural montmorillonite mineral and its application in the synthesis of carbon nanosphere","authors":"Altantuya Ochirkhuyag, Ulambayar Rentsennorov, Davaabal Batmunkh, Oyun-Erdene Gendenjamts, E. Odbaatar, Tserendagva Tsend-Ayush, J. Temuujin","doi":"10.5564/mjc.v23i49.2430","DOIUrl":"https://doi.org/10.5564/mjc.v23i49.2430","url":null,"abstract":"In developed countries, nanoparticles derived from natural minerals and high-purity chemicals both are widely studied, while in developing countries like Mongolia, the natural minerals-based nanoparticles have more interest because of the low production cost and applicability of domestic natural minerals for their production. For the synthesis of natural mineral-based nanomaterials, it is important first to define the chemical composition and physical structure of local minerals and their possible processing route. We employed an environmentally friendly alkaline leaching procedure to recover silica from the clay mineral at 90°C for 24 hours. We applied an organic surfactant (CTAB) and a simple coprecipitation approach to form iron-doped silica nanoparticles. Consequently, we used iron-doped silica nanoparticles as a substrate and catalyst for the synthesis of carbon nanosphere at 750 °C for 1 hour in an argon and acetylene gas atmosphere. As a result, vast quantities of superhydrophobic carbon nanospheres (CNS) were obtained. The physicochemical properties of nanosilica substrate, non-functionalized carbon nanosphere, and functionalized carbon nanosphere (CNS) samples were characterized using XRD, XRF, SEM, EDS, TEM, and FTIR spectrometer. Iron-doped mineral-derived nanosilica particles demonstrated high catalytic efficiency and the potential to produce a large amount of value-added carbon nanospheres. Superhydrophobic CNS can be used in a variety of applications, particularly drug delivery; however, to use CNS in both aqueous and non-aqueous media, the superhydrophobic properties of CNS can be modified using different oxidizers. The changes in hydrophobicity of the CNS were examined and suggested possible oxidizing agents.","PeriodicalId":36661,"journal":{"name":"Mongolian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45754068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yak wool is a smooth, warm, and durable natural protein-structured fiber that could compete with cashmere and other high-end protein-structured fibers on the market. However, it suffers from drawing consumers’ attention due to the lack of color due to the shortfall of the yak wool bleaching technology. Herein, we studied the applicability of various transition metals, i.e., copper (II), cobalt (II), iron (II), and nickel (II) salts, as a mordanting reagent based on their effect on the hydrogen peroxide decomposition reaction and the morphological and mechanical properties of the bleached yak wool with the presence of these transition metal. Our study suggested that the iron (II) ion was the most efficient reagent for the mordant bleaching since it provided less fiber damage, relatively high strength, and elongation to the bleached yak wool with good whiteness, while the Cu (II) was the least favorable agent for the yak wool bleaching process.
{"title":"Effect of various transition metal ions on mordanting stage of yak wool bleaching process","authors":"Dashjargal Arildii, Otgontsetseg Ranaajav, Odonchimeg Genenbat, Amarzaya Bazarvaani, Sarangerel Davaasambuu","doi":"10.5564/mjc.v23i49.2138","DOIUrl":"https://doi.org/10.5564/mjc.v23i49.2138","url":null,"abstract":"Yak wool is a smooth, warm, and durable natural protein-structured fiber that could compete with cashmere and other high-end protein-structured fibers on the market. However, it suffers from drawing consumers’ attention due to the lack of color due to the shortfall of the yak wool bleaching technology. Herein, we studied the applicability of various transition metals, i.e., copper (II), cobalt (II), iron (II), and nickel (II) salts, as a mordanting reagent based on their effect on the hydrogen peroxide decomposition reaction and the morphological and mechanical properties of the bleached yak wool with the presence of these transition metal. Our study suggested that the iron (II) ion was the most efficient reagent for the mordant bleaching since it provided less fiber damage, relatively high strength, and elongation to the bleached yak wool with good whiteness, while the Cu (II) was the least favorable agent for the yak wool bleaching process.","PeriodicalId":36661,"journal":{"name":"Mongolian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49655241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study reports accurate gas-phase homolytic B–Cl bond dissociation energies, obtained using the benchmark-quality W1w thermochemical protocol, for a set of 25 chloroborane-type molecules (known herein as the BCl25BDE dataset). The BDEs of these species differ by as much as 136.5 kJ mol-1 at 298 K, with (BH2)2BCl having the lowest BDE (388.5 kJ mol-1 at 298 K) and (CH3)HBCl having the highest (525.1 kJ mol-1 ). Using the W1w BDEs as reference values, the accuracy of a diverse set of more economical DFT procedures (which may be applied to the study of molecules sufficiently large that the use of benchmark-quality methods such as W1w is rendered computationally prohibitive) have been investigated. As a result of this analysis, the most accurate methods for the computation of B–Cl BDEs are ωB97/A'VQZ (MAD = 3.0 kJ mol-1 ) and M06/A'VTZ (MAD = 3.2 kJ mol-1 ). The double-hybrid functional DSD-PBEP86 in conjunction with the A'VQZ basis set (MAD = 4.0 kJ mol-1 ) was found to give the lowest largest deviation (LD = 6.4 kJ mol-1 ) of any of methods considered in this assessment study.
{"title":"Homolytic B–Cl bond dissociation energies of chloroborane-type molecules","authors":"Wen-guan Lu, Robert J. O’Reilly","doi":"10.5564/mjc.v23i49.2016","DOIUrl":"https://doi.org/10.5564/mjc.v23i49.2016","url":null,"abstract":"This study reports accurate gas-phase homolytic B–Cl bond dissociation energies, obtained using the benchmark-quality W1w thermochemical protocol, for a set of 25 chloroborane-type molecules (known herein as the BCl25BDE dataset). The BDEs of these species differ by as much as 136.5 kJ mol-1 at 298 K, with (BH2)2BCl having the lowest BDE (388.5 kJ mol-1 at 298 K) and (CH3)HBCl having the highest (525.1 kJ mol-1 ). Using the W1w BDEs as reference values, the accuracy of a diverse set of more economical DFT procedures (which may be applied to the study of molecules sufficiently large that the use of benchmark-quality methods such as W1w is rendered computationally prohibitive) have been investigated. As a result of this analysis, the most accurate methods for the computation of B–Cl BDEs are ωB97/A'VQZ (MAD = 3.0 kJ mol-1 ) and M06/A'VTZ (MAD = 3.2 kJ mol-1 ). The double-hybrid functional DSD-PBEP86 in conjunction with the A'VQZ basis set (MAD = 4.0 kJ mol-1 ) was found to give the lowest largest deviation (LD = 6.4 kJ mol-1 ) of any of methods considered in this assessment study.","PeriodicalId":36661,"journal":{"name":"Mongolian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45791506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarengaole Bayinjirigala, Tsend-ayusha Chuluunbat, Jirigala Bayin, B. Menghe
The aim of the study is to develop a technology of starter cultures for fermented milk using new strains of lactic acid bacteria isolated from Mongolian traditional fermented camel milk. “Khoormog” samples are collected from Inner Mongolia, China. Totally 230 Lactobacillus strains are isolated and screened by acid-, bile- tolerance, lactose decomposition and acid production ability. The cholesterol lowering abilities and adhesiveness on Caco-2 are evaluated. The top 2 strains are identified as Lactobacillus plantarum. These 2 strains are prepared as the starter cultures in milk fermentation. The development technology of starter cultures is studied.
{"title":"Development technology of starter cultures using lactic acid bacteria isolated from fermented Camel milk with cholesterol lowering ability","authors":"Sarengaole Bayinjirigala, Tsend-ayusha Chuluunbat, Jirigala Bayin, B. Menghe","doi":"10.5564/mjc.v23i49.1404","DOIUrl":"https://doi.org/10.5564/mjc.v23i49.1404","url":null,"abstract":"The aim of the study is to develop a technology of starter cultures for fermented milk using new strains of lactic acid bacteria isolated from Mongolian traditional fermented camel milk. “Khoormog” samples are collected from Inner Mongolia, China. Totally 230 Lactobacillus strains are isolated and screened by acid-, bile- tolerance, lactose decomposition and acid production ability. The cholesterol lowering abilities and adhesiveness on Caco-2 are evaluated. The top 2 strains are identified as Lactobacillus plantarum. These 2 strains are prepared as the starter cultures in milk fermentation. The development technology of starter cultures is studied.","PeriodicalId":36661,"journal":{"name":"Mongolian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44348959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum chemical computational methods, which use quantum mechanics and molecular dynamics theory, have developed rapidly in the past few decades, and quantum chemical computation has penetrated almost all fields of chemistry. Hydrogen bonds are ubiquitously common weak intermolecular interactions. Moreover, the bonding mechanism of hydrogen bonds is considered to be different from that of chemical bonding. Because of the difficulty of experimental studies, a more accurate calculation of hydrogen bonding from theory is a more convenient and direct method to understand hydrogen bonding. Density functional theory (DFT) is the most widely used general function in quantum chemical calculations, giving accurate results for most chemical systems. In this paper, the geometries of the hydrogen-bonded dimer complex of acetic acid and DMSO was structurally optimized and potential energy surface was determined. The geometries of four related hydrogen-bonded dimer complexes were fully optimized using the M06-2X/6-311++G (3d, 2p) exchange-correlation functional with DFT-D3(BJ) empirical dispersion correction. We found that hydrogen bonding is a mixture of electrostatic interactions and covalent bonding, and that hydrogen bonding is a kind of force with different percentages of electrostatic and covalent character, rather than a special force independent of chemical bonding. Thus, more clearly defining our inherent classification of forces between substances provides a new perspective for our future study of weak interactions such as hydrogen bonding.
{"title":"A quantum chemical study of the interaction of carboxylic acids with DMSO","authors":"Mu Ren, Ao Rigele, Na Shun, Narantsogt Natsagdorj","doi":"10.5564/mjc.v23i49.1407","DOIUrl":"https://doi.org/10.5564/mjc.v23i49.1407","url":null,"abstract":"Quantum chemical computational methods, which use quantum mechanics and molecular dynamics theory, have developed rapidly in the past few decades, and quantum chemical computation has penetrated almost all fields of chemistry. Hydrogen bonds are ubiquitously common weak intermolecular interactions. Moreover, the bonding mechanism of hydrogen bonds is considered to be different from that of chemical bonding. Because of the difficulty of experimental studies, a more accurate calculation of hydrogen bonding from theory is a more convenient and direct method to understand hydrogen bonding. Density functional theory (DFT) is the most widely used general function in quantum chemical calculations, giving accurate results for most chemical systems. In this paper, the geometries of the hydrogen-bonded dimer complex of acetic acid and DMSO was structurally optimized and potential energy surface was determined. The geometries of four related hydrogen-bonded dimer complexes were fully optimized using the M06-2X/6-311++G (3d, 2p) exchange-correlation functional with DFT-D3(BJ) empirical dispersion correction. We found that hydrogen bonding is a mixture of electrostatic interactions and covalent bonding, and that hydrogen bonding is a kind of force with different percentages of electrostatic and covalent character, rather than a special force independent of chemical bonding. Thus, more clearly defining our inherent classification of forces between substances provides a new perspective for our future study of weak interactions such as hydrogen bonding.","PeriodicalId":36661,"journal":{"name":"Mongolian Journal of Chemistry","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42396672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Byamba-Ochir, Nazgul Muratbyek, Narangarav Tumen-Ulzii, Ariunaa Alyeksandr, Nasantogtokh Oyunchimeg
The study to reduce heavy metals pollution from water using the KOH-activated carbon was studied the factors affecting the adsorption capacities of Cu(II) and Pb(II), in particular, initial metals concentration, pH of the solution, and contact time in static conditions. Using X-ray photoelectron spectroscopy and FTIR analysis to determine the elemental composition and surface functional groups of the activated carbon surface, the presence of oxygen-related functional groups was observed. The maximum adsorption capacities were 135.8 mg g-1 and 31.0 mg g-1 for removal of lead and copper solutions with the initial concentration of 300 mg L-1 of metal at 318 K, respectively. The removal percentage was found to be higher for Pb (II) when compared with Cu (II).
{"title":"Efficiency of KOH-activated carbon for removal of heavy metal pollution from water","authors":"N. Byamba-Ochir, Nazgul Muratbyek, Narangarav Tumen-Ulzii, Ariunaa Alyeksandr, Nasantogtokh Oyunchimeg","doi":"10.5564/mjc.v23i49.1406","DOIUrl":"https://doi.org/10.5564/mjc.v23i49.1406","url":null,"abstract":"The study to reduce heavy metals pollution from water using the KOH-activated carbon was studied the factors affecting the adsorption capacities of Cu(II) and Pb(II), in particular, initial metals concentration, pH of the solution, and contact time in static conditions. Using X-ray photoelectron spectroscopy and FTIR analysis to determine the elemental composition and surface functional groups of the activated carbon surface, the presence of oxygen-related functional groups was observed. The maximum adsorption capacities were 135.8 mg g-1 and 31.0 mg g-1 for removal of lead and copper solutions with the initial concentration of 300 mg L-1 of metal at 318 K, respectively. The removal percentage was found to be higher for Pb (II) when compared with Cu (II).","PeriodicalId":36661,"journal":{"name":"Mongolian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46817635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}