Pub Date : 2023-10-17DOI: 10.7494/geom.2023.17.6.35
Carlo Barletta, Alessandra Capolupo, Eufemia Tarantino
Land surface albedo is a relevant variable in many climatic, environmental, and hydrological studies; its monitoring allows researchers to identify changes on the Earth’s surface. The open satellite data that is provided by the USGS/NASA Landsat mission is quite suitable for estimating this parameter through the remote sensing technique. The purpose of this paper is to evaluate the potentialities of the new Landsat 9 data for retrieving Earth’s albedo by applying da Silva et al.’s algorithm (developed in 2016 for the Landsat 8 data) using the Google Earth Engine cloud platform and R software. Two urban areas in Southern Italy with similar geomorphologic and climatic characteristics were chosen as study sites. After obtaining thematic maps of the albedos here, a statistical analysis and comparison among the Landsat 8 and Landsat 9 results was performed considering the entire study areas and each land use/land cover class that is provided by the Copernicus Urban Atlas 2018. This approach was also applied to the data after being filtered through Tukey’s test (used to detect and remove outliers). The analysis showed a very good correlation between the Landsat 8 and Landsat 9 estimations (ρ > 0.94 for both sites), with some exceptions that were related to some mis-corresponding values. Furthermore, the Landsat 8 and Landsat 9 outliers were generally overlapping. In conclusion, da Silva et al.’s approach appears to also be reasonably applicable to the Landsat 9 data despite some radiometric differences.
{"title":"Extracting Land Surface Albedo from Landsat 9 Data in GEE Platform to Support Climate Change Analysis","authors":"Carlo Barletta, Alessandra Capolupo, Eufemia Tarantino","doi":"10.7494/geom.2023.17.6.35","DOIUrl":"https://doi.org/10.7494/geom.2023.17.6.35","url":null,"abstract":"Land surface albedo is a relevant variable in many climatic, environmental, and hydrological studies; its monitoring allows researchers to identify changes on the Earth’s surface. The open satellite data that is provided by the USGS/NASA Landsat mission is quite suitable for estimating this parameter through the remote sensing technique. The purpose of this paper is to evaluate the potentialities of the new Landsat 9 data for retrieving Earth’s albedo by applying da Silva et al.’s algorithm (developed in 2016 for the Landsat 8 data) using the Google Earth Engine cloud platform and R software. Two urban areas in Southern Italy with similar geomorphologic and climatic characteristics were chosen as study sites. After obtaining thematic maps of the albedos here, a statistical analysis and comparison among the Landsat 8 and Landsat 9 results was performed considering the entire study areas and each land use/land cover class that is provided by the Copernicus Urban Atlas 2018. This approach was also applied to the data after being filtered through Tukey’s test (used to detect and remove outliers). The analysis showed a very good correlation between the Landsat 8 and Landsat 9 estimations (ρ > 0.94 for both sites), with some exceptions that were related to some mis-corresponding values. Furthermore, the Landsat 8 and Landsat 9 outliers were generally overlapping. In conclusion, da Silva et al.’s approach appears to also be reasonably applicable to the Landsat 9 data despite some radiometric differences.","PeriodicalId":36672,"journal":{"name":"Geomatics and Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135993794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-13DOI: 10.7494/geom.2023.17.6.129
Rido Dwi Ismanto, Hana Listi Fitriana, Johanes Manalu, Alvian Aji Purboyo, Indah Prasasti
Flooding, often triggered by heavy rainfall, is a common natural disaster in Indonesia, and is the third most common type of disaster in Sumedang Regency. Hence, flood-susceptibility mapping is essential for flood management. The primary challenge in this lies in the complex, non-linear relationships between indices and risk levels. To address this, the application of random forest (RF) and frequency ratio (FR) methods has been explored. Ten flood-conditioning factors were determined from the references: the distance from a river, elevation, geology, geomorphology, lithology, land use/land cover, rainfall, slope, soil type, and topographic wetness index (TWI). The 35 flood locations from the flood-inventory map were selected, and the remaining 18 flood locations were used for justifying the outcomes. The flooded areas from the RF model were 28.39%; the rest (71.61%) were non-flooded areas. Also, the flooded areas from the FR method were 8.02%, and the non-flooded areas were 91.98%. The AUC for both methods was a similar value – 83.0%. This result is quite accurate and can be used by policymakers to prevent and manage future flooding in the Sumedang area. These results can also be used as materials for updating existing flood-susceptibility maps.
{"title":"Development of Flood-Hazard-Mapping Model Using Random Forest and Frequency Ratio in Sumedang Regency, West Java, Indonesia","authors":"Rido Dwi Ismanto, Hana Listi Fitriana, Johanes Manalu, Alvian Aji Purboyo, Indah Prasasti","doi":"10.7494/geom.2023.17.6.129","DOIUrl":"https://doi.org/10.7494/geom.2023.17.6.129","url":null,"abstract":"Flooding, often triggered by heavy rainfall, is a common natural disaster in Indonesia, and is the third most common type of disaster in Sumedang Regency. Hence, flood-susceptibility mapping is essential for flood management. The primary challenge in this lies in the complex, non-linear relationships between indices and risk levels. To address this, the application of random forest (RF) and frequency ratio (FR) methods has been explored. Ten flood-conditioning factors were determined from the references: the distance from a river, elevation, geology, geomorphology, lithology, land use/land cover, rainfall, slope, soil type, and topographic wetness index (TWI). The 35 flood locations from the flood-inventory map were selected, and the remaining 18 flood locations were used for justifying the outcomes. The flooded areas from the RF model were 28.39%; the rest (71.61%) were non-flooded areas. Also, the flooded areas from the FR method were 8.02%, and the non-flooded areas were 91.98%. The AUC for both methods was a similar value – 83.0%. This result is quite accurate and can be used by policymakers to prevent and manage future flooding in the Sumedang area. These results can also be used as materials for updating existing flood-susceptibility maps.","PeriodicalId":36672,"journal":{"name":"Geomatics and Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135919560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-12DOI: 10.7494/geom.2023.17.6.95
Lesya Yelistratova, Alexander Apostolov, Artur Khodorovskyi, Maksym Tymchyshyn
Air pollution (especially near industrial enterprises that are located mainly in densely populated regions) is one of the most significant problems of modern ecology. The purpose of this research is to study nitrogen dioxide air pollution over Ukraine, which has a negative impact on human health. As part of the research over the territory of Ukraine, the real planar distribution of nitrogen dioxide (NO2) as well as its local emissions (which make the main contribution to this distribution) were revealed using the materials of the remote sensing of the Earth from the AURA satellite. The results were calculated for the multi-year period of 2005 through 2021 and separately for 2022, which characterized the full-scale war in Ukraine and which made it possible to identify priority polluters; namely, industrial enterprises (thermal power plants, heavy metallurgy enterprises, etc.). For 17 years, the average value of NO2 was 160.78 · 102 molecules/mm2; in 2022, its concentration decreased to 126.93·109 molecules/mm2. The war manifested itself due to the shutdown of industrial enterprises, which were (and remain) priority polluters in Ukraine (particularly in large cities).
{"title":"Monitoring Nitrogen Dioxide (NO2) in Environment of Ukraine based on Satellite Data","authors":"Lesya Yelistratova, Alexander Apostolov, Artur Khodorovskyi, Maksym Tymchyshyn","doi":"10.7494/geom.2023.17.6.95","DOIUrl":"https://doi.org/10.7494/geom.2023.17.6.95","url":null,"abstract":"Air pollution (especially near industrial enterprises that are located mainly in densely populated regions) is one of the most significant problems of modern ecology. The purpose of this research is to study nitrogen dioxide air pollution over Ukraine, which has a negative impact on human health. As part of the research over the territory of Ukraine, the real planar distribution of nitrogen dioxide (NO2) as well as its local emissions (which make the main contribution to this distribution) were revealed using the materials of the remote sensing of the Earth from the AURA satellite. The results were calculated for the multi-year period of 2005 through 2021 and separately for 2022, which characterized the full-scale war in Ukraine and which made it possible to identify priority polluters; namely, industrial enterprises (thermal power plants, heavy metallurgy enterprises, etc.). For 17 years, the average value of NO2 was 160.78 · 102 molecules/mm2; in 2022, its concentration decreased to 126.93·109 molecules/mm2. The war manifested itself due to the shutdown of industrial enterprises, which were (and remain) priority polluters in Ukraine (particularly in large cities).","PeriodicalId":36672,"journal":{"name":"Geomatics and Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136058145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-12DOI: 10.7494/geom.2023.17.6.77
Szczepan Budkowski
Digital generalization of spatial data has been the goal of the research in many research centers around the world. This article presents the evolution of cartographic generalization, drawing the reader’s attention to the change of its nature from analog to digital. Despite the passage of time and developing technologies, scientists have unfortunately yet to develop a uniform automatic generalization algorithm. One of the factors that hinder this process is the high complexity and complication of the whole process. The article is an attempt to answer this problem and addresses the issue of digital cartographic generalization by creating a proposal of thresholds and stages of cartographic generalization depending on the ratios of the numbers of points of generalized objects. The publication attempts to examine the possibility of applying an objective criterion of drawing recognition by examining digital generalization algorithms and setting its thresholds. The practical aim of the publication is to present generalization thresholds on the example of Chrobak’s algorithm. The proposal to make the selection of generalization thresholds dependent on the percentage share of points is a solution that is as simple to use as it is to implement. The method of defining intervals based on the three-sigma rule is a solution that guarantees that the obtained results will be characteristic of the probability density function of the normal distribution, which will define individual intervals most objectively.
{"title":"Digital Cartographic Generalization – Study of Its Thresholds and Stages in Example of Cartographic Line","authors":"Szczepan Budkowski","doi":"10.7494/geom.2023.17.6.77","DOIUrl":"https://doi.org/10.7494/geom.2023.17.6.77","url":null,"abstract":"Digital generalization of spatial data has been the goal of the research in many research centers around the world. This article presents the evolution of cartographic generalization, drawing the reader’s attention to the change of its nature from analog to digital. Despite the passage of time and developing technologies, scientists have unfortunately yet to develop a uniform automatic generalization algorithm. One of the factors that hinder this process is the high complexity and complication of the whole process. The article is an attempt to answer this problem and addresses the issue of digital cartographic generalization by creating a proposal of thresholds and stages of cartographic generalization depending on the ratios of the numbers of points of generalized objects. The publication attempts to examine the possibility of applying an objective criterion of drawing recognition by examining digital generalization algorithms and setting its thresholds. The practical aim of the publication is to present generalization thresholds on the example of Chrobak’s algorithm. The proposal to make the selection of generalization thresholds dependent on the percentage share of points is a solution that is as simple to use as it is to implement. The method of defining intervals based on the three-sigma rule is a solution that guarantees that the obtained results will be characteristic of the probability density function of the normal distribution, which will define individual intervals most objectively.","PeriodicalId":36672,"journal":{"name":"Geomatics and Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136058144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-12DOI: 10.7494/geom.2023.17.6.111
Rezvan Kavousi, Seyyed Mehdi Borghei
A two-stage anaerobic-aerobic sequencing reactor system was developed in order to enhance the removal of biological phosphorus in the sequencing of combined reactors. Combining both aerobic and anaerobic designs in one reactor improved the efficiency and reduced the construction and operating costs. The combination of an upflow anaerobic fixed bed (UAFB) and a floating activated sludge aerobic bioreactor was designed with respective Kaldnes packing ratios of 90 and 30% for the anaerobic and aerobic sections. The controlled parameters were pH levels within a neutral range, a temperature of 37°C, mixed liquor suspended solids (MLSS) of 1220 and 1030 mg/L for the aerobic and anaerobic sections, respectively, and an attached growth that was equal of 743 and 1190 mg/L for the aerobic and anaerobic sections, respectively. Tests were conducted for three different initial phosphorus concentrations (12.8, 32.0, and 44.8 mg/L), two different volumes for each section, and four chemical oxygen demands (CODs) (500, 1000, 1200, and 1400 mg/L). The results demonstrated that, generally, the phosphorus removal in the anaerobic section fell significantly by increasing the inlet COD, and the maximum removal occurred at COD = 500 mg/L. More than 90% of the phosphorus was removed in the aerobic section at COD = 500 mg/L. In other words, the best performance of the reactor was when the ratio of the COD : N : P = 100 : 5 : 2, composition of phosphorus in industrial wastewater.
{"title":"Application of Anaerobic-Aerobic Combined Bioreactor in Phosphorus Removal","authors":"Rezvan Kavousi, Seyyed Mehdi Borghei","doi":"10.7494/geom.2023.17.6.111","DOIUrl":"https://doi.org/10.7494/geom.2023.17.6.111","url":null,"abstract":"A two-stage anaerobic-aerobic sequencing reactor system was developed in order to enhance the removal of biological phosphorus in the sequencing of combined reactors. Combining both aerobic and anaerobic designs in one reactor improved the efficiency and reduced the construction and operating costs. The combination of an upflow anaerobic fixed bed (UAFB) and a floating activated sludge aerobic bioreactor was designed with respective Kaldnes packing ratios of 90 and 30% for the anaerobic and aerobic sections. The controlled parameters were pH levels within a neutral range, a temperature of 37°C, mixed liquor suspended solids (MLSS) of 1220 and 1030 mg/L for the aerobic and anaerobic sections, respectively, and an attached growth that was equal of 743 and 1190 mg/L for the aerobic and anaerobic sections, respectively. Tests were conducted for three different initial phosphorus concentrations (12.8, 32.0, and 44.8 mg/L), two different volumes for each section, and four chemical oxygen demands (CODs) (500, 1000, 1200, and 1400 mg/L). The results demonstrated that, generally, the phosphorus removal in the anaerobic section fell significantly by increasing the inlet COD, and the maximum removal occurred at COD = 500 mg/L. More than 90% of the phosphorus was removed in the aerobic section at COD = 500 mg/L. In other words, the best performance of the reactor was when the ratio of the COD : N : P = 100 : 5 : 2, composition of phosphorus in industrial wastewater.","PeriodicalId":36672,"journal":{"name":"Geomatics and Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136058146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-22DOI: 10.7494/geom.2023.17.6.5
Gitisree Biswas, Tusar Kanti Roy
Walkability entails measuring the degree of walking activity, a non-motorized mode of active transportation crucial in fast-developing urban settings and combating sedentary lifestyles. While there has been extensive objective research focusing on factors related to the physical environment that influence walkability, there has been a comparatively limited exploration into objectively evaluating a pedestrian’s visual perception. This study in Khulna, Bangladesh, aimed to develop a novel method for objectively measuring walkability based on pedestrian-level visual perception using machine learning. In this research, ResNet, a computer vision model, analyzed 127 panoramic Google Street View images taken at 200-meter intervals from seven major roads. The model, trained with the “deeplabv3plusResnet18CamVid” algorithm, quantified five selected visual features. The results, including walkability rankings, correlation analysis, and spatial mapping, highlighted that greenery and visual enclosures significantly influenced the walkability index. However, the impact of other visual features was less distinctive due to an overall poor streetscape condition. This study bridged the gap between human perception and scientific intelligence, allowing for the evaluation of previously “unmeasurable” streetscape designs. It provides valuable insights for more human-centered planning and transportation strategies, addressing the challenges of modern urbanization and sedentary behavior.
{"title":"Measuring Objective Walkability from Pedestrian-Level Visual Perception Using Machine Learning and GSV in Khulna, Bangladesh","authors":"Gitisree Biswas, Tusar Kanti Roy","doi":"10.7494/geom.2023.17.6.5","DOIUrl":"https://doi.org/10.7494/geom.2023.17.6.5","url":null,"abstract":"Walkability entails measuring the degree of walking activity, a non-motorized mode of active transportation crucial in fast-developing urban settings and combating sedentary lifestyles. While there has been extensive objective research focusing on factors related to the physical environment that influence walkability, there has been a comparatively limited exploration into objectively evaluating a pedestrian’s visual perception. This study in Khulna, Bangladesh, aimed to develop a novel method for objectively measuring walkability based on pedestrian-level visual perception using machine learning. In this research, ResNet, a computer vision model, analyzed 127 panoramic Google Street View images taken at 200-meter intervals from seven major roads. The model, trained with the “deeplabv3plusResnet18CamVid” algorithm, quantified five selected visual features. The results, including walkability rankings, correlation analysis, and spatial mapping, highlighted that greenery and visual enclosures significantly influenced the walkability index. However, the impact of other visual features was less distinctive due to an overall poor streetscape condition. This study bridged the gap between human perception and scientific intelligence, allowing for the evaluation of previously “unmeasurable” streetscape designs. It provides valuable insights for more human-centered planning and transportation strategies, addressing the challenges of modern urbanization and sedentary behavior.","PeriodicalId":36672,"journal":{"name":"Geomatics and Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136100062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.7494/geom.2023.17.5.145
M. Hammad, Tarek A. Mahmoud, A. Amein, Tarek S. Ghoniemy
Due to growing demand for ground-truth in deep learning-based remote sensing satellite image fusion, numerous approaches have been presented. Of these approaches, Wald’s protocol is the most commonly used. In this paper, a new workflow is proposed consisting of two main parts. The first part targets obtaining the ground-truth images using the results of a pre-designed and well-tested hybrid traditional fusion method. This method combines the Gram–Schmidt and curvelet transform techniques to generate accurate and reliable fusion results. The second part focuses on the training of a proposed deep learning model using rich and informative data provided by the first stage to improve the fusion performance. The demonstrated deep learning model relies on a series of residual dense blocks to enhance network depth and facilitate the effective feature learning process. These blocks are designed to capture both low-level and high-level information, enabling the model to extract intricate details and meaningful features from the input data. The performance evaluation of the proposed model is carried out using seven metrics such as peak-signal-to-noise-ratio and quality without reference. The experimental results demonstrate that the proposed approach outperforms state-of-the-art methods in terms of image quality. It also exhibits the robustness and powerful nature of the proposed approach which has the potential to be applied to many remote sensing applications in agriculture, environmental monitoring, and change detection.
{"title":"Satellite Image Fusion Using a Hybrid Traditional and Deep Learning Method","authors":"M. Hammad, Tarek A. Mahmoud, A. Amein, Tarek S. Ghoniemy","doi":"10.7494/geom.2023.17.5.145","DOIUrl":"https://doi.org/10.7494/geom.2023.17.5.145","url":null,"abstract":"Due to growing demand for ground-truth in deep learning-based remote sensing satellite image fusion, numerous approaches have been presented. Of these approaches, Wald’s protocol is the most commonly used. In this paper, a new workflow is proposed consisting of two main parts. The first part targets obtaining the ground-truth images using the results of a pre-designed and well-tested hybrid traditional fusion method. This method combines the Gram–Schmidt and curvelet transform techniques to generate accurate and reliable fusion results. The second part focuses on the training of a proposed deep learning model using rich and informative data provided by the first stage to improve the fusion performance. The demonstrated deep learning model relies on a series of residual dense blocks to enhance network depth and facilitate the effective feature learning process. These blocks are designed to capture both low-level and high-level information, enabling the model to extract intricate details and meaningful features from the input data. The performance evaluation of the proposed model is carried out using seven metrics such as peak-signal-to-noise-ratio and quality without reference. The experimental results demonstrate that the proposed approach outperforms state-of-the-art methods in terms of image quality. It also exhibits the robustness and powerful nature of the proposed approach which has the potential to be applied to many remote sensing applications in agriculture, environmental monitoring, and change detection.","PeriodicalId":36672,"journal":{"name":"Geomatics and Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42980009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.7494/geom.2023.17.5.107
Noura Zoraa, Mohammed Raji, Hassan El Hadi, S. Maimouni, Hicham Si Mhamdi, A. Reddad, G. Zahour, Achraf Ait-Yazza
The Zaer granitic massif is one of the most important Variscan granitoids in the Central Zone of the Western Moroccan Meseta. It is characterized by a deformation which is manifested by a network of fractures of different scales. Thanks to the technology currently available, many geological studies rely heavily on the mapping of geological lineaments, especially in structural geology. This has become more reliable with access to earth observation data using optical and radar sensors as well as the various remote sensing techniques. Therefore, the objective of this work is to determine the potential of Landsat 8, ASTER, Sentinel 2 and radar Sentinel 1 datasets using the automatic method to extract lineaments. Furthermore, this work focuses on quantitative lineament analysis to determine lineament trends and subsequently compare them with global and regional tectonic movement trends. The lineaments obtained through different satellite images were validated by including the shaded relief maps, the slope map, the correlation with the pre-existing faults in the geological maps as well as the field investigation. Comparison of these results indicates that Sentinel 1 imagery provides a better correlation between automated extraction lineaments and major fault zones. Thus, Sentinel 1 data is more effective in mapping geological lineaments. The final lineament map obtained from the VH and VV polarizations shows two major fault systems, mainly oriented NE-SW and NW-SE to NNW-SSE.
{"title":"Mapping and Assessment of Geological Lineaments with the Contribution of Earth Observation Data: A Case Study of the Zaer Granite Massif, Western Moroccan Meseta","authors":"Noura Zoraa, Mohammed Raji, Hassan El Hadi, S. Maimouni, Hicham Si Mhamdi, A. Reddad, G. Zahour, Achraf Ait-Yazza","doi":"10.7494/geom.2023.17.5.107","DOIUrl":"https://doi.org/10.7494/geom.2023.17.5.107","url":null,"abstract":"The Zaer granitic massif is one of the most important Variscan granitoids in the Central Zone of the Western Moroccan Meseta. It is characterized by a deformation which is manifested by a network of fractures of different scales. Thanks to the technology currently available, many geological studies rely heavily on the mapping of geological lineaments, especially in structural geology. This has become more reliable with access to earth observation data using optical and radar sensors as well as the various remote sensing techniques. Therefore, the objective of this work is to determine the potential of Landsat 8, ASTER, Sentinel 2 and radar Sentinel 1 datasets using the automatic method to extract lineaments. Furthermore, this work focuses on quantitative lineament analysis to determine lineament trends and subsequently compare them with global and regional tectonic movement trends. The lineaments obtained through different satellite images were validated by including the shaded relief maps, the slope map, the correlation with the pre-existing faults in the geological maps as well as the field investigation. Comparison of these results indicates that Sentinel 1 imagery provides a better correlation between automated extraction lineaments and major fault zones. Thus, Sentinel 1 data is more effective in mapping geological lineaments. The final lineament map obtained from the VH and VV polarizations shows two major fault systems, mainly oriented NE-SW and NW-SE to NNW-SSE.","PeriodicalId":36672,"journal":{"name":"Geomatics and Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44172866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-29DOI: 10.7494/geom.2023.17.5.87
M. Al-Bakri, David Fairbairn
This paper addresses the nature of Spatial Data Infrastructure (SDI), considered as one of the most important concepts to ensure effective functioning in a modern society. It comprises a set of continually developing methods and procedures providing the geospatial base supporting a country’s governmental, environmental, economic, and social activities. In general, the SDI framework consists of the integration of various elements including standards, policies, networks, data, and end users and application areas. The transformation of previously paper-based map data into a digital format, the emergence of GIS, and the Internet and a host of online applications (e.g., environmental impact analysis, navigation, applications of VGI data, governmental efficiency drives) have led to huge leaps forward in SDI development. However, SDI progress can be held back by numerous challenges, both technical and non-technical. The paper outlines these challenges from the perspective of the country of Iraq, where there is an absence of a clear direction towards efficient SDI operation and a lack of knowledge for establishing and managing effective SDI. These challenges could be met by considering and resolving generic issues, identified by the experiences of other nations, by researchers, and by organisations. These issues are investigated and assessed by means of a questionnaire survey and interviews, directed towards important participants in the field of SDI development in the country. The results present the SDI issues in order of relevance to assist developers and users in solving potential SDI and data integration problems within Iraq.
{"title":"Challenges and Issues in Spatial Data Infrastructure (SDI) Development in Iraq","authors":"M. Al-Bakri, David Fairbairn","doi":"10.7494/geom.2023.17.5.87","DOIUrl":"https://doi.org/10.7494/geom.2023.17.5.87","url":null,"abstract":"This paper addresses the nature of Spatial Data Infrastructure (SDI), considered as one of the most important concepts to ensure effective functioning in a modern society. It comprises a set of continually developing methods and procedures providing the geospatial base supporting a country’s governmental, environmental, economic, and social activities. In general, the SDI framework consists of the integration of various elements including standards, policies, networks, data, and end users and application areas. The transformation of previously paper-based map data into a digital format, the emergence of GIS, and the Internet and a host of online applications (e.g., environmental impact analysis, navigation, applications of VGI data, governmental efficiency drives) have led to huge leaps forward in SDI development. However, SDI progress can be held back by numerous challenges, both technical and non-technical. The paper outlines these challenges from the perspective of the country of Iraq, where there is an absence of a clear direction towards efficient SDI operation and a lack of knowledge for establishing and managing effective SDI. These challenges could be met by considering and resolving generic issues, identified by the experiences of other nations, by researchers, and by organisations. These issues are investigated and assessed by means of a questionnaire survey and interviews, directed towards important participants in the field of SDI development in the country. The results present the SDI issues in order of relevance to assist developers and users in solving potential SDI and data integration problems within Iraq.","PeriodicalId":36672,"journal":{"name":"Geomatics and Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44693208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-28DOI: 10.7494/geom.2023.17.5.45
S. Sahakyan, T. Yedoyan, R. Sukiasyan, A. Baghdagyulyan, Satenik Bakunts
The purpose of the study is to cost-effective and environmentally friendly procedures for the condensation of waste generated from brandy production (distillery dreg) for agricultural use. The experiments were carried out between 2020–2022 under laboratory conditions. It has been shown that in order to reduce the significant cost of distillery dreg transportation, it is advisable to carry out its condensation by means of distillation. Laboratory studies and feasibility calculations revealed that distillery dreg may be condensed by up to five times, allowing for a corresponding reduction in transportation costs, while maintaining its quality indicators. It is suggested that the brandy alcohol distillation process be altered in a way that will allow for the production of condensed distillery dreg substance, with minimal additional energy expenditure and capital investment. The suggested method makes it possible to not only improve the ameliorative conditions of agricultural land, but also to address significant environmental protection issues.
{"title":"Basic Issues of Brandy Industry Waste Conservation","authors":"S. Sahakyan, T. Yedoyan, R. Sukiasyan, A. Baghdagyulyan, Satenik Bakunts","doi":"10.7494/geom.2023.17.5.45","DOIUrl":"https://doi.org/10.7494/geom.2023.17.5.45","url":null,"abstract":"The purpose of the study is to cost-effective and environmentally friendly procedures for the condensation of waste generated from brandy production (distillery dreg) for agricultural use. The experiments were carried out between 2020–2022 under laboratory conditions. It has been shown that in order to reduce the significant cost of distillery dreg transportation, it is advisable to carry out its condensation by means of distillation. Laboratory studies and feasibility calculations revealed that distillery dreg may be condensed by up to five times, allowing for a corresponding reduction in transportation costs, while maintaining its quality indicators. It is suggested that the brandy alcohol distillation process be altered in a way that will allow for the production of condensed distillery dreg substance, with minimal additional energy expenditure and capital investment. The suggested method makes it possible to not only improve the ameliorative conditions of agricultural land, but also to address significant environmental protection issues.","PeriodicalId":36672,"journal":{"name":"Geomatics and Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42558725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}