This study focuses on retrieving a time-dependent source term in the heat equation governed by two distinct nonlocal boundary conditions. The inverse problem is structured with an interior energy over-specification constraint. The proposed computational framework combines the partition of unity approach for spatial discretization with the finite difference scheme for temporal advancement. Through energy analysis, the semi-discrete time-stepping formulation is proven to be unconditionally stable and convergent at a rate of . Despite being linear and uniquely solvable, the problem is inherently ill-posed, as slight disturbances in input data can induce significant errors in the reconstructed solution. To counteract this instability, Tikhonov regularization is implemented, yielding a stable approximation even under noisy data conditions. Moreover, a novel parameter selection strategy for the regularization is introduced, which surpasses standard methods by delivering substantially improved results. Numerical simulations corroborate the scheme’s robustness, demonstrating its accuracy with noise-free inputs and its resilience when handling contaminated measurements.
扫码关注我们
求助内容:
应助结果提醒方式:
