Pub Date : 2024-07-13DOI: 10.1016/j.rinam.2024.100475
Zhaojun Zong , Miaomiao Gao , Feng Hu
Motivated by some interesting problems in mathematical economics, quantum mechanics and finance, non-additive probabilities have been used to describe the phenomena which are generally non-additive. In this paper, we further study the law of the iterated logarithm (LIL) for non-additive probabilities, based on existing results. Under the framework of sublinear expectation initiated by Peng, we give two convergence results of under some reasonable assumptions, where is a sequence of random variables and is a positive nondecreasing function. From these, a general LIL for non-additive probabilities is proved for negatively dependent and non-identically distributed random variables. It turns out that our result is a natural extension of the Kolmogorov LIL and the Hartman–Wintner LIL. Theorem 1 and Theorem 2 in this paper can be seen an extension of Theorem 1 in Chen and Hu (2014).
受数理经济学、量子力学和金融学中一些有趣问题的启发,非相加概率被用来描述一般非相加的现象。本文在已有成果的基础上,进一步研究了非加概率的迭代对数定律(LIL)。在彭晓峰提出的亚线性期望框架下,我们给出了 Vn≔∑i=1nXinj(n)在一些合理假设下的两个收敛结果,其中 {Xi}i=1∞ 是一个随机变量序列,j 是一个正的非递减函数。由此,对于负相关和非同分布的随机变量,证明了非相加概率的一般 LIL。事实证明,我们的结果是柯尔莫哥洛夫 LIL 和哈特曼-温特纳 LIL 的自然扩展。本文的定理 1 和定理 2 可以看作是 Chen 和 Hu(2014)中定理 1 的扩展。
{"title":"A general law of the iterated logarithm for non-additive probabilities","authors":"Zhaojun Zong , Miaomiao Gao , Feng Hu","doi":"10.1016/j.rinam.2024.100475","DOIUrl":"https://doi.org/10.1016/j.rinam.2024.100475","url":null,"abstract":"<div><p>Motivated by some interesting problems in mathematical economics, quantum mechanics and finance, non-additive probabilities have been used to describe the phenomena which are generally non-additive. In this paper, we further study the law of the iterated logarithm (LIL) for non-additive probabilities, based on existing results. Under the framework of sublinear expectation initiated by Peng, we give two convergence results of <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>≔</mo><mfrac><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mrow><msqrt><mrow><mi>n</mi></mrow></msqrt><mi>ϕ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></mfrac></mrow></math></span> under some reasonable assumptions, where <span><math><msubsup><mrow><mrow><mo>{</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> is a sequence of random variables and <span><math><mi>ϕ</mi></math></span> is a positive nondecreasing function. From these, a general LIL for non-additive probabilities is proved for negatively dependent and non-identically distributed random variables. It turns out that our result is a natural extension of the Kolmogorov LIL and the Hartman–Wintner LIL. Theorem 1 and Theorem 2 in this paper can be seen an extension of Theorem 1 in Chen and Hu (2014).</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100475"},"PeriodicalIF":1.4,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000451/pdfft?md5=fc6eb3a1286d72ec3562e2dc6bd8f382&pid=1-s2.0-S2590037424000451-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141607665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-05DOI: 10.1016/j.rinam.2024.100472
Yaşar Bolat , Murat Gevgeşoğlu , George E. Chatzarakis
In this paper, we give new criteria on the oscillation of the fourth-order Emden–Fowler type delay difference equation with oscillating coefficients of the form where and . For this we use the Riccati transformation method and the comparison method. Also we give some examples to illustrate our results.
{"title":"Oscillatory properties for Emden–Fowler type difference equations with oscillating coefficients","authors":"Yaşar Bolat , Murat Gevgeşoğlu , George E. Chatzarakis","doi":"10.1016/j.rinam.2024.100472","DOIUrl":"https://doi.org/10.1016/j.rinam.2024.100472","url":null,"abstract":"<div><p>In this paper, we give new criteria on the oscillation of the fourth-order Emden–Fowler type delay difference equation with oscillating coefficients of the form <span><span><span><math><mrow><mi>Δ</mi><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>+</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>n</mi></mrow></msub><msubsup><mrow><mi>y</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>τ</mi></mrow><mrow><mi>β</mi></mrow></msubsup><mo>=</mo><mn>0</mn><mtext>,</mtext><mi>n</mi><mo>≥</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mtext>,</mtext></mrow></math></span></span></span>where <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mfenced><mrow><msup><mrow><mi>Δ</mi></mrow><mrow><mn>3</mn></mrow></msup><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></mfenced></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span> and <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>σ</mi></mrow></msub></mrow></math></span>. For this we use the Riccati transformation method and the comparison method. Also we give some examples to illustrate our results.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100472"},"PeriodicalIF":1.4,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000426/pdfft?md5=a75c766551a918235e26d7441f4c4d69&pid=1-s2.0-S2590037424000426-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141542779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1016/j.rinam.2024.100473
Luxu Zhou, Fugeng Zeng, Lei Huang
<div><p>This paper is concerned with a three-component quasilinear chemotaxis system with nonlinear diffusion and singular sensitivity for alopecia areata <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mfenced><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi></mrow></mfenced><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∇</mo><mfenced><mrow><mfrac><mrow><mi>u</mi></mrow><mrow><mi>w</mi></mrow></mfrac><mo>∇</mo><mi>w</mi></mrow></mfenced><mo>+</mo><mi>w</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mfenced><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∇</mo><mi>v</mi></mrow></mfenced><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∇</mo><mfenced><mrow><mfrac><mrow><mi>v</mi></mrow><mrow><mi>w</mi></mrow></mfrac><mo>∇</mo><mi>w</mi></mrow></mfenced><mo>+</mo><mi>w</mi><mo>+</mo><mi>r</mi><mi>u</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>v</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>+</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo>−</mo><mi>w</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mi>∂</mi><mi>u</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>v</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>w</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><mi>∂</mi><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><
{"title":"Boundedness and asymptotic behavior in a quasilinear chemotaxis system with nonlinear diffusion and singular sensitivity for alopecia areata","authors":"Luxu Zhou, Fugeng Zeng, Lei Huang","doi":"10.1016/j.rinam.2024.100473","DOIUrl":"https://doi.org/10.1016/j.rinam.2024.100473","url":null,"abstract":"<div><p>This paper is concerned with a three-component quasilinear chemotaxis system with nonlinear diffusion and singular sensitivity for alopecia areata <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mfenced><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi></mrow></mfenced><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∇</mo><mfenced><mrow><mfrac><mrow><mi>u</mi></mrow><mrow><mi>w</mi></mrow></mfrac><mo>∇</mo><mi>w</mi></mrow></mfenced><mo>+</mo><mi>w</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mfenced><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∇</mo><mi>v</mi></mrow></mfenced><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∇</mo><mfenced><mrow><mfrac><mrow><mi>v</mi></mrow><mrow><mi>w</mi></mrow></mfrac><mo>∇</mo><mi>w</mi></mrow></mfenced><mo>+</mo><mi>w</mi><mo>+</mo><mi>r</mi><mi>u</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>v</mi></mrow><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>+</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo>−</mo><mi>w</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mi>∂</mi><mi>u</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>v</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>∂</mi><mi>w</mi></mrow><mrow><mi>∂</mi><mi>ν</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><mi>∂</mi><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100473"},"PeriodicalIF":1.4,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000438/pdfft?md5=1c7b136d913734673823e8437fc9fa7f&pid=1-s2.0-S2590037424000438-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141542698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1016/j.rinam.2024.100468
Hermen Jan Hupkes , Mia Jukić
In this work we study travelling wave solutions to bistable reaction–diffusion equations on bi-infinite -ary trees in the continuum regime where the diffusion parameter is large. Adapting the spectral convergence method developed by Bates and his coworkers, we find an asymptotic prediction for the speed of travelling front solutions. In addition, we prove that the associated profiles converge to the solutions of a suitable limiting reaction–diffusion PDE. Finally, for the standard cubic nonlinearity we provide explicit formulas to bound the thin region in parameter space where the propagation direction undergoes a reversal.
{"title":"Propagation reversal on trees in the large diffusion regime","authors":"Hermen Jan Hupkes , Mia Jukić","doi":"10.1016/j.rinam.2024.100468","DOIUrl":"https://doi.org/10.1016/j.rinam.2024.100468","url":null,"abstract":"<div><p>In this work we study travelling wave solutions to bistable reaction–diffusion equations on bi-infinite <span><math><mi>k</mi></math></span>-ary trees in the continuum regime where the diffusion parameter is large. Adapting the spectral convergence method developed by Bates and his coworkers, we find an asymptotic prediction for the speed of travelling front solutions. In addition, we prove that the associated profiles converge to the solutions of a suitable limiting reaction–diffusion PDE. Finally, for the standard cubic nonlinearity we provide explicit formulas to bound the thin region in parameter space where the propagation direction undergoes a reversal.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100468"},"PeriodicalIF":1.4,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000384/pdfft?md5=0ccbfff14c645a3ae81342d2cc1abe7a&pid=1-s2.0-S2590037424000384-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141478720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-24DOI: 10.1016/j.rinam.2024.100469
A. Alonso Rodríguez , J. Camaño , E. De Los Santos , F. Rapetti
A method classically used in the lower polynomial degree for the construction of a finite element basis of the space of divergence-free functions is here extended to any polynomial degree for a bounded domain without topological restrictions. The method uses graphs associated with two differential operators: the gradient and the divergence, and selects the basis using a spanning tree of the first graph. It can be applied for the two main families of degrees of freedom, weights and moments, used to express finite element differential forms.
{"title":"Basis for high order divergence-free finite element spaces","authors":"A. Alonso Rodríguez , J. Camaño , E. De Los Santos , F. Rapetti","doi":"10.1016/j.rinam.2024.100469","DOIUrl":"https://doi.org/10.1016/j.rinam.2024.100469","url":null,"abstract":"<div><p>A method classically used in the lower polynomial degree for the construction of a finite element basis of the space of divergence-free functions is here extended to any polynomial degree for a bounded domain without topological restrictions. The method uses graphs associated with two differential operators: the gradient and the divergence, and selects the basis using a spanning tree of the first graph. It can be applied for the two main families of degrees of freedom, weights and moments, used to express finite element differential forms.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100469"},"PeriodicalIF":1.4,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000396/pdfft?md5=cad7794725bf9528df20dde909864b17&pid=1-s2.0-S2590037424000396-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141478718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.1016/j.rinam.2024.100466
M.H. Heydari , M. Razzaghi
In this work, the -Caputo fractional derivative, as a generalization of the classical Caputo fractional derivative in which the fractional derivative of a sufficiently differentiable function is defined with respect to another strictly increasing function, , is utilized to define the time fractional fourth-order 2D diffusion-wave equation. A Chebyshev–Gauss–Lobatto scheme is developed to solve this equation. In this way, a new operational matrix for the -Riemann–Liouville fractional integration of the Chebyshev polynomials is derived. The solution of the equation is obtained by determining the solution of the algebraic system extracted from approximation the -Caputo fractional derivative term via a finite discrete Chebyshev series and employing the expressed operational matrix. The validity of the established approach is examined by solving two examples.
{"title":"A discrete spectral method for time fractional fourth-order 2D diffusion-wave equation involving ψ-Caputo fractional derivative","authors":"M.H. Heydari , M. Razzaghi","doi":"10.1016/j.rinam.2024.100466","DOIUrl":"https://doi.org/10.1016/j.rinam.2024.100466","url":null,"abstract":"<div><p>In this work, the <span><math><mi>ψ</mi></math></span>-Caputo fractional derivative, as a generalization of the classical Caputo fractional derivative in which the fractional derivative of a sufficiently differentiable function is defined with respect to another strictly increasing function, <span><math><mi>ψ</mi></math></span>, is utilized to define the time fractional fourth-order 2D diffusion-wave equation. A Chebyshev–Gauss–Lobatto scheme is developed to solve this equation. In this way, a new operational matrix for the <span><math><mi>ψ</mi></math></span>-Riemann–Liouville fractional integration of the Chebyshev polynomials is derived. The solution of the equation is obtained by determining the solution of the algebraic system extracted from approximation the <span><math><mi>ψ</mi></math></span>-Caputo fractional derivative term via a finite discrete Chebyshev series and employing the expressed operational matrix. The validity of the established approach is examined by solving two examples.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100466"},"PeriodicalIF":2.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000360/pdfft?md5=930b6c888cf9b0352ad4d3a9e21fe946&pid=1-s2.0-S2590037424000360-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141422991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-14DOI: 10.1016/j.rinam.2024.100467
Vitalii Stelmashchuk, Heorhiy Shynkarenko
Based on the existing initial boundary value and variational problems of Lord–Shulman thermopiezoelectricity a transient analysis of the behavior of piezoelectric materials is performed numerically. For space discretization of the variational problem the finite element method is used and for time discretization a hybrid time integration scheme is constructed on the basis of Newmark scheme for hyperbolic equation and generalized trapezoidal rule for parabolic equations. The unconditional stability of the developed time integration scheme is proved for some specific values of the scheme parameters by making use of energy balance law for the obtained time-discretized variational problem. Finally, the applicability of the constructed numerical scheme is demonstrated by the results of the numerical experiment which are compared with the ones available in literature.
{"title":"Stability of hybrid time integration scheme for Lord–Shulman thermopiezoelectricity","authors":"Vitalii Stelmashchuk, Heorhiy Shynkarenko","doi":"10.1016/j.rinam.2024.100467","DOIUrl":"https://doi.org/10.1016/j.rinam.2024.100467","url":null,"abstract":"<div><p>Based on the existing initial boundary value and variational problems of Lord–Shulman thermopiezoelectricity a transient analysis of the behavior of piezoelectric materials is performed numerically. For space discretization of the variational problem the finite element method is used and for time discretization a hybrid time integration scheme is constructed on the basis of Newmark scheme for hyperbolic equation and generalized trapezoidal rule for parabolic equations. The unconditional stability of the developed time integration scheme is proved for some specific values of the scheme parameters by making use of energy balance law for the obtained time-discretized variational problem. Finally, the applicability of the constructed numerical scheme is demonstrated by the results of the numerical experiment which are compared with the ones available in literature.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100467"},"PeriodicalIF":2.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000372/pdfft?md5=368885c86fb8d11597e64117f2a0148c&pid=1-s2.0-S2590037424000372-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141324865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1016/j.rinam.2024.100465
Daniel Pomerico, Aihua Wood, Philip Cho
This paper addresses the problem of characterizing and localizing objects via through-the-wall radar imaging. We consider two separate problems. First, we assume a single object is located in a room and we use a convolutional neural network (CNN) to classify the shape of the object. Second, we assume multiple objects are located in a room and use a U-net CNN to determine the location of the object via pixel-by-pixel classification. For both problems, we use numerical methods to simulate the electromagnetic field assuming known room parameters and object location. The simulated data is used to train and evaluate both the CNN and U-net CNN. In the case of single objects, we achieve 90% accuracy in classifying the shape of the object. In the case of multiple objects, we show that the U-Net outputs an image segmentation heat map of the domain space, enabling visual analysis to identify the characteristics of multiple unknown objects. Given sufficient data, the U-net heat map highlights object pixels which provide the location and shape of the unknown objects, with precision and recall accuracy exceeding 80%.
{"title":"Through-the-wall object reconstruction via reinforcement learning","authors":"Daniel Pomerico, Aihua Wood, Philip Cho","doi":"10.1016/j.rinam.2024.100465","DOIUrl":"https://doi.org/10.1016/j.rinam.2024.100465","url":null,"abstract":"<div><p>This paper addresses the problem of characterizing and localizing objects via through-the-wall radar imaging. We consider two separate problems. First, we assume a single object is located in a room and we use a convolutional neural network (CNN) to classify the shape of the object. Second, we assume multiple objects are located in a room and use a U-net CNN to determine the location of the object via pixel-by-pixel classification. For both problems, we use numerical methods to simulate the electromagnetic field assuming known room parameters and object location. The simulated data is used to train and evaluate both the CNN and U-net CNN. In the case of single objects, we achieve 90% accuracy in classifying the shape of the object. In the case of multiple objects, we show that the U-Net outputs an image segmentation heat map of the domain space, enabling visual analysis to identify the characteristics of multiple unknown objects. Given sufficient data, the U-net heat map highlights object pixels which provide the location and shape of the unknown objects, with precision and recall accuracy exceeding 80%.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100465"},"PeriodicalIF":2.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000359/pdfft?md5=beba3ffaba7bad0af8e4333d2be60a87&pid=1-s2.0-S2590037424000359-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141324864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.rinam.2024.100461
Matthias Wagener , Andriette Bekker , Mohammad Arashi , Antonio Punzo
In this paper, we introduce the flexible interpretable gamma (FIG) distribution, with origins in Weibulisation, power weighting, and a stochastic representation. The FIG parameters have been verified graphically, mathematically, and through simulation as having separable roles in influencing the left tail, body, and right tail shape. The generalised gamma (GG) distribution has become a standard model for positive data in statistics due to its interpretable parameters and tractable equations. Although there are many generalised forms of the GG that can provide a better fit to data, none of them extend the GG so that the parameters are interpretable. We conduct simulation studies on the maximum likelihood estimates and respective sub-models of the FIG. Finally, we assess the flexibility of the FIG relative to existing models by applying the FIG model to hand grip strength and insurance loss data.
{"title":"Uncovering a generalised gamma distribution: From shape to interpretation","authors":"Matthias Wagener , Andriette Bekker , Mohammad Arashi , Antonio Punzo","doi":"10.1016/j.rinam.2024.100461","DOIUrl":"https://doi.org/10.1016/j.rinam.2024.100461","url":null,"abstract":"<div><p>In this paper, we introduce the flexible interpretable gamma (FIG) distribution, with origins in Weibulisation, power weighting, and a stochastic representation. The FIG parameters have been verified graphically, mathematically, and through simulation as having separable roles in influencing the left tail, body, and right tail shape. The generalised gamma (GG) distribution has become a standard model for positive data in statistics due to its interpretable parameters and tractable equations. Although there are many generalised forms of the GG that can provide a better fit to data, none of them extend the GG so that the parameters are interpretable. We conduct simulation studies on the maximum likelihood estimates and respective sub-models of the FIG. Finally, we assess the flexibility of the FIG relative to existing models by applying the FIG model to hand grip strength and insurance loss data.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100461"},"PeriodicalIF":2.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000311/pdfft?md5=a96e2eeb85564d5103de1b33cf615df5&pid=1-s2.0-S2590037424000311-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141067578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.rinam.2024.100463
Sofia Eriksson, Jonas Nordqvist
Square matrices of the form are considered. An explicit expression for the inverse is given, provided and are invertible with . The inverse is presented in two ways, one that uses singular value decomposition and another that depends directly on the components , , and . Additionally, a matrix determinant lemma for singular matrices follows from the derivations.
研究了形式为 A˜=A+eDf∗ 的正方形矩阵。只要 A˜ 和 D 是可逆的,秩(A˜)=秩(A)+秩(eDf∗),就能给出逆的明确表达式。求逆的方法有两种,一种是使用奇异值分解,另一种是直接取决于 A、e、f 和 D 的分量。
{"title":"Inverting the sum of two singular matrices","authors":"Sofia Eriksson, Jonas Nordqvist","doi":"10.1016/j.rinam.2024.100463","DOIUrl":"https://doi.org/10.1016/j.rinam.2024.100463","url":null,"abstract":"<div><p>Square matrices of the form <span><math><mrow><mover><mrow><mi>A</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>=</mo><mi>A</mi><mo>+</mo><mi>e</mi><mi>D</mi><msup><mrow><mi>f</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> are considered. An explicit expression for the inverse is given, provided <span><math><mover><mrow><mi>A</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> and <span><math><mi>D</mi></math></span> are invertible with <span><math><mrow><mo>rank</mo><mrow><mo>(</mo><mover><mrow><mi>A</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></mrow><mo>=</mo><mo>rank</mo><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>+</mo><mo>rank</mo><mrow><mo>(</mo><mi>e</mi><mi>D</mi><msup><mrow><mi>f</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>. The inverse is presented in two ways, one that uses singular value decomposition and another that depends directly on the components <span><math><mi>A</mi></math></span>, <span><math><mi>e</mi></math></span>, <span><math><mi>f</mi></math></span> and <span><math><mi>D</mi></math></span>. Additionally, a matrix determinant lemma for singular matrices follows from the derivations.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100463"},"PeriodicalIF":2.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000335/pdfft?md5=3f70fd7bea0c47b800f36d57f3105d96&pid=1-s2.0-S2590037424000335-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141067579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}