首页 > 最新文献

Journal of Molecular Biology最新文献

英文 中文
Pause Patrol: Negative Elongation Factor's Role in Promoter-Proximal Pausing and Beyond. 暂停巡逻队:负延伸因子在启动子-近端暂停及其他过程中的作用
IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-04 DOI: 10.1016/j.jmb.2024.168779
Annette J Diao, Bonnie G Su, Seychelle M Vos

RNA polymerase (Pol) II is highly regulated to ensure appropriate gene expression. Early transcription elongation is associated with transient pausing of RNA Pol II in the promoter-proximal region. In multicellular organisms, this pausing is stabilized by the association of transcription elongation factors DRB-sensitivity inducing factor (DSIF) and Negative Elongation Factor (NELF). DSIF is a broadly conserved transcription elongation factor whereas NELF is mostly restricted to the metazoan lineage. Mounting evidence suggests that NELF association with RNA Pol II serves as checkpoint for either release into rapid and productive transcription elongation or premature termination at promoter-proximal pause sites. Here we summarize NELF's roles in promoter-proximal pausing, transcription termination, DNA repair, and signaling based on decades of cell biological, biochemical, and structural work and describe areas for future research.

RNA 聚合酶(Pol)II 受到高度调控,以确保适当的基因表达。早期转录延伸与 RNA Pol II 在启动子近端区域的短暂暂停有关。在多细胞生物中,这种暂停是由转录延伸因子 DRB 敏感性诱导因子(DSIF)和负延伸因子(NELF)联合稳定的。DSIF是一种广泛保守的转录伸长因子,而NELF则主要局限于元虫类。越来越多的证据表明,NELF 与 RNA Pol II 的结合是一种检查点,它可以使转录快速、高产地伸长,也可以使转录在启动子近端暂停位点过早终止。在此,我们根据数十年的细胞生物学、生物化学和结构工作总结了 NELF 在启动子近端暂停、转录终止、DNA 修复和信号转导中的作用,并介绍了未来的研究领域。
{"title":"Pause Patrol: Negative Elongation Factor's Role in Promoter-Proximal Pausing and Beyond.","authors":"Annette J Diao, Bonnie G Su, Seychelle M Vos","doi":"10.1016/j.jmb.2024.168779","DOIUrl":"10.1016/j.jmb.2024.168779","url":null,"abstract":"<p><p>RNA polymerase (Pol) II is highly regulated to ensure appropriate gene expression. Early transcription elongation is associated with transient pausing of RNA Pol II in the promoter-proximal region. In multicellular organisms, this pausing is stabilized by the association of transcription elongation factors DRB-sensitivity inducing factor (DSIF) and Negative Elongation Factor (NELF). DSIF is a broadly conserved transcription elongation factor whereas NELF is mostly restricted to the metazoan lineage. Mounting evidence suggests that NELF association with RNA Pol II serves as checkpoint for either release into rapid and productive transcription elongation or premature termination at promoter-proximal pause sites. Here we summarize NELF's roles in promoter-proximal pausing, transcription termination, DNA repair, and signaling based on decades of cell biological, biochemical, and structural work and describe areas for future research.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"168779"},"PeriodicalIF":4.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142144765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RiboVision2: A Web Server for Advanced Visualization of Ribosomal RNAs RiboVision2:核糖体 RNA 高级可视化网络服务器
IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.jmb.2024.168556

RiboVision2 is a web server designed to visualize phylogenetic, structural, and evolutionary properties of ribosomal RNAs simultaneously at the levels of primary, secondary, and three-dimensional structure and in the context of full ribosomal complexes. RiboVision2 instantly computes and displays a broad variety of data; it has no login requirements, is open-source, free for all users, and available at https://ribovision2.chemistry.gatech.edu.

RiboVision2 是一个网络服务器,用于同时在一级、二级和三维结构层面以及在完整核糖体复合物的背景下可视化核糖体 RNA 的系统发育、结构和进化特性。RiboVision2 可即时计算和显示各种数据;它没有登录要求,是开源的,对所有用户免费,可在 https://ribovision2.chemistry.gatech.edu 上获取。
{"title":"RiboVision2: A Web Server for Advanced Visualization of Ribosomal RNAs","authors":"","doi":"10.1016/j.jmb.2024.168556","DOIUrl":"10.1016/j.jmb.2024.168556","url":null,"abstract":"<div><p>RiboVision2 is a web server designed to visualize phylogenetic, structural, and evolutionary properties of ribosomal RNAs simultaneously at the levels of primary, secondary, and three-dimensional structure and in the context of full ribosomal complexes. RiboVision2 instantly computes and displays a broad variety of data; it has no login requirements, is open-source, free for all users, and available at <span><span>https://ribovision2.chemistry.gatech.edu</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"436 17","pages":"Article 168556"},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624001517/pdfft?md5=eaed610c16e004c533de0cd31d3a3792&pid=1-s2.0-S0022283624001517-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140398867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ModFOLD9: A Web Server for Independent Estimates of 3D Protein Model Quality ModFOLD9:独立评估三维蛋白质模型质量的网络服务器
IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.jmb.2024.168531

Accurate models of protein tertiary structures are now available from numerous advanced prediction methods, although the accuracy of each method often varies depending on the specific protein target. Additionally, many models may still contain significant local errors. Therefore, reliable, independent model quality estimates are essential both for identifying errors and selecting the very best models for further biological investigations. ModFOLD9 is a leading independent server for detecting the local errors in models produced by any method, and it can accurately discriminate between high-quality models from multiple alternative approaches. ModFOLD9 incorporates several new scores from deep learning-based approaches, leading to greatly improved prediction accuracy compared with earlier versions of the server. ModFOLD9 is continuously independently benchmarked, and it is shown to be highly competitive with other public servers. ModFOLD9 is freely available at https://www.reading.ac.uk/bioinf/ModFOLD/.

目前,许多先进的预测方法都能提供精确的蛋白质三级结构模型,但每种方法的准确性往往因特定蛋白质目标而异。此外,许多模型可能仍然包含明显的局部误差。因此,可靠、独立的模型质量评估对于识别错误和为进一步的生物学研究选择最佳模型至关重要。ModFOLD9 是一个领先的独立服务器,可用于检测任何方法生成的模型中的局部误差,并能准确区分来自多种替代方法的高质量模型。ModFOLD9 采用了基于深度学习方法的多个新分数,与早期版本的服务器相比,预测准确率大大提高。ModFOLD9 不断接受独立基准测试,结果表明它与其他公共服务器相比具有很强的竞争力。ModFOLD9 可在 https://www.reading.ac.uk/bioinf/ModFOLD/ 免费获取。
{"title":"ModFOLD9: A Web Server for Independent Estimates of 3D Protein Model Quality","authors":"","doi":"10.1016/j.jmb.2024.168531","DOIUrl":"10.1016/j.jmb.2024.168531","url":null,"abstract":"<div><p>Accurate models of protein tertiary structures are now available from numerous advanced prediction methods, although the accuracy of each method often varies depending on the specific protein target. Additionally, many models may still contain significant local errors. Therefore, reliable, independent model quality estimates are essential both for identifying errors and selecting the very best models for further biological investigations. ModFOLD9 is a leading independent server for detecting the local errors in models produced by any method, and it can accurately discriminate between high-quality models from multiple alternative approaches. ModFOLD9 incorporates several new scores from deep learning-based approaches, leading to greatly improved prediction accuracy compared with earlier versions of the server. ModFOLD9 is continuously independently benchmarked, and it is shown to be highly competitive with other public servers. ModFOLD9 is freely available at <span><span>https://www.reading.ac.uk/bioinf/ModFOLD/</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"436 17","pages":"Article 168531"},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624001189/pdfft?md5=9949e23171833ce240958abd18778192&pid=1-s2.0-S0022283624001189-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140152741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IHMCIF: An Extension of the PDBx/mmCIF Data Standard for Integrative Structure Determination Methods IHMCIF:整合结构确定方法的 PDBx/mmCIF 数据标准扩展。
IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.jmb.2024.168546

IHMCIF (github.com/ihmwg/IHMCIF) is a data information framework that supports archiving and disseminating macromolecular structures determined by integrative or hybrid modeling (IHM), and making them Findable, Accessible, Interoperable, and Reusable (FAIR). IHMCIF is an extension of the Protein Data Bank Exchange/macromolecular Crystallographic Information Framework (PDBx/mmCIF) that serves as the framework for the Protein Data Bank (PDB) to archive experimentally determined atomic structures of biological macromolecules and their complexes with one another and small molecule ligands (e.g., enzyme cofactors and drugs). IHMCIF serves as the foundational data standard for the PDB-Dev prototype system, developed for archiving and disseminating integrative structures. It utilizes a flexible data representation to describe integrative structures that span multiple spatiotemporal scales and structural states with definitions for restraints from a variety of experimental methods contributing to integrative structural biology. The IHMCIF extension was created with the benefit of considerable community input and recommendations gathered by the Worldwide Protein Data Bank (wwPDB) Task Force for Integrative or Hybrid Methods (wwpdb.org/task/hybrid). Herein, we describe the development of IHMCIF to support evolving methodologies and ongoing advancements in integrative structural biology. Ultimately, IHMCIF will facilitate the unification of PDB-Dev data and tools with the PDB archive so that integrative structures can be archived and disseminated through PDB.

IHMCIF(github.com/ihmwg/IHMCIF)是一个数据信息框架,支持归档和传播通过整合或混合建模(IHM)确定的大分子结构,并使其具有可查找性、可访问性、可互操作性和可重用性(FAIR)。IHMCIF 是蛋白质数据库交换/大分子晶体学信息框架(PDBx/mmCIF)的扩展,该框架是蛋白质数据库(PDB)的框架,用于归档通过实验确定的生物大分子结构及其相互之间的复合物和小分子配体(如酶辅因子和药物)的原子结构。IHMCIF 是 PDB-Dev 原型系统的基础数据标准,用于归档和传播综合结构。它采用灵活的数据表示方式来描述跨越多个时空尺度和结构状态的整合结构,并定义了各种实验方法对整合结构生物学的限制。全球蛋白质数据库(wwPDB)整合或混合方法工作组(wwpdb.org/task/hybrid)收集了大量的社区意见和建议,IHMCIF扩展就是在这些意见和建议的基础上创建的。在此,我们将介绍 IHMCIF 的发展情况,以支持不断发展的方法和整合结构生物学的持续进步。最终,IHMCIF 将促进 PDB-Dev 数据和工具与 PDB 存档的统一,从而使整合结构可以通过 PDB 存档和传播。
{"title":"IHMCIF: An Extension of the PDBx/mmCIF Data Standard for Integrative Structure Determination Methods","authors":"","doi":"10.1016/j.jmb.2024.168546","DOIUrl":"10.1016/j.jmb.2024.168546","url":null,"abstract":"<div><p>IHMCIF (<span><span>github.com/ihmwg/IHMCIF</span><svg><path></path></svg></span>) is a data information framework that supports archiving and disseminating macromolecular structures determined by integrative or hybrid modeling (IHM), and making them Findable, Accessible, Interoperable, and Reusable (<em>FAIR</em>). IHMCIF is an extension of the Protein Data Bank Exchange/macromolecular Crystallographic Information Framework (PDBx/mmCIF) that serves as the framework for the Protein Data Bank (PDB) to archive experimentally determined atomic structures of biological macromolecules and their complexes with one another and small molecule ligands (e.g., enzyme cofactors and drugs). IHMCIF serves as the foundational data standard for the PDB-Dev prototype system, developed for archiving and disseminating integrative structures. It utilizes a flexible data representation to describe integrative structures that span multiple spatiotemporal scales and structural states with definitions for restraints from a variety of experimental methods contributing to integrative structural biology. The IHMCIF extension was created with the benefit of considerable community input and recommendations gathered by the Worldwide Protein Data Bank (wwPDB) Task Force for Integrative or Hybrid Methods (<span><span>wwpdb.org/task/hybrid</span><svg><path></path></svg></span>). Herein, we describe the development of IHMCIF to support evolving methodologies and ongoing advancements in integrative structural biology. Ultimately, IHMCIF will facilitate the unification of PDB-Dev data and tools with the PDB archive so that integrative structures can be archived and disseminated through PDB.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"436 17","pages":"Article 168546"},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624001414/pdfft?md5=7a3e7aade30878dc264a3e57ea5efe5f&pid=1-s2.0-S0022283624001414-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140178792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leaf Senescence Database v5.0: A Comprehensive Repository for Facilitating Plant Senescence Research 叶片衰老数据库 v5.0:促进植物衰老研究的综合资料库。
IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.jmb.2024.168530

Through an extensive literature survey, we have upgraded the Leaf Senescence Database (LSD v5.0; https://ngdc.cncb.ac.cn/lsd/), a curated repository of comprehensive senescence-associated genes (SAGs) and their corresponding mutants. Since its inception in 2010, LSD undergoes frequent updates to encompass the latest advances in leaf senescence research and its current version comprises a high-quality collection of 31,740 SAGs and 1,209 mutants from 148 species, which were manually searched based on robust experimental evidence and further categorized according to their functions in leaf senescence. Furthermore, LSD was greatly enriched with comprehensive annotations for the SAGs through meticulous curation using both manual and computational methods. In addition, it was equipped with user-friendly web interfaces that facilitate text queries, BLAST searches, and convenient download of SAG sequences for localized analysis. Users can effortlessly navigate the database to access a plethora of information, including literature references, mutants, phenotypes, multi-omics data, miRNA interactions, homologs in other plants, and cross-links to various databases. Taken together, the upgraded version of LSD stands as the most comprehensive and informative plant senescence-related database to date, incorporating the largest collection of SAGs and thus bearing great utility for a wide range of studies related to plant senescence.

通过广泛的文献调查,我们升级了叶片衰老数据库(LSD v5.0;https://ngdc.cncb.ac.cn/lsd/),这是一个全面的衰老相关基因(SAGs)及其相应突变体的辑录库。自 2010 年建立以来,LSD 频繁更新,以囊括叶片衰老研究的最新进展,其当前版本包括来自 148 个物种的 31,740 个 SAGs 和 1,209 个突变体的高质量集合,这些集合基于可靠的实验证据进行人工搜索,并根据它们在叶片衰老中的功能进一步分类。此外,LSD 还通过人工和计算方法对 SAGs 进行了细致的整理,大大丰富了 SAGs 的全面注释。此外,该数据库还配备了用户友好型网络界面,方便用户进行文本查询、BLAST 搜索以及下载 SAG 序列进行本地化分析。用户可以轻松浏览数据库,获取大量信息,包括文献参考、突变体、表型、多组学数据、miRNA 相互作用、其他植物中的同源物以及与各种数据库的交叉链接。总之,LSD 的升级版是迄今为止最全面、信息量最大的植物衰老相关数据库,收录了最多的 SAGs,因此在植物衰老相关的广泛研究中大有用武之地。
{"title":"Leaf Senescence Database v5.0: A Comprehensive Repository for Facilitating Plant Senescence Research","authors":"","doi":"10.1016/j.jmb.2024.168530","DOIUrl":"10.1016/j.jmb.2024.168530","url":null,"abstract":"<div><p>Through an extensive literature survey, we have upgraded the Leaf Senescence Database (LSD v5.0; <span><span>https://ngdc.cncb.ac.cn/lsd/</span><svg><path></path></svg></span>), a curated repository of comprehensive senescence-associated genes (SAGs) and their corresponding mutants. Since its inception in 2010, LSD undergoes frequent updates to encompass the latest advances in leaf senescence research and its current version comprises a high-quality collection of 31,740 SAGs and 1,209 mutants from 148 species, which were manually searched based on robust experimental evidence and further categorized according to their functions in leaf senescence. Furthermore, LSD was greatly enriched with comprehensive annotations for the SAGs through meticulous curation using both manual and computational methods. In addition, it was equipped with user-friendly web interfaces that facilitate text queries, BLAST searches, and convenient download of SAG sequences for localized analysis. Users can effortlessly navigate the database to access a plethora of information, including literature references, mutants, phenotypes, multi-omics data, miRNA interactions, homologs in other plants, and cross-links to various databases. Taken together, the upgraded version of LSD stands as the most comprehensive and informative plant senescence-related database to date, incorporating the largest collection of SAGs and thus bearing great utility for a wide range of studies related to plant senescence.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"436 17","pages":"Article 168530"},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624001177/pdfft?md5=4966a0c80ee9743534f4c43a1fe22860&pid=1-s2.0-S0022283624001177-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140093171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alpha&ESMhFolds: A Web Server for Comparing AlphaFold2 and ESMFold Models of the Human Reference Proteome Alpha&ESMhFolds:用于比较人类参考蛋白质组的 AlphaFold2 和 ESMFold 模型的网络服务器。
IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.jmb.2024.168593

We develop a novel database Alpha&ESMhFolds which allows the direct comparison of AlphaFold2 and ESMFold predicted models for 42,942 proteins of the Reference Human Proteome, and when available, their comparison with 2,900 directly associated PDB structures with at least a structure to sequence coverage of 70%. Statistics indicate that good quality models tend to overlap with a TM-score >0.6 as long as some PDB structural information is available. As expected, a direct model superimposition to the PDB structure highlights that AlphaFold2 models are slightly superior to ESMFold ones. However, some 55% of the database is endowed with models overlapping with TM-score <0.6. This highlights the different outputs of the two methods. The database is freely available for usage at https://alpha-esmhfolds.biocomp.unibo.it/.

我们开发了一个新颖的 Alpha&ESMhFolds 数据库,可以直接比较 AlphaFold2 和 ESMFold 预测的 42,942 个参考人类蛋白质组的蛋白质模型,并在有数据的情况下,将其与 2,900 个直接相关的 PDB 结构(结构与序列的覆盖率至少为 70%)进行比较。统计结果表明,只要有一些 PDB 结构信息,高质量的模型往往会与 TM 分数大于 0.6 的模型重叠。不出所料,直接将模型叠加到 PDB 结构上会发现 AlphaFold2 模型略优于 ESMFold 模型。然而,数据库中约有 55% 的模型与 TM-score
{"title":"Alpha&ESMhFolds: A Web Server for Comparing AlphaFold2 and ESMFold Models of the Human Reference Proteome","authors":"","doi":"10.1016/j.jmb.2024.168593","DOIUrl":"10.1016/j.jmb.2024.168593","url":null,"abstract":"<div><p>We develop a novel database Alpha&amp;ESMhFolds which allows the direct comparison of AlphaFold2 and ESMFold predicted models for 42,942 proteins of the Reference Human Proteome, and when available, their comparison with 2,900 directly associated PDB structures with at least a structure to sequence coverage of 70%. Statistics indicate that good quality models tend to overlap with a TM-score &gt;0.6 as long as some PDB structural information is available. As expected, a direct model superimposition to the PDB structure highlights that AlphaFold2 models are slightly superior to ESMFold ones. However, some 55% of the database is endowed with models overlapping with TM-score &lt;0.6. This highlights the different outputs of the two methods. The database is freely available for usage at <span><span>https://alpha-esmhfolds.biocomp.unibo.it/</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"436 17","pages":"Article 168593"},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624001888/pdfft?md5=651ba8cbf02ebb961f449f53c61da1d2&pid=1-s2.0-S0022283624001888-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140891325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TPPU_DSF: A Web Application to Calculate Thermodynamic Parameters Using DSF Data TPPU_DSF:利用 DSF 数据计算热力学参数的网络应用程序
IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.jmb.2024.168519

Here we present TPPU_DSF (https://maciasnmr.net/tppu_dsf/). This is a free and open-source web application that opens, converts, fits, and calculates the thermodynamic parameters of protein unfolding from standard differential scanning fluorimetry (DSF) data in an automated manner. The software has several applications. In the context of screening compound libraries for protein binders, obtaining thermodynamic parameters provides a more robust approach to detecting hits than the changes in the melting temperature (Tm) alone, thereby helping to increase the number of positive hits in screening campaigns. Moreover, changes in ΔGuo indicate protein response to binding at lower compound concentrations than those in the Tm, thereby reducing the costs associated with the amounts of protein and compounds required for the assays. Also, by adding thermodynamic information to the Tm comparison, the software can contribute to the optimization of protein constructs and buffer conditions, a common practice before structural and functional projects.

这里我们介绍 TPPU_DSF (https://maciasnmr.net/tppu_dsf/)。这是一款免费开源的网络应用程序,可自动打开、转换、拟合和计算标准差示扫描荧光光谱仪(DSF)数据中的蛋白质展开热力学参数。该软件有多种应用。在筛选蛋白质结合剂的化合物库中,获得热力学参数提供了一种比单独检测熔化温度(Tm)变化更可靠的方法,从而有助于增加筛选活动中的阳性结果数量。此外,与 Tm 的变化相比,ΔGuo 的变化表明蛋白质在较低化合物浓度下对结合的反应,从而降低了与检测所需的蛋白质和化合物数量相关的成本。此外,通过在 Tm 比较中添加热力学信息,该软件还有助于优化蛋白质结构和缓冲条件,这是结构和功能项目的常见做法。
{"title":"TPPU_DSF: A Web Application to Calculate Thermodynamic Parameters Using DSF Data","authors":"","doi":"10.1016/j.jmb.2024.168519","DOIUrl":"10.1016/j.jmb.2024.168519","url":null,"abstract":"<div><p>Here we present TPPU_DSF (<span><span>https://maciasnmr.net/tppu_dsf/</span><svg><path></path></svg></span>). This is a free and open-source web application that opens, converts, fits, and calculates the thermodynamic parameters of protein unfolding from standard differential scanning fluorimetry (DSF) data in an automated manner. The software has several applications. In the context of screening compound libraries for protein binders, obtaining thermodynamic parameters provides a more robust approach to detecting hits than the changes in the melting temperature (T<sub>m</sub>) alone, thereby helping to increase the number of positive hits in screening campaigns. Moreover, changes in ΔG<sub>u</sub><sup>o</sup> indicate protein response to binding at lower compound concentrations than those in the T<sub>m</sub>, thereby reducing the costs associated with the amounts of protein and compounds required for the assays. Also, by adding thermodynamic information to the T<sub>m</sub> comparison, the software can contribute to the optimization of protein constructs and buffer conditions, a common practice before structural and functional projects.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"436 17","pages":"Article 168519"},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624001062/pdfft?md5=cf58214544ee4ccc6fb33b70056879e3&pid=1-s2.0-S0022283624001062-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140099308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MVAR: A Mouse Variation Registry MVAR:小鼠变异登记册。
IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.jmb.2024.168518

The Mouse Variation Registry (MVAR) resource is a scalable registry of mouse single nucleotide variants and small indels and variant annotation. The resource accepts data in standard Variant Call Format (VCF) and assesses the uniqueness of the submitted variants via a canonicalization process. Novel variants are assigned a unique, persistent MVAR identifier; variants that are equivalent to an existing variant in the resource are associated with the existing identifier. Annotations for variant type, molecular consequence, impact, and genomic region in the context of specific transcripts and protein sequences are generated using Ensembl’s Variant Effect Predictor (VEP) and Jannovar. Access to the data and annotations in MVAR are supported via an Application Programming Interface (API) and web application. Researchers can search the resource by gene symbol, genomic region, variant (expressed in Human Genome Variation Society syntax), refSNP identifiers, or MVAR identifiers. Tabular search results can be filtered by variant annotations (variant type, molecular consequence, impact, variant region) and viewed according to variant distribution across mouse strains. The registry currently comprises more than 99 million canonical single nucleotide variants for 581 strains of mice. MVAR is accessible from https://mvar.jax.org.

小鼠变异登记处(MVAR)资源是一个可扩展的小鼠单核苷酸变异和小嵌合体以及变异注释登记处。该资源接受标准变异调用格式(VCF)中的数据,并通过规范化过程评估所提交变异的唯一性。新变异会被分配一个唯一、持久的 MVAR 标识符;与资源中现有变异等价的变异则与现有标识符相关联。使用 Ensembl 的变异效应预测器(VEP)和 Jannovar 生成特定转录本和蛋白质序列背景下的变异类型、分子后果、影响和基因组区域的注释。MVAR 中的数据和注释可通过应用程序接口 (API) 和网络应用程序访问。研究人员可通过基因符号、基因组区域、变体(以人类基因组变异协会语法表示)、refSNP 标识符或 MVAR 标识符搜索资源。表格搜索结果可通过变异注释(变异类型、分子后果、影响、变异区域)进行过滤,并可根据变异在小鼠品系中的分布情况进行查看。该注册表目前包含 581 个品系小鼠的 9900 多万个典型单核苷酸变异。MVAR 可从 https://mvar.jax.org 访问。
{"title":"MVAR: A Mouse Variation Registry","authors":"","doi":"10.1016/j.jmb.2024.168518","DOIUrl":"10.1016/j.jmb.2024.168518","url":null,"abstract":"<div><p>The Mouse Variation Registry (MVAR) resource is a scalable registry of mouse single nucleotide variants and small indels and variant annotation. The resource accepts data in standard Variant Call Format (VCF) and assesses the uniqueness of the submitted variants via a canonicalization process. Novel variants are assigned a unique, persistent MVAR identifier; variants that are equivalent to an existing variant in the resource are associated with the existing identifier. Annotations for variant type, molecular consequence, impact, and genomic region in the context of specific transcripts and protein sequences are generated using Ensembl’s Variant Effect Predictor (VEP) and Jannovar. Access to the data and annotations in MVAR are supported via an Application Programming Interface (API) and web application. Researchers can search the resource by gene symbol, genomic region, variant (expressed in Human Genome Variation Society syntax), refSNP identifiers, or MVAR identifiers. Tabular search results can be filtered by variant annotations (variant type, molecular consequence, impact, variant region) and viewed according to variant distribution across mouse strains. The registry currently comprises more than 99 million canonical single nucleotide variants for 581 strains of mice. MVAR is accessible from <span><span>https://mvar.jax.org</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"436 17","pages":"Article 168518"},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624001050/pdfft?md5=6a3249ee01b7788a6e26ba3e34d23bf6&pid=1-s2.0-S0022283624001050-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140064505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Resources for Molecular Biology 2024 分子生物学计算资源 2024。
IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.jmb.2024.168739
Rita Casadio, David H. Mathews, Michael J.E. Sternberg
{"title":"Computational Resources for Molecular Biology 2024","authors":"Rita Casadio,&nbsp;David H. Mathews,&nbsp;Michael J.E. Sternberg","doi":"10.1016/j.jmb.2024.168739","DOIUrl":"10.1016/j.jmb.2024.168739","url":null,"abstract":"","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"436 17","pages":"Article 168739"},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624003486/pdfft?md5=d20b521f352ab3c8e0df1b535e41b9bd&pid=1-s2.0-S0022283624003486-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DockThor-VS: A Free Platform for Receptor-Ligand Virtual Screening DockThor-VS:受体配体虚拟筛选的免费平台
IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1016/j.jmb.2024.168548

The DockThor-VS platform (https://dockthor.lncc.br/v2/) is a free protein–ligand docking server conceptualized to facilitate and assist drug discovery projects to perform docking-based virtual screening experiments accurately and using high-performance computing. The DockThor docking engine is a grid-based method designed for flexible-ligand and rigid-receptor docking. It employs a multiple-solution genetic algorithm and the MMFF94S molecular force field scoring function for pose prediction. This engine was engineered to handle highly flexible ligands, such as peptides. Affinity prediction and ranking of protein–ligand complexes are performed with the linear empirical scoring function DockTScore. The main steps of the ligand and protein preparation are available on the DockThor Portal, making it possible to change the protonation states of the amino acid residues, and include cofactors as rigid entities. The user can also customize and visualize the main parameters of the grid box. The results of docking experiments are automatically clustered and ordered, providing users with a diverse array of meaningful binding modes. The platform DockThor-VS offers a user-friendly interface and powerful algorithms, enabling researchers to conduct virtual screening experiments efficiently and accurately. The DockThor Portal utilizes the computational strength of the Brazilian high-performance platform SDumont, further amplifying the efficiency and speed of docking experiments. Additionally, the web server facilitates and enhances virtual screening experiments by offering curated structures of potential targets and compound datasets, such as proteins related to COVID-19 and FDA-approved drugs for repurposing studies. In summary, DockThor-VS is a dynamic and evolving solution for docking-based virtual screening to be applied in drug discovery projects.

DockThor-VS平台(https://dockthor.lncc.br/v2/)是一个免费的蛋白质配体对接服务器,旨在促进和协助药物发现项目利用高性能计算准确地进行基于对接的虚拟筛选实验。DockThor对接引擎是一种基于网格的方法,设计用于柔性配体和刚性受体对接。它采用多解遗传算法和 MMFF94S 分子力场评分函数进行姿势预测。该引擎专为处理肽等高柔性配体而设计。蛋白质配体复合物的亲和预测和排序使用线性经验评分函数 DockTScore 进行。配体和蛋白质制备的主要步骤可在 DockThor 门户网站上查看,因此可以改变氨基酸残基的质子化状态,并将辅助因子作为刚性实体纳入其中。用户还可以自定义和可视化网格框的主要参数。对接实验的结果会自动聚类和排序,为用户提供各种有意义的结合模式。DockThor-VS 平台提供友好的用户界面和强大的算法,使研究人员能够高效、准确地进行虚拟筛选实验。DockThor Portal 利用巴西高性能平台 SDumont 的计算能力,进一步提高了对接实验的效率和速度。此外,该网络服务器还通过提供潜在靶标和化合物数据集(如与 COVID-19 相关的蛋白质和用于再利用研究的经 FDA 批准的药物)的策划结构来促进和加强虚拟筛选实验。总之,DockThor-VS 是一种动态的、不断发展的基于对接的虚拟筛选解决方案,可应用于药物发现项目。
{"title":"DockThor-VS: A Free Platform for Receptor-Ligand Virtual Screening","authors":"","doi":"10.1016/j.jmb.2024.168548","DOIUrl":"10.1016/j.jmb.2024.168548","url":null,"abstract":"<div><p>The DockThor-VS platform (<span><span>https://dockthor.lncc.br/v2/</span><svg><path></path></svg></span>) is a free protein–ligand docking server conceptualized to facilitate and assist drug discovery projects to perform docking-based virtual screening experiments accurately and using high-performance computing. The DockThor docking engine is a grid-based method designed for flexible-ligand and rigid-receptor docking. It employs a multiple-solution genetic algorithm and the MMFF94S molecular force field scoring function for pose prediction. This engine was engineered to handle highly flexible ligands, such as peptides. Affinity prediction and ranking of protein–ligand complexes are performed with the linear empirical scoring function DockTScore. The main steps of the ligand and protein preparation are available on the DockThor Portal, making it possible to change the protonation states of the amino acid residues, and include cofactors as rigid entities. The user can also customize and visualize the main parameters of the grid box. The results of docking experiments are automatically clustered and ordered, providing users with a diverse array of meaningful binding modes. The platform DockThor-VS offers a user-friendly interface and powerful algorithms, enabling researchers to conduct virtual screening experiments efficiently and accurately. The DockThor Portal utilizes the computational strength of the Brazilian high-performance platform SDumont, further amplifying the efficiency and speed of docking experiments. Additionally, the web server facilitates and enhances virtual screening experiments by offering curated structures of potential targets and compound datasets, such as proteins related to COVID-19 and FDA-approved drugs for repurposing studies. In summary, DockThor-VS is a dynamic and evolving solution for docking-based virtual screening to be applied in drug discovery projects.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"436 17","pages":"Article 168548"},"PeriodicalIF":4.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624001438/pdfft?md5=57349e8fba1907bce8b7894215619c89&pid=1-s2.0-S0022283624001438-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140282959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Molecular Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1