Shuo Li, Yalun Yang, Junfeng Niu, Heshan Zheng, Wen Zhang, Yoong Kit Leong, Jo-Shu Chang, Bo Lai
Advanced oxidation processes (AOPs) based on peracetic acid (PAA) offer a promising strategy to address antibiotic wastewater pollution. In this study, Fe-doped graphitic carbon nitride (g-C3N4) nanomaterials were used to construct Fe-Nx sites, and the electronic structure was tuned by boron nitride quantum dots (BNQDs), thereby optimizing PAA activation for the degradation of antibiotics. The BNQDs-modified Fe-doped g-C3N4 catalyst (BNQDs-FCN) achieved an excellent reaction rate constant of 0.0843 min-1, marking a 21.6-fold improvement over the carbon nitride (CN)-based PAA system. DFT calculations further corroborate the superior adsorption capacity of the Fe-Nx sites for PAA, facilitating its activation. Charge transfer mechanisms, with PAA serving as an electron acceptor, were identified as the source of high-valent iron-oxo species. Moreover, the BNQDs-FCN system preferentially targets oxygen-containing functional groups in antibiotic structures, elucidating the selective attack patterns of these highly electrophilic species. This research not only elucidates the pivotal role of high-valent iron-oxo species in pollutant degradation within the PAA-AOPs framework but also pioneers a wastewater treatment system characterized by excellent degradation efficiency coupled with low ecological risk, thereby laying the groundwork for applications in wastewater management and beyond.
{"title":"Activation of PAA at the Fe-N<sub><i>x</i></sub> Sites by Boron Nitride Quantum Dots Enhanced Charge Transfer Generates High-Valent Metal-Oxo Species for Antibiotics Degradation.","authors":"Shuo Li, Yalun Yang, Junfeng Niu, Heshan Zheng, Wen Zhang, Yoong Kit Leong, Jo-Shu Chang, Bo Lai","doi":"10.1021/acs.est.4c08224","DOIUrl":"https://doi.org/10.1021/acs.est.4c08224","url":null,"abstract":"<p><p>Advanced oxidation processes (AOPs) based on peracetic acid (PAA) offer a promising strategy to address antibiotic wastewater pollution. In this study, Fe-doped graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) nanomaterials were used to construct Fe-N<sub><i>x</i></sub> sites, and the electronic structure was tuned by boron nitride quantum dots (BNQDs), thereby optimizing PAA activation for the degradation of antibiotics. The BNQDs-modified Fe-doped g-C<sub>3</sub>N<sub>4</sub> catalyst (BNQDs-FCN) achieved an excellent reaction rate constant of 0.0843 min<sup>-1</sup>, marking a 21.6-fold improvement over the carbon nitride (CN)-based PAA system. DFT calculations further corroborate the superior adsorption capacity of the Fe-N<sub><i>x</i></sub> sites for PAA, facilitating its activation. Charge transfer mechanisms, with PAA serving as an electron acceptor, were identified as the source of high-valent iron-oxo species. Moreover, the BNQDs-FCN system preferentially targets oxygen-containing functional groups in antibiotic structures, elucidating the selective attack patterns of these highly electrophilic species. This research not only elucidates the pivotal role of high-valent iron-oxo species in pollutant degradation within the PAA-AOPs framework but also pioneers a wastewater treatment system characterized by excellent degradation efficiency coupled with low ecological risk, thereby laying the groundwork for applications in wastewater management and beyond.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nealan G A Gerrebos, Julia Zaks, Florence K A Gregson, Max Walton-Raaby, Harrison Meeres, Ieva Zigg, Wesley F Zandberg, Allan K Bertram
Biomass burning organic aerosol (BBOA) is a major contributor to organic aerosol in the atmosphere. The impacts of BBOA on climate and health depend strongly upon their physicochemical properties, including viscosity and phase behavior (number and types of phases); these properties are not yet fully characterized. We collected BBOA field samples during the 2021 British Columbia wildfire season to constrain the viscosity and phase behavior at a range of relative humidities and compared them to previous studies on BBOA. Particles from all samples exhibited two-phased behavior with a polar hydrophilic phase and a nonpolar hydrophobic phase. We used the poke-flow viscosity technique to estimate the viscosity of the particles. Both phases of the BBOA had viscosities of >108 Pa s at relative humidities up to 50%. Such high viscosities correspond to mixing times within 200 nm BBOA particles of >5 h. Two phases and high viscosity have implications for how BBOA should be treated in atmospheric models.
{"title":"High Viscosity and Two Phases Observed over a Range of Relative Humidities in Biomass Burning Organic Aerosol from Canadian Wildfires.","authors":"Nealan G A Gerrebos, Julia Zaks, Florence K A Gregson, Max Walton-Raaby, Harrison Meeres, Ieva Zigg, Wesley F Zandberg, Allan K Bertram","doi":"10.1021/acs.est.4c09148","DOIUrl":"https://doi.org/10.1021/acs.est.4c09148","url":null,"abstract":"<p><p>Biomass burning organic aerosol (BBOA) is a major contributor to organic aerosol in the atmosphere. The impacts of BBOA on climate and health depend strongly upon their physicochemical properties, including viscosity and phase behavior (number and types of phases); these properties are not yet fully characterized. We collected BBOA field samples during the 2021 British Columbia wildfire season to constrain the viscosity and phase behavior at a range of relative humidities and compared them to previous studies on BBOA. Particles from all samples exhibited two-phased behavior with a polar hydrophilic phase and a nonpolar hydrophobic phase. We used the poke-flow viscosity technique to estimate the viscosity of the particles. Both phases of the BBOA had viscosities of >10<sup>8</sup> Pa s at relative humidities up to 50%. Such high viscosities correspond to mixing times within 200 nm BBOA particles of >5 h. Two phases and high viscosity have implications for how BBOA should be treated in atmospheric models.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junjie Wang, Hongyu Wu, Tao Ma, Haoran Chen, Chuze Chen, Yuting Wang, Qiming Xian, Tingting Gong
Disinfection byproducts (DBPs) in swimming pool water are a significant public health concern. The formation of aromatic halogenated DBPs in swimming pool water has not been clarified previously. In this study, the occurrence of aromatic halogenated DBPs in swimming pool water was examined, and it was found that halohydroxybenzoic acids (HBAs) and halobenzoquinones (HBQs) were the most dominant aromatic halogenated DBPs in swimming pool water that were continuously formed. Thus, the formation of HBAs and HBQs in swimming pool water from different organic precursors, including natural organic matter (NOM), pharmaceuticals and personal care products (PPCPs), during chlorination was examined. The results demonstrate that the formation of HBAs and HBQs from the PPCPs was relatively high compared with that from NOM, suggesting that the PPCPs from human inputs might be important organic precursors of aromatic halogenated DBPs in swimming pool water. The formation mechanisms of HBAs and HBQs from three typical PPCPs (benzophenone-3 (BP-3), methyl p-hydroxybenzoate (MeP) and carbamazepine) were further explored. The results show that the PPCPs containing phenolic groups with higher degradation rates (BP-3 and MeP) possessed higher formation of HBAs and HBQs. The three organic precursors underwent a series of substitution, hydrolysis, oxidation, rearrangement, and intramolecular cyclization reactions to form HBAs and HBQs, while the phenolic groups and ring structures may significantly affect the reactions. The chlorine dose, bromide/iodide concentration, and temperature significantly affected the formation of HBAs and HBQs from MeP during chlorination.
{"title":"Formation of Aromatic Halogenated Disinfection Byproducts in Swimming Pool Water during Chlorination: Organic Precursors and Mechanisms.","authors":"Junjie Wang, Hongyu Wu, Tao Ma, Haoran Chen, Chuze Chen, Yuting Wang, Qiming Xian, Tingting Gong","doi":"10.1021/acs.est.4c08239","DOIUrl":"https://doi.org/10.1021/acs.est.4c08239","url":null,"abstract":"<p><p>Disinfection byproducts (DBPs) in swimming pool water are a significant public health concern. The formation of aromatic halogenated DBPs in swimming pool water has not been clarified previously. In this study, the occurrence of aromatic halogenated DBPs in swimming pool water was examined, and it was found that halohydroxybenzoic acids (HBAs) and halobenzoquinones (HBQs) were the most dominant aromatic halogenated DBPs in swimming pool water that were continuously formed. Thus, the formation of HBAs and HBQs in swimming pool water from different organic precursors, including natural organic matter (NOM), pharmaceuticals and personal care products (PPCPs), during chlorination was examined. The results demonstrate that the formation of HBAs and HBQs from the PPCPs was relatively high compared with that from NOM, suggesting that the PPCPs from human inputs might be important organic precursors of aromatic halogenated DBPs in swimming pool water. The formation mechanisms of HBAs and HBQs from three typical PPCPs (benzophenone-3 (BP-3), methyl p-hydroxybenzoate (MeP) and carbamazepine) were further explored. The results show that the PPCPs containing phenolic groups with higher degradation rates (BP-3 and MeP) possessed higher formation of HBAs and HBQs. The three organic precursors underwent a series of substitution, hydrolysis, oxidation, rearrangement, and intramolecular cyclization reactions to form HBAs and HBQs, while the phenolic groups and ring structures may significantly affect the reactions. The chlorine dose, bromide/iodide concentration, and temperature significantly affected the formation of HBAs and HBQs from MeP during chlorination.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Atmospheric fine particulate matter (PM2.5) poses threats to the cardiovascular system. Red blood cells (RBCs) are the most abundant cells in blood, which are actively involved in multiple hematological diseases, such as blood clot formation and thrombosis. Exploring how PM2.5 with spatiotemporal heterogeneity influences the hematological system by targeting RBCs would help gain insights into the deleterious effects of PM2.5 and provide clues for finding the causative components therein. Herein, the PM2.5 samples collected from 3 urban sites in Beijing (i.e., Chaoyang, Shunyi, and Yanqing districts) during 4 seasons of 2022 were studied for their toxicities to mouse RBCs, and the main contributing components were further explored through chemical analysis and correlation measure. The results showed that exposure to PM2.5 samples decreased adenosine triphosphate (ATP) levels and increased phosphatidylserine (PS) externalization of RBCs, causing cell morphological deformity. The Pearson correlation analysis showed that the aromaticity of the dissolved organic matter (DOM) in PM2.5 samples was positively correlated with PS exposure of RBCs, showing that the lignin-like compounds were the potential contributors. The negative correlation of zeta potentials of PM2.5 samples with PS exposure of RBCs showed the particle-derived bioactivities of this airborne pollutant. The simulative test based on artificial nanomaterials of carbon black (CB) and oxidized CB (OCB) confirmed the crucial role of particulate carbon in PM2.5-induced effects on RBCs, and soot with a certain oxidation degree was, thus, recognized as another contributor, given its ubiquitous existence in PM2.5 samples. This study, for the first time, revealed PM2.5-induced PS exposure of RBCs, and the causative components of DOM and soot were unraveled. Considering the inevitable contact of airborne PM2.5 with RBCs in the blood circulatory system, the findings obtained herein would help bridge the gap between PM2.5 exposure and the risk of cardiovascular diseases, like thrombogenesis.
{"title":"Unraveling Potential Causative Components for the Deleterious Effect of Atmospheric Fine Particulate Matter on Red Blood Cells","authors":"Yuzhu Zhang, Laijin Zhong, Jing Zhan, Zhipeng Yin, Yao Pei, Dong Cao, Qian S. Liu, Qunfang Zhou, Qian Liu, Guibin Jiang","doi":"10.1021/acs.est.4c06657","DOIUrl":"https://doi.org/10.1021/acs.est.4c06657","url":null,"abstract":"Atmospheric fine particulate matter (PM<sub>2.5</sub>) poses threats to the cardiovascular system. Red blood cells (RBCs) are the most abundant cells in blood, which are actively involved in multiple hematological diseases, such as blood clot formation and thrombosis. Exploring how PM<sub>2.5</sub> with spatiotemporal heterogeneity influences the hematological system by targeting RBCs would help gain insights into the deleterious effects of PM<sub>2.5</sub> and provide clues for finding the causative components therein. Herein, the PM<sub>2.5</sub> samples collected from 3 urban sites in Beijing (i.e., Chaoyang, Shunyi, and Yanqing districts) during 4 seasons of 2022 were studied for their toxicities to mouse RBCs, and the main contributing components were further explored through chemical analysis and correlation measure. The results showed that exposure to PM<sub>2.5</sub> samples decreased adenosine triphosphate (ATP) levels and increased phosphatidylserine (PS) externalization of RBCs, causing cell morphological deformity. The Pearson correlation analysis showed that the aromaticity of the dissolved organic matter (DOM) in PM<sub>2.5</sub> samples was positively correlated with PS exposure of RBCs, showing that the lignin-like compounds were the potential contributors. The negative correlation of zeta potentials of PM<sub>2.5</sub> samples with PS exposure of RBCs showed the particle-derived bioactivities of this airborne pollutant. The simulative test based on artificial nanomaterials of carbon black (CB) and oxidized CB (OCB) confirmed the crucial role of particulate carbon in PM<sub>2.5</sub>-induced effects on RBCs, and soot with a certain oxidation degree was, thus, recognized as another contributor, given its ubiquitous existence in PM<sub>2.5</sub> samples. This study, for the first time, revealed PM<sub>2.5</sub>-induced PS exposure of RBCs, and the causative components of DOM and soot were unraveled. Considering the inevitable contact of airborne PM<sub>2.5</sub> with RBCs in the blood circulatory system, the findings obtained herein would help bridge the gap between PM<sub>2.5</sub> exposure and the risk of cardiovascular diseases, like thrombogenesis.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"7 1","pages":""},"PeriodicalIF":9.028,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142718656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Upgrading the most difficult-to-recycle waste polyvinyl chloride remains a significant challenge due to the potential formation of highly toxic substances, such as polychlorinated biphenyls. Here, we introduce a paradigm shift with a mild photothermal dechlorination-carbonization process that converts waste polyvinyl chloride plastics into valuable carbon materials. Through detailed techno-economic assessment (TEA) process modeling, based on recycling 96,000 tons of plastics, we demonstrate that utilizing clean solar energy for photothermal conversion can save approximately 2.34 × 1012 kJ electricity and reduce the carbon footprint by 261,912.2 tons compared to traditional thermal-driven methods, offering clear environmental benefits. Notably, this photothermal recycling method can process more than 10 types of postconsumer and mixed waste polyvinyl chloride plastics, yielding carbon materials that exhibit excellent performance as components in sodium-ion energy storage batteries. Photothermal catalytic recycling of plastics thus emerges as a green and sustainable technology with promising applications.
{"title":"Photothermal Upcycling of Waste Polyvinyl Chloride Plastics.","authors":"Hao Han, Penglei Yan, Qingye Li, Shuyi Zhang, Binglei Jiao, Gaolei Wei, Zhao Wang, Muhan Cao, Panpan Xu, Qiao Zhang, Jinxing Chen","doi":"10.1021/acs.est.4c07350","DOIUrl":"https://doi.org/10.1021/acs.est.4c07350","url":null,"abstract":"<p><p>Upgrading the most difficult-to-recycle waste polyvinyl chloride remains a significant challenge due to the potential formation of highly toxic substances, such as polychlorinated biphenyls. Here, we introduce a paradigm shift with a mild photothermal dechlorination-carbonization process that converts waste polyvinyl chloride plastics into valuable carbon materials. Through detailed techno-economic assessment (TEA) process modeling, based on recycling 96,000 tons of plastics, we demonstrate that utilizing clean solar energy for photothermal conversion can save approximately 2.34 × 10<sup>12</sup> kJ electricity and reduce the carbon footprint by 261,912.2 tons compared to traditional thermal-driven methods, offering clear environmental benefits. Notably, this photothermal recycling method can process more than 10 types of postconsumer and mixed waste polyvinyl chloride plastics, yielding carbon materials that exhibit excellent performance as components in sodium-ion energy storage batteries. Photothermal catalytic recycling of plastics thus emerges as a green and sustainable technology with promising applications.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Previous research has widely overlooked the respiratory risks associated with cosmetic powder, a type of mixed particulate matter with intricate chemical compositions, especially in the context of wearing masks. This study investigated the inhalation risks posed by five face powders, focusing on both particulate matter (minerals and primary microplastics) and soluble components (preservatives and organic UV filters). Wearing masks significantly increased the inhalation risk of face powders, with exposure levels influenced by factors such as particle size, density, and composition. Additionally, different samples demonstrated irregular behavioral patterns when exposed to various human tissue environments. Soluble components analysis revealed that multiple additives dissolved in six body fluids, with a higher degree of release observed in the respiratory tract fluid compared to the digestive tract fluid. The alveoli may serve as a specific target for exposure to organic UV filters due to the solubilization effect of pulmonary surfactants. These findings revealed the importance of considering both particulate matter and soluble components when assessing respiratory and digestive exposure risks from cosmetic powders. Furthermore, understanding the interactions between cosmetic particles and body fluids, as well as potential synergistic toxic effects, is crucial for ensuring the safety of cosmetic products and safeguarding public health.
{"title":"Mask Wearers at Risk of Inhaling Respirable Hazards from Leave-On Facial Cosmetics.","authors":"Han Dai, Shanshan He, Jie Han, Baoshan Xing","doi":"10.1021/acs.est.4c07604","DOIUrl":"https://doi.org/10.1021/acs.est.4c07604","url":null,"abstract":"<p><p>Previous research has widely overlooked the respiratory risks associated with cosmetic powder, a type of mixed particulate matter with intricate chemical compositions, especially in the context of wearing masks. This study investigated the inhalation risks posed by five face powders, focusing on both particulate matter (minerals and primary microplastics) and soluble components (preservatives and organic UV filters). Wearing masks significantly increased the inhalation risk of face powders, with exposure levels influenced by factors such as particle size, density, and composition. Additionally, different samples demonstrated irregular behavioral patterns when exposed to various human tissue environments. Soluble components analysis revealed that multiple additives dissolved in six body fluids, with a higher degree of release observed in the respiratory tract fluid compared to the digestive tract fluid. The alveoli may serve as a specific target for exposure to organic UV filters due to the solubilization effect of pulmonary surfactants. These findings revealed the importance of considering both particulate matter and soluble components when assessing respiratory and digestive exposure risks from cosmetic powders. Furthermore, understanding the interactions between cosmetic particles and body fluids, as well as potential synergistic toxic effects, is crucial for ensuring the safety of cosmetic products and safeguarding public health.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
William D. Watson, Jake A. Janssen, Michael J. Hartnett, Kristin K. Isaacs, Xiaoyu Liu, Alice Y. Yau, Kristin A. Favela, John F. Wambaugh
Characterization of chemicals in household products is important for understanding this potential source of chemical exposure. Increasingly, suspect screening and nontargeted analysis techniques are used to characterize as many chemical signatures as possible. Solids such as household products are most conveniently prepared using solvent extraction, revealing what chemicals are contained within the product matrix but providing no information about the potential of those chemicals to leave the matrix and cause actual exposure. In this work, the profile and relative abundances of “extractable” chemical signatures found after solvent extraction are compared to those “emittable” to the headspace for 81 household products analyzed by two-dimensional gas chromatography time-of-flight mass spectrometry. This study retrospectively fuses data collected in separate efforts over 3.8 years and 13 analytical batches. Management of the data is made possible by recent developments in processing systems for complex data such as Highlight. Compounds were generically classified as aromatic heteroatom, aromatic hydrocarbon, glycol, hydrocarbon, long chain heteroatom, nonaromatic heteroatom, and unknown/unclassified. Class-based retention time and abundance trends were observed. Liquid extraction resulted in the greatest number of features and the highest relative abundances, while low temperature emission conditions produced the smallest number of features and lowest relative abundances.
{"title":"Discerning Emittable from Extractable Chemicals Identified in Consumer Products by Suspect Screening GCxGC-TOFMS","authors":"William D. Watson, Jake A. Janssen, Michael J. Hartnett, Kristin K. Isaacs, Xiaoyu Liu, Alice Y. Yau, Kristin A. Favela, John F. Wambaugh","doi":"10.1021/acs.est.4c07903","DOIUrl":"https://doi.org/10.1021/acs.est.4c07903","url":null,"abstract":"Characterization of chemicals in household products is important for understanding this potential source of chemical exposure. Increasingly, suspect screening and nontargeted analysis techniques are used to characterize as many chemical signatures as possible. Solids such as household products are most conveniently prepared using solvent extraction, revealing what chemicals are contained within the product matrix but providing no information about the potential of those chemicals to leave the matrix and cause actual exposure. In this work, the profile and relative abundances of “extractable” chemical signatures found after solvent extraction are compared to those “emittable” to the headspace for 81 household products analyzed by two-dimensional gas chromatography time-of-flight mass spectrometry. This study retrospectively fuses data collected in separate efforts over 3.8 years and 13 analytical batches. Management of the data is made possible by recent developments in processing systems for complex data such as Highlight. Compounds were generically classified as aromatic heteroatom, aromatic hydrocarbon, glycol, hydrocarbon, long chain heteroatom, nonaromatic heteroatom, and unknown/unclassified. Class-based retention time and abundance trends were observed. Liquid extraction resulted in the greatest number of features and the highest relative abundances, while low temperature emission conditions produced the smallest number of features and lowest relative abundances.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"8 1","pages":""},"PeriodicalIF":9.028,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142718658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sepehr Nikkho, Bin Bai, Fabian Mahrt, Julia Zaks, Long Peng, Kristian J. Kiland, Pengfei Liu, Allan K. Bertram
Biomass burning events, including wildfires, can emit large amounts of phenolic compounds such as guaiacol. These phenolic compounds can undergo oxidation by nitrate radicals (NO3) to form secondary organic aerosol (SOA). Viscosity and hygroscopicity are key properties that affect SOA’s role in atmospheric chemistry, air quality, climate and public health. However, these properties have not been quantified for SOA formed from the reaction of phenolic compounds with NO3. We used the poke-flow technique and a quartz crystal microbalance (QCM) to measure the viscosity and hygroscopicity of SOA particles generated from the reaction of NO3 with guaiacol, termed guaiacol-NO3 SOA. The viscosity of this SOA is extremely high (≳5 × 107 Pa s) at RH ≲ 70% and drastically higher than other SOA types previously investigated with the poke-flow technique at RH ≳ 40%. The high viscosity for guaiacol-NO3 SOA can be attributed, at least in part, to the low hygroscopicity measured via the QCM. From the viscosity results, we calculated the mixing times of organic molecules within guaiacol-NO3 SOA. The results suggest that mixing times within this type of SOA exceed 1 h for most tropospheric conditions, with possible implications for predicting the size, mass, and long-range transport of pollutants in phenolic SOA.
包括野火在内的生物质燃烧事件会释放出大量的酚类化合物,如愈创木酚。这些酚类化合物会被硝酸根(NO3)氧化,形成二次有机气溶胶(SOA)。粘度和吸湿性是影响 SOA 在大气化学、空气质量、气候和公共健康中作用的关键特性。然而,我们尚未对酚类化合物与 NO3 反应形成的 SOA 的这些特性进行量化。我们使用戳流技术和石英晶体微天平(QCM)测量了由 NO3 与愈创木酚反应生成的 SOA 粒子(称为愈创木酚-NO3 SOA)的粘度和吸湿性。在相对湿度≲ 70% 时,这种 SOA 的粘度极高(≳5 × 107 Pa s),大大高于之前在相对湿度≲ 40% 时使用捅流技术研究的其他 SOA 类型。愈创木酚-NO3 SOA 的高粘度至少可部分归因于 QCM 测得的低吸湿性。根据粘度结果,我们计算了愈创木酚-NO3 SOA 中有机分子的混合时间。结果表明,在大多数对流层条件下,这类 SOA 内部的混合时间超过 1 小时,这可能对预测酚类 SOA 中污染物的大小、质量和长程飘移产生影响。
{"title":"Secondary Organic Aerosol from Biomass Burning Phenolic Compounds and Nitrate Radicals can be Highly Viscous over a Wide Relative Humidity Range","authors":"Sepehr Nikkho, Bin Bai, Fabian Mahrt, Julia Zaks, Long Peng, Kristian J. Kiland, Pengfei Liu, Allan K. Bertram","doi":"10.1021/acs.est.4c06235","DOIUrl":"https://doi.org/10.1021/acs.est.4c06235","url":null,"abstract":"Biomass burning events, including wildfires, can emit large amounts of phenolic compounds such as guaiacol. These phenolic compounds can undergo oxidation by nitrate radicals (NO<sub>3</sub>) to form secondary organic aerosol (SOA). Viscosity and hygroscopicity are key properties that affect SOA’s role in atmospheric chemistry, air quality, climate and public health. However, these properties have not been quantified for SOA formed from the reaction of phenolic compounds with NO<sub>3</sub>. We used the poke-flow technique and a quartz crystal microbalance (QCM) to measure the viscosity and hygroscopicity of SOA particles generated from the reaction of NO<sub>3</sub> with guaiacol, termed guaiacol-NO<sub>3</sub> SOA. The viscosity of this SOA is extremely high (≳5 × 10<sup>7</sup> Pa s) at RH ≲ 70% and drastically higher than other SOA types previously investigated with the poke-flow technique at RH ≳ 40%. The high viscosity for guaiacol-NO<sub>3</sub> SOA can be attributed, at least in part, to the low hygroscopicity measured via the QCM. From the viscosity results, we calculated the mixing times of organic molecules within guaiacol-NO<sub>3</sub> SOA. The results suggest that mixing times within this type of SOA exceed 1 h for most tropospheric conditions, with possible implications for predicting the size, mass, and long-range transport of pollutants in phenolic SOA.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"79 1","pages":""},"PeriodicalIF":9.028,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142718654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As graphene-based materials (GBMs) such as pristine graphene, graphene oxide, and reduced graphene oxide show great potential to be integrated in various applications, the need for environmental risk assessments grows, aiming to navigate the environmental fate and potential risk of the different forms of GBM. This study used dynamic probabilistic material flow analysis (DPMFA) to ascertain the prospective production volumes and distribution of GBMs within European freshwaters. The hazard assessment leveraged 113 data sets from peer-reviewed studies, addressing aquatic ecotoxicity across 26 species, by performing probabilistic species sensitivity distributions (SSD). Our findings reveal distinct environmental distribution patterns for GBM forms with predicted environmental concentrations in European freshwaters by 2030 of approximately 0.67 ng/L (SD = 0.24 ng/L) for pristine graphene and 0.33 ng/L (SD = 0.10 ng/L) for both graphene oxide and reduced graphene oxide, suggesting not only similar but notably minimal exposure levels. The risk characterization ratios (RCRs) for all forms of GBM were significantly below 1, indicating a negligible environmental risk within the scenarios assessed. Through detailed analysis considering the forms of the material, this research can inform regulatory decisions, support sustainable material design, and provide a solid foundation for a further investigation considering the environmental fate of GBM.
{"title":"Form-Specific Prospective Environmental Risk Assessment of Graphene-Based Materials in European Freshwater.","authors":"Hyunjoo Hong, Bernd Nowack","doi":"10.1021/acs.est.4c05153","DOIUrl":"https://doi.org/10.1021/acs.est.4c05153","url":null,"abstract":"<p><p>As graphene-based materials (GBMs) such as pristine graphene, graphene oxide, and reduced graphene oxide show great potential to be integrated in various applications, the need for environmental risk assessments grows, aiming to navigate the environmental fate and potential risk of the different forms of GBM. This study used dynamic probabilistic material flow analysis (DPMFA) to ascertain the prospective production volumes and distribution of GBMs within European freshwaters. The hazard assessment leveraged 113 data sets from peer-reviewed studies, addressing aquatic ecotoxicity across 26 species, by performing probabilistic species sensitivity distributions (SSD). Our findings reveal distinct environmental distribution patterns for GBM forms with predicted environmental concentrations in European freshwaters by 2030 of approximately 0.67 ng/L (SD = 0.24 ng/L) for pristine graphene and 0.33 ng/L (SD = 0.10 ng/L) for both graphene oxide and reduced graphene oxide, suggesting not only similar but notably minimal exposure levels. The risk characterization ratios (RCRs) for all forms of GBM were significantly below 1, indicating a negligible environmental risk within the scenarios assessed. Through detailed analysis considering the forms of the material, this research can inform regulatory decisions, support sustainable material design, and provide a solid foundation for a further investigation considering the environmental fate of GBM.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hui Li, Fengkui Duan, Tao Ma, Yongliang Ma, Yunzhi Xu, Shuxiao Wang, Qinqin Zhang, Jingkun Jiang, Lidan Zhu, Fan Li, Tao Huang, Takashi Kimoto, Kebin He
Organosulfur and organonitrogen compounds (OrgSs and OrgNs) notably influence haze formation, reflecting the intricacies of sulfur and nitrogen chemistry in the atmospheric process. Despite this, a comprehensive understanding of OrgSs and OrgNs remains elusive. Here, we conducted molecular analyses of OrgSs and OrgNs in PM2.5 concurrently during three haze episodes in winter and summer from 2016 to 2019. OrgSs and OrgNs collectively constituted 68.8-73.8% of identified organics, with CHON (35.8%) being the most prevalent followed by CHONS (13.6%), CHN (11.5%), CHOS (5.6%), CHNS (3.2%), and CHS (0.9%). Nitrogen within CHX (CH + CHN + CHS + CHNS) compounds were predominantly present as nitriles or amines, while sulfur existed as alkaline thioethers (ESI+) or acidic mercaptans and thiophenols (ESI-). Oxygen-containing OrgSs and OrgNs exhibited greater structural complexity. Specifically, most CHON were associated with nitric esters and nitro-compounds (ESI-), or basic amino acids (ESI+). CHONS primarily comprised nitrogen heterocyclic substances containing oxygen and sulfur, with some potentially containing organic sulfates (OSs) and organic nitrates if O ≥ 4S + 3N. CHOS with (O-3S)/C ≥ 0 were identified as sulfonic acids or sulfate esters. This comprehensive spectrum of OrgSs and OrgNs enhances the understanding of the physicochemical properties of aerosols, providing insights for future laboratory and air quality model studies.
{"title":"Molecular Characterization of Organosulfur and Organonitrogen Compounds in Summer and Winter PM<sub>2.5</sub> via UHPLC-Q-Orbitrap MS/MS.","authors":"Hui Li, Fengkui Duan, Tao Ma, Yongliang Ma, Yunzhi Xu, Shuxiao Wang, Qinqin Zhang, Jingkun Jiang, Lidan Zhu, Fan Li, Tao Huang, Takashi Kimoto, Kebin He","doi":"10.1021/acs.est.4c02727","DOIUrl":"https://doi.org/10.1021/acs.est.4c02727","url":null,"abstract":"<p><p>Organosulfur and organonitrogen compounds (OrgSs and OrgNs) notably influence haze formation, reflecting the intricacies of sulfur and nitrogen chemistry in the atmospheric process. Despite this, a comprehensive understanding of OrgSs and OrgNs remains elusive. Here, we conducted molecular analyses of OrgSs and OrgNs in PM<sub>2.5</sub> concurrently during three haze episodes in winter and summer from 2016 to 2019. OrgSs and OrgNs collectively constituted 68.8-73.8% of identified organics, with CHON (35.8%) being the most prevalent followed by CHONS (13.6%), CHN (11.5%), CHOS (5.6%), CHNS (3.2%), and CHS (0.9%). Nitrogen within CHX (CH + CHN + CHS + CHNS) compounds were predominantly present as nitriles or amines, while sulfur existed as alkaline thioethers (ESI+) or acidic mercaptans and thiophenols (ESI-). Oxygen-containing OrgSs and OrgNs exhibited greater structural complexity. Specifically, most CHON were associated with nitric esters and nitro-compounds (ESI-), or basic amino acids (ESI+). CHONS primarily comprised nitrogen heterocyclic substances containing oxygen and sulfur, with some potentially containing organic sulfates (OSs) and organic nitrates if O ≥ 4S + 3N. CHOS with (O-3S)/C ≥ 0 were identified as sulfonic acids or sulfate esters. This comprehensive spectrum of OrgSs and OrgNs enhances the understanding of the physicochemical properties of aerosols, providing insights for future laboratory and air quality model studies.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}