Haotian Tang, Jinhui Ren, David M Reiner, Wenying Chen
Whether used as an alternative fuel or a clean feedstock, renewable hydrogen (H2) could facilitate the deep decarbonization of hard-to-abate sectors, which is essential to meet China's carbon neutrality target. Nevertheless, the nationwide H2 backbone networks required have not yet been fully investigated. Employing a techno-economic analysis of solar photovoltaic and wind power on a scale of 1 km combined with source-sink matching among potential multisectoral H2 hubs, this study develops a decision support system (dubbed China Shared Hydrogen Infrastructure Network Enabler (SHINE)) to explore renewable H2 layouts commensurate with China's climate ambition, accounting for varying degrees of H2 demand and reuse of oil and gas pipeline corridors. Given total H2 demand scenarios of 54, 77, and 100 Mt/yr in 2060, the total length of the proposed trunkline networks will reach roughly 11,700, 18,300, and 29,900 km, with a levelized cost of production and transport of 1.55, 1.62, and 1.72 USD/kg, respectively. Additionally, by incorporating the spatial heterogeneities and sectoral disparities of H2 deployment expansion into the model, distinct policy instruments can be crafted for the shared nationwide H2 network.
{"title":"Assessing the Hydrogen Supply and Infrastructure Needs for China's Hard-to-Abate Sectors on Its Path to Carbon Neutrality.","authors":"Haotian Tang, Jinhui Ren, David M Reiner, Wenying Chen","doi":"10.1021/acs.est.5c09918","DOIUrl":"10.1021/acs.est.5c09918","url":null,"abstract":"<p><p>Whether used as an alternative fuel or a clean feedstock, renewable hydrogen (H<sub>2</sub>) could facilitate the deep decarbonization of hard-to-abate sectors, which is essential to meet China's carbon neutrality target. Nevertheless, the nationwide H<sub>2</sub> backbone networks required have not yet been fully investigated. Employing a techno-economic analysis of solar photovoltaic and wind power on a scale of 1 km combined with source-sink matching among potential multisectoral H<sub>2</sub> hubs, this study develops a decision support system (dubbed China Shared Hydrogen Infrastructure Network Enabler (SHINE)) to explore renewable H<sub>2</sub> layouts commensurate with China's climate ambition, accounting for varying degrees of H<sub>2</sub> demand and reuse of oil and gas pipeline corridors. Given total H<sub>2</sub> demand scenarios of 54, 77, and 100 Mt/yr in 2060, the total length of the proposed trunkline networks will reach roughly 11,700, 18,300, and 29,900 km, with a levelized cost of production and transport of 1.55, 1.62, and 1.72 USD/kg, respectively. Additionally, by incorporating the spatial heterogeneities and sectoral disparities of H<sub>2</sub> deployment expansion into the model, distinct policy instruments can be crafted for the shared nationwide H<sub>2</sub> network.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146130453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coastal salt marshes (CSMs) are vital blue carbon (BC) reservoirs, yet accurately quantifying their gross primary productivity (GPP) remains challenging due to limitations in terrestrial biosphere models (TBMs), which often overlook coastal-specific processes. Here, we present SAL-GPP, a process-based model that incorporates coastal-specific modules to capture the effects of salinity and temperature stress on photosynthesis, as well as light-use efficiency across salinity gradients in diverse CSM plant species. Model validation showed strong agreement with observations, with R2 of 0.82 and model efficiencies of 0.82 and 0.74 for daily and seasonal GPP, respectively. Driven with global inputs, SAL-GPP produced high-resolution global simulations, yielding a mean annual GPP of 66.89 ± 11.68 TgC yr-1 (2011-2020), with 64% concentrated in key hotspots across the southeastern United States, western Europe, southeastern China, and Australia. From 2011 to 2016, global CSM GPP increased by 1.56 TgC yr-1, then declined, rebounded after 2018, and peaked at 71.45 ± 12.02 TgC yr-1 in 2020. Model evaluation showed that SAL-GPP outperformed existing remote sensing-based GPP products and TBMs at both site and grid levels. By explicitly incorporating coastal ecosystem dynamics, SAL-GPP supports global BC accounting and climate mitigation strategies aligned with nature-based solutions for carbon neutrality.
{"title":"Supporting Blue Carbon Accounting: A Process-Based Productivity Model for Global Salt Marshes.","authors":"Zhuoya Zhou, Tingting Li, Xiu-Qun Yang, Deliang Chen, Guangxuan Han, Xingwang Fan, Xiaosong Zhao, Siyu Wei, Bin He, Guocheng Wang, Zhangcai Qin","doi":"10.1021/acs.est.5c05527","DOIUrl":"https://doi.org/10.1021/acs.est.5c05527","url":null,"abstract":"<p><p>Coastal salt marshes (CSMs) are vital blue carbon (BC) reservoirs, yet accurately quantifying their gross primary productivity (GPP) remains challenging due to limitations in terrestrial biosphere models (TBMs), which often overlook coastal-specific processes. Here, we present SAL-GPP, a process-based model that incorporates coastal-specific modules to capture the effects of salinity and temperature stress on photosynthesis, as well as light-use efficiency across salinity gradients in diverse CSM plant species. Model validation showed strong agreement with observations, with <i>R</i><sup>2</sup> of 0.82 and model efficiencies of 0.82 and 0.74 for daily and seasonal GPP, respectively. Driven with global inputs, SAL-GPP produced high-resolution global simulations, yielding a mean annual GPP of 66.89 ± 11.68 TgC yr<sup>-1</sup> (2011-2020), with 64% concentrated in key hotspots across the southeastern United States, western Europe, southeastern China, and Australia. From 2011 to 2016, global CSM GPP increased by 1.56 TgC yr<sup>-1</sup>, then declined, rebounded after 2018, and peaked at 71.45 ± 12.02 TgC yr<sup>-1</sup> in 2020. Model evaluation showed that SAL-GPP outperformed existing remote sensing-based GPP products and TBMs at both site and grid levels. By explicitly incorporating coastal ecosystem dynamics, SAL-GPP supports global BC accounting and climate mitigation strategies aligned with nature-based solutions for carbon neutrality.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146123022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jarmo-Charles Kalinski, Bruno Ruiz Brandão da Costa, Tilman Schramm, Lance R Buckett, Laura T Carlson, Nicole R Coffey, Tito Damiani, Elias Dechent, Yasin El Abiead, Steffen Heuckeroth, Elaine K Jennings, Jan Kaesler, Naomi L Stock, Alice M Orme, Ralph R Torres, Sara Trojahn, Helen L Whelton, Yingfei Yan, Allegra T Aron, Rene M Boiteau, Ian D Bull, Pieter C Dorrestein, Duc Huy Dang, Richard P Evershed, Marta Gledhill, Gerd Gleixner, Andreas F Haas, Martin Hansen, Tilmann Harder, Ellen C Hopmans, Anitra E Ingalls, Uwe Karst, William Kew, Melissa Kido Soule, Boris P Koch, Elizabeth B Kujawinski, Oliver J Lechtenfeld, Krista Longnecker, Tomáš Pluskal, Georg Pohnert, Zachary C Redman, Albert Rivas-Ubach, Philippe Schmitt-Kopplin, Gabriel Singer, Jan Tebben, Patrick L Tomco, Nicholas D Ward, Lihini I Aluwihare, Carsten Simon, Jeffrey Hawkes, Daniel Petras
Non-targeted liquid chromatography tandem high-resolution mass spectrometry (LC-MS/MS) is increasingly applied for the structure-resolved chemical analysis of dissolved organic matter (DOM). With new developments in MS instrumentation and analysis software, the approach has gained substantial momentum over the past decade. However, achieving high-quality analytical data that is reproducible and comparable across laboratories can be a bottleneck in non-targeted metabolomics and organic matter chemical analysis, especially for data reuse in repository-scale analyses. Understanding the capabilities as well as challenges of comparing LC-MS/MS data from different laboratories is necessary for inferring global trends from public data sets. To illuminate instrumentation factors that drive differences and variability, we used a standardized data analysis pipeline, including classical (CMN) and feature-based molecular networking (FBMN), to analyze data from a ring trial by 24 laboratories on identical sample sets of algal and DOM extracts that were mixed in predefined concentrations and spiked with standards. Our results showed that data sets from similar mass spectrometer types with unified instrument parameters were qualitatively comparable, resolving the same general trends and shared mass spectral features. Interlaboratory comparability was best for high-intensity features, while low-intensity features showed greater detection variability. Our analysis also highlights challenges when comparing data from instruments with different acquisition rates or operating with less standardized methods. Lastly, we provide recommendations for data integration, public data sharing, standardization, and best practices for standardized LC-MS/MS data acquisition, which will be critical for long-term time series and intercomparability of DOM chemical analyses.
{"title":"Comparability of Liquid Chromatography Tandem Mass Spectrometry Analysis of Dissolved Organic Matter across Laboratories.","authors":"Jarmo-Charles Kalinski, Bruno Ruiz Brandão da Costa, Tilman Schramm, Lance R Buckett, Laura T Carlson, Nicole R Coffey, Tito Damiani, Elias Dechent, Yasin El Abiead, Steffen Heuckeroth, Elaine K Jennings, Jan Kaesler, Naomi L Stock, Alice M Orme, Ralph R Torres, Sara Trojahn, Helen L Whelton, Yingfei Yan, Allegra T Aron, Rene M Boiteau, Ian D Bull, Pieter C Dorrestein, Duc Huy Dang, Richard P Evershed, Marta Gledhill, Gerd Gleixner, Andreas F Haas, Martin Hansen, Tilmann Harder, Ellen C Hopmans, Anitra E Ingalls, Uwe Karst, William Kew, Melissa Kido Soule, Boris P Koch, Elizabeth B Kujawinski, Oliver J Lechtenfeld, Krista Longnecker, Tomáš Pluskal, Georg Pohnert, Zachary C Redman, Albert Rivas-Ubach, Philippe Schmitt-Kopplin, Gabriel Singer, Jan Tebben, Patrick L Tomco, Nicholas D Ward, Lihini I Aluwihare, Carsten Simon, Jeffrey Hawkes, Daniel Petras","doi":"10.1021/acs.est.5c12691","DOIUrl":"https://doi.org/10.1021/acs.est.5c12691","url":null,"abstract":"<p><p>Non-targeted liquid chromatography tandem high-resolution mass spectrometry (LC-MS/MS) is increasingly applied for the structure-resolved chemical analysis of dissolved organic matter (DOM). With new developments in MS instrumentation and analysis software, the approach has gained substantial momentum over the past decade. However, achieving high-quality analytical data that is reproducible and comparable across laboratories can be a bottleneck in non-targeted metabolomics and organic matter chemical analysis, especially for data reuse in repository-scale analyses. Understanding the capabilities as well as challenges of comparing LC-MS/MS data from different laboratories is necessary for inferring global trends from public data sets. To illuminate instrumentation factors that drive differences and variability, we used a standardized data analysis pipeline, including classical (CMN) and feature-based molecular networking (FBMN), to analyze data from a ring trial by 24 laboratories on identical sample sets of algal and DOM extracts that were mixed in predefined concentrations and spiked with standards. Our results showed that data sets from similar mass spectrometer types with unified instrument parameters were qualitatively comparable, resolving the same general trends and shared mass spectral features. Interlaboratory comparability was best for high-intensity features, while low-intensity features showed greater detection variability. Our analysis also highlights challenges when comparing data from instruments with different acquisition rates or operating with less standardized methods. Lastly, we provide recommendations for data integration, public data sharing, standardization, and best practices for standardized LC-MS/MS data acquisition, which will be critical for long-term time series and intercomparability of DOM chemical analyses.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146130420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniela Flores Gomez, Nikita Korpel, Marina Grimaldi, Coralie Carivenc, Patrick Balaguer, William Bourguet, Jorke H Kamstra
The obesity epidemic is increasingly linked to environmental factors like endocrine disrupting chemicals (EDCs). Bisphenol A (BPA), a known EDC, has been suspected to be linked to adiposity through activation of peroxisome proliferator activated receptor gamma (PPARγ), a key regulator of adipogenesis. Though many BPA alternatives have been introduced as substitutes, their effects on metabolic health remain unclear. This study aimed to investigate the mechanistic interactions of 11 BPA alternatives with PPARγ and their adipogenic potential. Using a PPARγ reporter assay, we assessed the binding affinity and activation potential of BPA alternatives, followed by X-ray crystallography of two potent activators, 4-benzyloxyphenyl 4-hydroxyphenyl sulfone (BPS4BE) and bisphenol PH (BPPH). Additionally, adipogenesis was assessed via a human mesenchymal stem cells (hMSCs) differentiation assay. Results revealed that the alternatives BPPH and BPS4BE potently activated PPARγ (BMD20 (μM): 0.23 and 0.34 respectively). Both significantly induced adipogenesis and a positive correlation was found between PPARγ activation and adipogenic differentiation. Crystallography revealed distinct binding modes for BPPH and BPS4BE compared to rosiglitazone, indicating partial agonism. These findings raise significant concerns about the safety of BPA alternatives and underscore the need for structure-based risk assessment to ensure safer substitutes.
{"title":"Mechanistic Insights of BPA Alternatives on PPARγ Binding and the Consequence on Adipocyte Differentiation.","authors":"Daniela Flores Gomez, Nikita Korpel, Marina Grimaldi, Coralie Carivenc, Patrick Balaguer, William Bourguet, Jorke H Kamstra","doi":"10.1021/acs.est.5c07043","DOIUrl":"https://doi.org/10.1021/acs.est.5c07043","url":null,"abstract":"<p><p>The obesity epidemic is increasingly linked to environmental factors like endocrine disrupting chemicals (EDCs). Bisphenol A (BPA), a known EDC, has been suspected to be linked to adiposity through activation of peroxisome proliferator activated receptor gamma (PPARγ), a key regulator of adipogenesis. Though many BPA alternatives have been introduced as substitutes, their effects on metabolic health remain unclear. This study aimed to investigate the mechanistic interactions of 11 BPA alternatives with PPARγ and their adipogenic potential. Using a PPARγ reporter assay, we assessed the binding affinity and activation potential of BPA alternatives, followed by X-ray crystallography of two potent activators, 4-benzyloxyphenyl 4-hydroxyphenyl sulfone (BPS4BE) and bisphenol PH (BPPH). Additionally, adipogenesis was assessed via a human mesenchymal stem cells (hMSCs) differentiation assay. Results revealed that the alternatives BPPH and BPS4BE potently activated PPARγ (BMD20 (μM): 0.23 and 0.34 respectively). Both significantly induced adipogenesis and a positive correlation was found between PPARγ activation and adipogenic differentiation. Crystallography revealed distinct binding modes for BPPH and BPS4BE compared to rosiglitazone, indicating partial agonism. These findings raise significant concerns about the safety of BPA alternatives and underscore the need for structure-based risk assessment to ensure safer substitutes.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146130466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yingxue Yu, Juraj Vodicka, Indranil Chowdhury, Anton F Astner, Douglas G Hayes, Markus Flury
Plastic particles present in soil are exposed to soil solutions containing a mixture of microbial metabolites, dissolved organic matter, mineral and organic colloids, as well as inorganic ions. These components can interact with plastic particles in different ways that may alter their surface properties and environmental behavior. In this study, we examined how soil solution affects the aggregation kinetics and colloidal stability of nanoplastics made from a soil-biodegradable plastic (poly(butylene adipate-co-terephthalate), PBAT) and a conventional plastic (polyethylene). Without the soil solution, both PBAT and polyethylene nanoplastics aggregated more readily in CaCl2 than in NaCl, with critical coagulation concentrations of 344 and 284 mM in NaCl and 31 and 36 mM in CaCl2, respectively. The addition of the soil solution promoted the aggregation of both nanoplastics, as evidenced by the larger aggregate sizes, despite that the critical coagulation concentrations did not decrease correspondingly. Such an increase in aggregate sizes was induced not only by the formation of an eco-corona on nanoplastics, which enhanced aggregation through polymer bridging and attractive patch-charge interactions, but also by the heteroaggregation between nanoplastics and colloids present in the soil solution. These results suggest that interaction with soil solution can promote the aggregation of nanoplastics through eco-corona formation and heteroaggregation, underlining the role of the complex interactions between nanoplastics and their surrounding matrices on the environmental behavior of nanoplastics.
{"title":"Aggregation of Nanoplastics via Eco-corona Formation and Hetero-Aggregation in Soil Solution.","authors":"Yingxue Yu, Juraj Vodicka, Indranil Chowdhury, Anton F Astner, Douglas G Hayes, Markus Flury","doi":"10.1021/acs.est.5c15210","DOIUrl":"https://doi.org/10.1021/acs.est.5c15210","url":null,"abstract":"<p><p>Plastic particles present in soil are exposed to soil solutions containing a mixture of microbial metabolites, dissolved organic matter, mineral and organic colloids, as well as inorganic ions. These components can interact with plastic particles in different ways that may alter their surface properties and environmental behavior. In this study, we examined how soil solution affects the aggregation kinetics and colloidal stability of nanoplastics made from a soil-biodegradable plastic (poly(butylene adipate-<i>co</i>-terephthalate), PBAT) and a conventional plastic (polyethylene). Without the soil solution, both PBAT and polyethylene nanoplastics aggregated more readily in CaCl<sub>2</sub> than in NaCl, with critical coagulation concentrations of 344 and 284 mM in NaCl and 31 and 36 mM in CaCl<sub>2</sub>, respectively. The addition of the soil solution promoted the aggregation of both nanoplastics, as evidenced by the larger aggregate sizes, despite that the critical coagulation concentrations did not decrease correspondingly. Such an increase in aggregate sizes was induced not only by the formation of an eco-corona on nanoplastics, which enhanced aggregation through polymer bridging and attractive patch-charge interactions, but also by the heteroaggregation between nanoplastics and colloids present in the soil solution. These results suggest that interaction with soil solution can promote the aggregation of nanoplastics through eco-corona formation and heteroaggregation, underlining the role of the complex interactions between nanoplastics and their surrounding matrices on the environmental behavior of nanoplastics.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146130493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Di(2-ethylhexyl) phthalate (DEHP) is one of the major plasticizer pollutants, and numerous studies have reported the harmful effects of DEHP on human health. However, the effects of urinary DEHP metabolites on the progression of bladder cancer remain unclear. Here, we aimed to identify the representative chemical and explore its effect and mechanism on bladder cancer progression with epidemiological and experimental methods based on the adverse outcome pathway (AOP). The quantile-based g-computation (QGC) model showed a positive association between urinary plasticizer metabolites and bladder cancer risks in older men (NHANES 2005-2018), with mono(2-ethyl-5-oxohexyl) phthalate (MEOHP, the secondary-metabolite of DEHP) identified as a main driver factor. We treated human bladder cancer cells with MEOHP at environmentally relevant concentrations (10, 100, and 1000 nM) and found that 100 nM MEOHP exposure activated a hybrid EMT (epithelial-mesenchymal transition) phenotype. Mechanically, we confirmed that the environmental dose of MEOHP increased nuclear transposition of YAP and β-catenin (molecular initiating event, MIE), thereby sustaining the hybrid EMT phenotype of bladder cancer cells through a series of key events. Our study first investigated the effects of plasticizer secondary metabolite on bladder cancer progression, highlighting the potential damage to urinary system health caused by the metabolites of environmental chemicals and providing a new perspective for the toxicity assessment of pollutants in the future.
{"title":"Environmental Dose MEOHP Promotes Bladder Cancer Progress through Hybrid EMT Mechanism: Based on the Adverse Outcome Pathway.","authors":"Yuwei Wang, Heng Ni, Sitong Dong, Yahui Shang, Zhenyan Cui, Xiaoyu Zhu, Xinxin Liu, Yu Shi, Dajing Xia, Yihua Wu","doi":"10.1021/acs.est.5c08003","DOIUrl":"https://doi.org/10.1021/acs.est.5c08003","url":null,"abstract":"<p><p>Di(2-ethylhexyl) phthalate (DEHP) is one of the major plasticizer pollutants, and numerous studies have reported the harmful effects of DEHP on human health. However, the effects of urinary DEHP metabolites on the progression of bladder cancer remain unclear. Here, we aimed to identify the representative chemical and explore its effect and mechanism on bladder cancer progression with epidemiological and experimental methods based on the adverse outcome pathway (AOP). The quantile-based <i>g</i>-computation (QGC) model showed a positive association between urinary plasticizer metabolites and bladder cancer risks in older men (NHANES 2005-2018), with mono(2-ethyl-5-oxohexyl) phthalate (MEOHP, the secondary-metabolite of DEHP) identified as a main driver factor. We treated human bladder cancer cells with MEOHP at environmentally relevant concentrations (10, 100, and 1000 nM) and found that 100 nM MEOHP exposure activated a hybrid EMT (epithelial-mesenchymal transition) phenotype. Mechanically, we confirmed that the environmental dose of MEOHP increased nuclear transposition of YAP and β-catenin (molecular initiating event, MIE), thereby sustaining the hybrid EMT phenotype of bladder cancer cells through a series of key events. Our study first investigated the effects of plasticizer secondary metabolite on bladder cancer progression, highlighting the potential damage to urinary system health caused by the metabolites of environmental chemicals and providing a new perspective for the toxicity assessment of pollutants in the future.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146130490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The desire to protect aquatic ecosystems and drinking water supplies from the adverse effects of nutrients, trace organic contaminants, and other constituents in municipal wastewater has led to a need for additional treatment, particularly in watersheds with insufficient dilution. Constructed wetlands have emerged as viable alternatives to advanced wastewater treatment processes for effluent polishing due to their low cost and ancillary benefits. Starting in the late 1980s, experiences gained from several decades of operating wetlands in small communities increased confidence that these nature-based treatment systems could be effective and reliable. As a result, investments were made in larger constructed wetlands, with surface areas greater than a million square meters (1 Mm2) and flows often exceeding 1 m3 s-1, on effluent-dominated rivers and as part of potable water reuse projects. More recently, new wetland designs have improved the constructed wetland system performance by taking advantage of sunlight-mediated processes in the water column and microbial processes on subsurface porous media. Research that provides additional insight into contaminant removal mechanisms, demonstrates long-term viability, and further improves treatment performance could expand the application of constructed wetlands to other difficult-to-solve water quality challenges, including the treatment of municipal water reuse concentrate and the mitigation of nonpoint source pollution.
{"title":"The Evolution of Constructed Wetlands from Small-Scale Effluent Polishing Solutions to an Essential Water Treatment Technology.","authors":"David L Sedlak","doi":"10.1021/acs.est.5c14647","DOIUrl":"https://doi.org/10.1021/acs.est.5c14647","url":null,"abstract":"<p><p>The desire to protect aquatic ecosystems and drinking water supplies from the adverse effects of nutrients, trace organic contaminants, and other constituents in municipal wastewater has led to a need for additional treatment, particularly in watersheds with insufficient dilution. Constructed wetlands have emerged as viable alternatives to advanced wastewater treatment processes for effluent polishing due to their low cost and ancillary benefits. Starting in the late 1980s, experiences gained from several decades of operating wetlands in small communities increased confidence that these nature-based treatment systems could be effective and reliable. As a result, investments were made in larger constructed wetlands, with surface areas greater than a million square meters (1 Mm<sup>2</sup>) and flows often exceeding 1 m<sup>3</sup> s<sup>-1</sup>, on effluent-dominated rivers and as part of potable water reuse projects. More recently, new wetland designs have improved the constructed wetland system performance by taking advantage of sunlight-mediated processes in the water column and microbial processes on subsurface porous media. Research that provides additional insight into contaminant removal mechanisms, demonstrates long-term viability, and further improves treatment performance could expand the application of constructed wetlands to other difficult-to-solve water quality challenges, including the treatment of municipal water reuse concentrate and the mitigation of nonpoint source pollution.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146122984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Achieving sustainability under accelerating climate and socioeconomic pressures requires moving beyond siloed sectoral management toward a system-thinking approach. The water-energy-food-ecosystem (WEFE) Nexus offers a holistic lens, yet most applications remain conceptual, short-term, or treat ecosystems as external constraints. This study operationalizes the WEFE Nexus by embedding ecosystems as a coequal, quantified pillar through a hydrologic-regime-based method, since streamflow is a master variable shaping riverine ecosystem health. Long-term foresight is incorporated via dynamically downscaled climate projections and Shared Socioeconomic Pathways within a coupled water and energy systems (WEAP-LEAP) model. Applied to the semiarid Sakarya Basin in Türkiye, the framework evaluates three future periods (2020-2030, 2055-2065, and 2090-2100) across seven subbasins. Results show systemic trade-offs: municipal water security remains high (>90%), but ecosystem integrity and renewable energy goals are consistently compromised. Overall, WEFE Nexus Index values (0.53-0.86) show significant spatial disparities, with arid upstream regions consistently underperforming. Strikingly, SSP2 (business-as-usual) and SSP5 (fossil-fueled growth) yield nearly identical outcomes, underscoring the systemic unsustainability of current trajectories. This framework advances nexus assessment from theory to practice by integrating reproducible metrics, scenario planning, and spatial modeling, creating a practical tool for developing adaptive and resilient sustainability strategies.
{"title":"Uncovering Systemic Dynamics through an Integrated WEFE Nexus Index across 21st Century Futures.","authors":"Zeynep Özcan, Emre Alp","doi":"10.1021/acs.est.5c11740","DOIUrl":"https://doi.org/10.1021/acs.est.5c11740","url":null,"abstract":"<p><p>Achieving sustainability under accelerating climate and socioeconomic pressures requires moving beyond siloed sectoral management toward a system-thinking approach. The water-energy-food-ecosystem (WEFE) Nexus offers a holistic lens, yet most applications remain conceptual, short-term, or treat ecosystems as external constraints. This study operationalizes the WEFE Nexus by embedding ecosystems as a coequal, quantified pillar through a hydrologic-regime-based method, since streamflow is a master variable shaping riverine ecosystem health. Long-term foresight is incorporated via dynamically downscaled climate projections and Shared Socioeconomic Pathways within a coupled water and energy systems (WEAP-LEAP) model. Applied to the semiarid Sakarya Basin in Türkiye, the framework evaluates three future periods (2020-2030, 2055-2065, and 2090-2100) across seven subbasins. Results show systemic trade-offs: municipal water security remains high (>90%), but ecosystem integrity and renewable energy goals are consistently compromised. Overall, WEFE Nexus Index values (0.53-0.86) show significant spatial disparities, with arid upstream regions consistently underperforming. Strikingly, SSP2 (business-as-usual) and SSP5 (fossil-fueled growth) yield nearly identical outcomes, underscoring the systemic unsustainability of current trajectories. This framework advances nexus assessment from theory to practice by integrating reproducible metrics, scenario planning, and spatial modeling, creating a practical tool for developing adaptive and resilient sustainability strategies.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146123083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The acceleration of industrialization has driven the increased emission of volatile organic compounds (VOCs), posing significant threats to both the ecological environment and public health. The deficiency of reactive oxygen species fundamentally restricts the low-temperature catalytic toluene combustion in transition-metal oxide catalysts. Herein, we report a strategy for intelligently designing active Cu+-Ov-Ti ensembles by coupling isolated Cu with adjacent oxygen vacancy, which can synergistically activate chemisorbed O2 into reactive superoxide species (O2-). The defective Cu/TiO2-x catalyst exhibited remarkable catalytic performance for toluene oxidation, achieving a T90 of 225 °C, significantly 100 °C lower than that of the pristine Cu/TiO2 catalyst. The low coordination geometry and electron transfer within Cu+-Ov-Ti ensembles synergistically activated O2 to form the Cu-(O-O)ad-Ti bridged superoxide O2- intermediate with an elongated O═O bond. In addition, the distinctive Cu-(O-O)ad-Ti bridging structure with localized electrons facilitated the chemisorbed O2 dissociation into electrophilic monatomic O- species, which subsequently nucleophilically attack the methyl C-H of toluene. These benzyl alcohol-derived Ph-CH2-O- intermediates can be readily and flexibly converted into reactive benzaldehyde and benzoic acid species, which were available for subsequent aromatic ring-opening reactions. This study not only advances mechanistic insights into the Cu+-Ov-Ti ensembles and electrophilic O- species in toluene catalytic oxidation but also establishes a design Cu+-Ov-Ti principle for engineering efficient VOC elimination catalysts.
随着工业化进程的加快,挥发性有机化合物(VOCs)的排放不断增加,对生态环境和公众健康构成重大威胁。活性氧缺乏从根本上制约了过渡金属氧化物催化剂中低温催化甲苯燃烧的发展。在此,我们报告了一种智能设计活性Cu+- ov - ti系综的策略,通过将分离的Cu与邻近的氧空位偶联,可以协同激活化学吸附的O2成为活性超氧化物(O2-)。缺陷Cu/TiO2-x催化剂对甲苯的氧化表现出显著的催化性能,T90为225℃,比原始Cu/TiO2催化剂显著降低100℃。Cu+- ov - ti系综中的低配位几何和电子转移协同激活O2,形成具有延长O = O键的Cu-(O-O)ad-Ti桥接的超氧化物O2-中间体。此外,独特的Cu-(O-O)和ti桥接结构与局部电子促进化学吸收的O2解离成亲电的单原子O-物种,随后亲核攻击甲苯的甲基C-H。这些苯甲醇衍生的Ph-CH2-O中间体可以很容易和灵活地转化为活性苯甲醛和苯甲酸,可用于随后的芳开环反应。本研究不仅对甲苯催化氧化过程中Cu+- ov - ti系群和亲电性O-组分的机理有了深入的了解,而且还建立了Cu+- ov - ti的设计原理,用于设计高效的VOC消除催化剂。
{"title":"Tailoring Cu<sup>+</sup>-O<sub>v</sub>-Ti Ensembles with Electrophilic O<sup>-</sup> Species for Enhanced Catalytic Toluene Oxidation.","authors":"Yarong Fang, Shiqi Ma, Zhixin Yu, Liangwei Li, Yiqing Zeng, Jiahao Chen, Shipeng Wan, Ji Yang, Yanbing Guo, Zhaoxiang Zhong","doi":"10.1021/acs.est.5c14437","DOIUrl":"https://doi.org/10.1021/acs.est.5c14437","url":null,"abstract":"<p><p>The acceleration of industrialization has driven the increased emission of volatile organic compounds (VOCs), posing significant threats to both the ecological environment and public health. The deficiency of reactive oxygen species fundamentally restricts the low-temperature catalytic toluene combustion in transition-metal oxide catalysts. Herein, we report a strategy for intelligently designing active Cu<sup>+</sup>-O<sub>v</sub>-Ti ensembles by coupling isolated Cu with adjacent oxygen vacancy, which can synergistically activate chemisorbed O<sub>2</sub> into reactive superoxide species (O<sub>2</sub><sup>-</sup>). The defective Cu/TiO<sub>2-<i>x</i></sub> catalyst exhibited remarkable catalytic performance for toluene oxidation, achieving a <i>T</i><sub>90</sub> of 225 °C, significantly 100 °C lower than that of the pristine Cu/TiO<sub>2</sub> catalyst. The low coordination geometry and electron transfer within Cu<sup>+</sup>-O<sub>v</sub>-Ti ensembles synergistically activated O<sub>2</sub> to form the Cu-(O-O)<sub>ad</sub>-Ti bridged superoxide O<sub>2</sub><sup>-</sup> intermediate with an elongated O═O bond. In addition, the distinctive Cu-(O-O)<sub>ad</sub>-Ti bridging structure with localized electrons facilitated the chemisorbed O<sub>2</sub> dissociation into electrophilic monatomic O<sup>-</sup> species, which subsequently nucleophilically attack the methyl C-H of toluene. These benzyl alcohol-derived Ph-CH<sub>2</sub>-O<sup>-</sup> intermediates can be readily and flexibly converted into reactive benzaldehyde and benzoic acid species, which were available for subsequent aromatic ring-opening reactions. This study not only advances mechanistic insights into the Cu<sup>+</sup>-O<sub>v</sub>-Ti ensembles and electrophilic O<sup>-</sup> species in toluene catalytic oxidation but also establishes a design Cu<sup>+</sup>-O<sub>v</sub>-Ti principle for engineering efficient VOC elimination catalysts.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146123011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Improving carbon productivity is essential for simultaneously achieving sustainable development goals and tackling climate change. While the Global Value Chains (GVCs) division enhances productive efficiency, its impact on carbon productivity remains elusive. Here we integrated the GVCs theory with the Environmental Expanded Input-output model to investigate the highly globalized automotive manufacturing industry. We found that CO2 emissions intensity, the inverse of carbon productivity, fluctuated between 0.37 and 0.47 kg/USD in automotive manufacturing GVCs during 2001-2021. Notably, developing economies nearly doubled their CO2 emissions intensity during this period, whereas developed economies almost halved theirs. The global distribution of CO2 emissions and value added is becoming increasingly unequal in industrial production and service segments. Lower production levels and energy efficiency in developing economies, coupled with their upstream roles in GVCs (raw materials and industrial parts suppliers), exacerbate these disparities. Our findings indicate that merely global labor division is insufficient to create low-carbon automotive manufacturing GVCs. Formulating emission reduction targets that consider the diverse roles of economies within GVCs, and supporting developing economies in boosting energy productivity, labor value added efficiency, and skill can help narrow the distribution gaps and enhance the carbon productivity of the entire automotive manufacturing GVCs.
{"title":"The Globalized Automotive Industries Have Failed to Improve the Overall Carbon Productivity but Exhibit a Polarized Distribution.","authors":"Ailin Kang, Xin Tian, Zhifu Mi, Kailan Tian, Yiling Xiong, Andrea Appolloni, Ludi Liu, Xin Sun, Yiqing Huang, Songyan Wang, Pingdan Zhang","doi":"10.1021/acs.est.5c12491","DOIUrl":"https://doi.org/10.1021/acs.est.5c12491","url":null,"abstract":"<p><p>Improving carbon productivity is essential for simultaneously achieving sustainable development goals and tackling climate change. While the Global Value Chains (GVCs) division enhances productive efficiency, its impact on carbon productivity remains elusive. Here we integrated the GVCs theory with the Environmental Expanded Input-output model to investigate the highly globalized automotive manufacturing industry. We found that CO<sub>2</sub> emissions intensity, the inverse of carbon productivity, fluctuated between 0.37 and 0.47 kg/USD in automotive manufacturing GVCs during 2001-2021. Notably, developing economies nearly doubled their CO<sub>2</sub> emissions intensity during this period, whereas developed economies almost halved theirs. The global distribution of CO<sub>2</sub> emissions and value added is becoming increasingly unequal in industrial production and service segments. Lower production levels and energy efficiency in developing economies, coupled with their upstream roles in GVCs (raw materials and industrial parts suppliers), exacerbate these disparities. Our findings indicate that merely global labor division is insufficient to create low-carbon automotive manufacturing GVCs. Formulating emission reduction targets that consider the diverse roles of economies within GVCs, and supporting developing economies in boosting energy productivity, labor value added efficiency, and skill can help narrow the distribution gaps and enhance the carbon productivity of the entire automotive manufacturing GVCs.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146123098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}