Aviation is under tremendous pressure to mitigate its impacts on the climate, but the best response strategies are unknown today due to deep uncertainties. How low-emission fuels will scale to levels relevant for the industry, along with the best strategies for managing contrails and other non-CO2 effects, are unknowable today with unknown cost and disruption. A conventional risk-based approach that involves investment across a known set of options is unworkable; instead, we argue that an experimentalist approach is needed that addresses deep uncertainties head on. This hinges on four key factors: a critical mass of actors facing strong incentives to identify solutions, a wide search for alternatives through experiments, periodic assessments, and adjustment of goals and strategies. Present strategies do not give enough attention to higher-risk alternatives with disruptive potential, because those approaches have few political and organizational supporters. Small groups of highly motivated actors─such as the nascent coalition of first movers on clean aviation already forming in Europe and the U.S.─could initiate an experimentalist program. The challenges of the aviation sector mirror other hard-to-abate sectors, making this framework potentially applicable to a wider set of sectors where technological, business, and investment choices are shrouded in deep uncertainty.
Environmental contaminants pose a significant selection pressure across taxa, potentiating evolved resistance to chemicals. However, rapid evolution may alter molecular and physiological homeostasis leading to trade-offs. To elucidate molecular underpinnings of evolved chemical resistance, we compared liver gene expression and methylation profiles in polycyclic aromatic hydrocarbon (PAH)-adapted Atlantic killifish (Fundulus heteroclitus) in the Republic site (RP), Elizabeth River, Virginia with PAH-sensitive Kings Creek (KC) fish. We found 1607 differentially expressed and 2252 alternatively spliced genes between RP and KC, with highly enriched genes involving lipid and amino acid metabolism, respectively. While 308 genes had differentially methylated regions, only 13 of these genes were differentially expressed. The aryl hydrocarbon receptor 2b gene (ahr2b) was differentially methylated and expressed, as well as alternatively spliced signifying its critical role in mediating PAH tolerance. Notably, the intrapopulation coefficient of variation (CoV) was lower in 82% of 17,566 expressed genes in RP fish compared to KC fish. Among other pathways, these genes with low CoV were highly enriched in bioenergetic processes inferring reduced metabolic physiological variation as a population in RP fish. Altered metabolic gene expression and overall reduced gene expression variance in RP fish warrant further studies on fitness trade-offs including altered susceptibility to other stressors associated with rapid adaptation to anthropogenic pressures.
Energy system optimization models facilitate analyses on a national or regional scale. However, understanding the impacts of climate policy on specific populations requires a much higher spatial resolution. Here, we link an energy system optimization model to an integrated assessment model via an emission downscaling algorithm, translating air pollution emissions from nine U.S. regions to U.S. counties. We simulate the impacts of six distinct policy scenarios, including a current policy and a 2050 net-zero target, on NOx, SO2, and PM2.5 emissions from on-road transportation and electricity generation. We compare different policies based on their ability to reduce emission exposure and exposure disparity across racial groups, allowing decision-makers to assess the air pollution impacts of various policy instruments more holistically. Modeled policies include a clean electricity standard, an on-road ICE vehicle ban, a carbon tax, and a scenario that reaches net-zero GHG emissions by 2050. While exposure and disparities decrease in all scenarios, our results reveal persistent disparities until at least 2040, particularly for Black non-Hispanic Americans. Our estimates of avoided deaths due to air pollution emphasize the importance of policy timing, showing that thousands of lives can be saved by taking action in the near-term.
Magnetite nanoparticles (MNPs) play an important role in geological and environmental systems because of their redox reactivity and ability to sequester a wide range of metals and metalloids. X-ray absorption spectroscopy conducted at metal and metalloid edges has suggested that the magnetite {111} faces of octahedrally shaped nanoparticles play a dominant role in the redox and sorption processes of these elements. However, studies directly probing the magnetite surfaces, especially in their fully solvated state, are scarce. Therefore, we investigated the speciation and stability over a wide Eh/pH range of octahedrally shaped MNPs of 2 nm size by means of Kohn-Sham density functional theory with Hubbard correction (DFT+U). By altering the protonation state of the crystals, a redox-sensitive response of the octahedrally coordinated Fe could be achieved. Furthermore, the preferential H distribution could be identified, highlighting the difference between the edges, vertices, and facets of the nanocrystals. Subsequently, the interactions of the MNPs with a solvent of pure water or a 0.5 M NaCl solution were studied by classical molecular dynamics (MD) simulations. Finally, a comparison of the corresponding macroscopic magnetite (111) surface to the investigated MNPs was conducted.
Biochar is widely regarded as a recalcitrant carbon pool. However, the impact of freeze-thaw cycle events on its storage capacity, particularly on the release of dissolved black carbon (DBC), has remained poorly investigated. This study investigated the release behavior of DBC from biochar pyrolyzed at 300-700 °C during freeze-thaw cycles and their retention capacity in soil. Freeze-thaw cycles dramatically promoted DBC release (33.08-230.74 mg C L-1), exhibiting an order of magnitude higher than those without freeze-thaw process. The release kinetics of freeze-thaw-induced DBC varied depending on the pyrolysis temperature of biochar due to the different disintegration mechanisms. Interestingly, the retention capacity of freeze-thaw-induced DBC in soil showed a reduction ranging from 7.7 to 29.5% compared to DBC without the freeze-thaw process. This reduction can be attributed to numerous hydrophilic low-molecular-weight compounds (16.97-75.31%) in freeze-thaw-induced DBC, as evidenced by the results of size exclusion chromatography, fluorescence excitation/emission matrix, Fourier transform infrared spectroscopy, and nuclear magnetic resonance. These compounds tend to concentrate in the aqueous phase rather than being retained in the soil, potentially exacerbating the outflow of dissolved organic carbon. These findings clarify the release behavior of DBC during freeze-thaw cycles and reveal their contribution to the attenuation of carbon pools in cold regions.