Zeyu Cai, Chuanxin Ma, Yi Hao, Weili Jia, Yini Cao, Honghong Wu, Xinxin Xu, Lanfang Han, Chunyang Li, Heping Shang, Anqi Liang, Jason C. White, Baoshan Xing
Cerium dioxide nanoparticles (CeO2 NPs) have enzyme-like properties and scavenge excess ROS induced by stressors such as drought. However, the underlying molecular mechanisms by which CeO2 NPs enhance drought resistance are unknown. In this work, both foliar application and soil injection of CeO2 NPs were used to rice seedlings under a 30 day moderate drought (40% soil relative moisture). Foliar application of 4 mg of CeO2 NPs per pot reduced excess reactive oxygen species and abscisic acid (ABA) in rice leaves, thereby maintaining chloroplast structural integrity and photosynthetic output, ultimately increasing drought-stressed rice biomass by 31.3%. Genes associated with photosynthesis and ribosome activity provided the foundation by which CeO2 NPs enhanced rice drought resistance. Importantly, these genes were tightly regulated by ABA due to the large number of abscisic acid responsive elements in their promoter regions. CeO2 NPs also upregulated the expression of soluble sugar and fatty acid synthesis associated genes in drought-stressed rice, thereby contributing to osmotic balance and membrane lipid stability. These results highlight the potential of CeO2 NPs to enhance rice photosynthesis and drought-resistant biomolecule accumulation by regulating ABA-dependent responses. This work provides further evidence demonstrating nanomaterials have great potential to sustainably promote stress resistance and climate resilient crops.
{"title":"Molecular Evidence of CeO2 Nanoparticle Modulation of ABA and Genes Containing ABA-Responsive Cis-Elements to Promote Rice Drought Resistance","authors":"Zeyu Cai, Chuanxin Ma, Yi Hao, Weili Jia, Yini Cao, Honghong Wu, Xinxin Xu, Lanfang Han, Chunyang Li, Heping Shang, Anqi Liang, Jason C. White, Baoshan Xing","doi":"10.1021/acs.est.4c08485","DOIUrl":"https://doi.org/10.1021/acs.est.4c08485","url":null,"abstract":"Cerium dioxide nanoparticles (CeO<sub>2</sub> NPs) have enzyme-like properties and scavenge excess ROS induced by stressors such as drought. However, the underlying molecular mechanisms by which CeO<sub>2</sub> NPs enhance drought resistance are unknown. In this work, both foliar application and soil injection of CeO<sub>2</sub> NPs were used to rice seedlings under a 30 day moderate drought (40% soil relative moisture). Foliar application of 4 mg of CeO<sub>2</sub> NPs per pot reduced excess reactive oxygen species and abscisic acid (ABA) in rice leaves, thereby maintaining chloroplast structural integrity and photosynthetic output, ultimately increasing drought-stressed rice biomass by 31.3%. Genes associated with photosynthesis and ribosome activity provided the foundation by which CeO<sub>2</sub> NPs enhanced rice drought resistance. Importantly, these genes were tightly regulated by ABA due to the large number of abscisic acid responsive elements in their promoter regions. CeO<sub>2</sub> NPs also upregulated the expression of soluble sugar and fatty acid synthesis associated genes in drought-stressed rice, thereby contributing to osmotic balance and membrane lipid stability. These results highlight the potential of CeO<sub>2</sub> NPs to enhance rice photosynthesis and drought-resistant biomolecule accumulation by regulating ABA-dependent responses. This work provides further evidence demonstrating nanomaterials have great potential to sustainably promote stress resistance and climate resilient crops.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"80 1","pages":""},"PeriodicalIF":9.028,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142696762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Minna Saaristo, Christopher P. Johnstone, Phoebe Lewis, Simon Sharp, Timothy Chaston, Molly Hoak, Paul Leahy, Darren Cottam, Luke Noble, John Leeder, Mark Patrick Taylor
During major flood events, waterborne contaminants are relatively poorly characterized. This is due to logistical difficulties associated with obtaining water samples in potentially dangerous flood conditions. Herein, we report analyses of water samples from a large, flooded landscape in Victoria, Australia, during a major flood event. We collected 83 samples from seven rivers and 18 river locations as far apart as 520 km. The sampling campaign covered a 26-day window, with 3 samples taken weekly from each site. Floodwater samples were analyzed for 778 contaminants and 544 microbial species were identified using eDNA. Our study shows that 85 contaminants were detected in floodwaters. Fungicides, phthalates, plant macronutrients, metal(loid)s and PPCPs were better explained by land uses, whereas herbicides and insecticides were explained by a mixture of land use and water flow data. Potentially pathogenic orders with the highest detection rates were Enterobacterales (82.4%), Mycobacteriales (70.6%) and Legionellales (58.8%). Contaminants and microbial signatures responded to rainfall, water flow and water level, demonstrating increased and varied human and environmental risks of exposure during the sampling window. Our work underlines the importance of rigorous and timely monitoring and provides an evidence-base for decision making during increasingly frequent and intense climate driven flood events.
{"title":"Spatial and Temporal Dynamics of Chemical and Microbial Contamination in Nonurban Floodwaters","authors":"Minna Saaristo, Christopher P. Johnstone, Phoebe Lewis, Simon Sharp, Timothy Chaston, Molly Hoak, Paul Leahy, Darren Cottam, Luke Noble, John Leeder, Mark Patrick Taylor","doi":"10.1021/acs.est.4c03875","DOIUrl":"https://doi.org/10.1021/acs.est.4c03875","url":null,"abstract":"During major flood events, waterborne contaminants are relatively poorly characterized. This is due to logistical difficulties associated with obtaining water samples in potentially dangerous flood conditions. Herein, we report analyses of water samples from a large, flooded landscape in Victoria, Australia, during a major flood event. We collected 83 samples from seven rivers and 18 river locations as far apart as 520 km. The sampling campaign covered a 26-day window, with 3 samples taken weekly from each site. Floodwater samples were analyzed for 778 contaminants and 544 microbial species were identified using eDNA. Our study shows that 85 contaminants were detected in floodwaters. Fungicides, phthalates, plant macronutrients, metal(loid)s and PPCPs were better explained by land uses, whereas herbicides and insecticides were explained by a mixture of land use and water flow data. Potentially pathogenic orders with the highest detection rates were Enterobacterales (82.4%), Mycobacteriales (70.6%) and Legionellales (58.8%). Contaminants and microbial signatures responded to rainfall, water flow and water level, demonstrating increased and varied human and environmental risks of exposure during the sampling window. Our work underlines the importance of rigorous and timely monitoring and provides an evidence-base for decision making during increasingly frequent and intense climate driven flood events.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"16 1","pages":""},"PeriodicalIF":9.028,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142696760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoxia Feng, Wenzhuo Xu, Xiaomeng Ji, Jiefeng Liang, Xiaoyun Liu, Xueke Liu, Chunguang Liu, Guangbo Qu, Runzeng Liu
The occurrence of organophosphorus compounds has garnered global concern due to their widespread production and potential environmental risks. Limited structural information has hindered a comprehensive understanding of their composition. By characteristic fragmentation-based nontarget analysis, the occurrence and composition of organothiophosphate esters (OTPEs), which are antiwear additives in lubricant oils that have received little attention previously, were investigated in dust from automotive repair shops and surrounding buildings. Fourteen OTPEs were tentatively identified, including four triarylphosphorothionates, six O,O-dialkyl phosphorothioates, and four O-alkyl O-alkyl sulfone phosphorothioates, among which four OTPEs were further confirmed by authentic standards or an industrial product. Triphenyl phosphorothioate (TPhPt) and tris(2,4-di-tert-butylphenyl) phosphorothioate (AO168=S) were prevalently detected in automotive repair shops with median concentrations of 230 and 246 ng/g, respectively, closely comparable to triphenyl phosphate (TPhP, median concentration: 302 ng/g). O,O-Dihexyl phosphorothioate (DHPt), O,O-dioctyl phosphorothioate (DOPt), O-hexyl O-hexyl sulfone phosphorothioate (DHSPt), and O-octyl O-octyl sulfone phosphorothioate (DOSPt) were the abundant analogues in automotive repair shops with semiquantitative median concentrations in the range of 119–1.05 × 103 ng/g. Hierarchical cluster analysis showed that OTPEs exhibited similar distribution patterns across automotive repair shops, indicating that these chemicals had similar sources. Moreover, the concentrations of OTPEs were usually higher in automotive repair shops than that in surrounding buildings, suggesting a motor vehicle related emission source. To our knowledge, 12 out of the 14 detected OPTEs were reported in the environment for the first time. The discovery of these OTPEs expanded the scope of known organophosphorus pollutants, highlighting the potential contaminants of OTPEs from lubricant oils for automotive and industrial applications.
{"title":"First Evidence of Novel Organothiophosphate Esters as Prevalent New Pollutants in Dust from Automotive Repair Shops Discovered by High-Resolution Mass Spectrometry","authors":"Xiaoxia Feng, Wenzhuo Xu, Xiaomeng Ji, Jiefeng Liang, Xiaoyun Liu, Xueke Liu, Chunguang Liu, Guangbo Qu, Runzeng Liu","doi":"10.1021/acs.est.4c09683","DOIUrl":"https://doi.org/10.1021/acs.est.4c09683","url":null,"abstract":"The occurrence of organophosphorus compounds has garnered global concern due to their widespread production and potential environmental risks. Limited structural information has hindered a comprehensive understanding of their composition. By characteristic fragmentation-based nontarget analysis, the occurrence and composition of organothiophosphate esters (OTPEs), which are antiwear additives in lubricant oils that have received little attention previously, were investigated in dust from automotive repair shops and surrounding buildings. Fourteen OTPEs were tentatively identified, including four triarylphosphorothionates, six <i>O</i>,<i>O</i>-dialkyl phosphorothioates, and four <i>O</i>-alkyl <i>O</i>-alkyl sulfone phosphorothioates, among which four OTPEs were further confirmed by authentic standards or an industrial product. Triphenyl phosphorothioate (TPhPt) and tris(2,4-di-<i>tert</i>-butylphenyl) phosphorothioate (AO168=S) were prevalently detected in automotive repair shops with median concentrations of 230 and 246 ng/g, respectively, closely comparable to triphenyl phosphate (TPhP, median concentration: 302 ng/g). <i>O,O</i>-Dihexyl phosphorothioate (DHPt), <i>O,O</i>-dioctyl phosphorothioate (DOPt), <i>O</i>-hexyl <i>O</i>-hexyl sulfone phosphorothioate (DHSPt), and <i>O-</i>octyl <i>O</i>-octyl sulfone phosphorothioate (DOSPt) were the abundant analogues in automotive repair shops with semiquantitative median concentrations in the range of 119–1.05 × 10<sup>3</sup> ng/g. Hierarchical cluster analysis showed that OTPEs exhibited similar distribution patterns across automotive repair shops, indicating that these chemicals had similar sources. Moreover, the concentrations of OTPEs were usually higher in automotive repair shops than that in surrounding buildings, suggesting a motor vehicle related emission source. To our knowledge, 12 out of the 14 detected OPTEs were reported in the environment for the first time. The discovery of these OTPEs expanded the scope of known organophosphorus pollutants, highlighting the potential contaminants of OTPEs from lubricant oils for automotive and industrial applications.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"6 1","pages":""},"PeriodicalIF":9.028,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142696964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microbial interactions form microfood webs, crucial for ecological functions. The steady state of these webs, shaped by cooperation and competition among trophic levels, prevents pathogen proliferation and invasion, maintaining soil health. Combined pollutants pose a widespread environmental issue, exerting significant pressure on microfood webs. However, understanding how these webs respond to combined pollutants in soil plastispheres, an emerging niche, remains limited. This study explores trophic interactions among bacteria, fungi, and protists, examining their effects on potential pathogens in three soil types amended with Cu or disinfectant, along with their plastispheres, using a microcosm experiment. Pollutant exposure disrupts trophic-level interactions through bottom-up and top-down regulation in soils and plastispheres, respectively. Microfood web network topology parameters prove more sensitive to pollutant stress than indicators from a single trophic-level community composition. Combined exposure causes greater disruption to the microfood web than exposure to a single pollutant (Cu or didecyl dimethylammonium chloride (DDAC)). Plastisphere reinforces negative impacts of combined pollutant exposure on the microfood web network, escalating potential pathogenic bacteria. Overall, this study deepens our understanding of microfood web responses under pollutant pressure in soil plastispheres and provides valuable insights for health risk assessments of soil combined pollutants.
{"title":"Soil Plastisphere Reinforces the Adverse Effect of Combined Pollutant Exposure on the Microfood Web","authors":"Bang Ni, Da Lin, Tiangui Cai, Shuai Du, Dong Zhu","doi":"10.1021/acs.est.4c07773","DOIUrl":"https://doi.org/10.1021/acs.est.4c07773","url":null,"abstract":"Microbial interactions form microfood webs, crucial for ecological functions. The steady state of these webs, shaped by cooperation and competition among trophic levels, prevents pathogen proliferation and invasion, maintaining soil health. Combined pollutants pose a widespread environmental issue, exerting significant pressure on microfood webs. However, understanding how these webs respond to combined pollutants in soil plastispheres, an emerging niche, remains limited. This study explores trophic interactions among bacteria, fungi, and protists, examining their effects on potential pathogens in three soil types amended with Cu or disinfectant, along with their plastispheres, using a microcosm experiment. Pollutant exposure disrupts trophic-level interactions through bottom-up and top-down regulation in soils and plastispheres, respectively. Microfood web network topology parameters prove more sensitive to pollutant stress than indicators from a single trophic-level community composition. Combined exposure causes greater disruption to the microfood web than exposure to a single pollutant (Cu or didecyl dimethylammonium chloride (DDAC)). Plastisphere reinforces negative impacts of combined pollutant exposure on the microfood web network, escalating potential pathogenic bacteria. Overall, this study deepens our understanding of microfood web responses under pollutant pressure in soil plastispheres and provides valuable insights for health risk assessments of soil combined pollutants.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"68 Supplement 1","pages":""},"PeriodicalIF":9.028,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Linna Xie, Jie Yu, Pranav Nair, Jianxian Sun, Holly Barrett, Oliver Meek, Xing Qian, Diwen Yang, Lisa Kennedy, Derek Kozakiewicz, Chunyan Hao, John D. Hansen, Justin B. Greer, Jonathan P. D. Abbatt, Hui Peng
The tire-rubber-derived ozonation product of N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD), N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine-quinone (6PPD-Q), was recently discovered to cause acute mortality in coho salmon (Oncorhynchus kisutch). para-Phenylenediamines (PPDs) with variable side chains distinct from 6PPD have been identified as potential replacement antioxidants, but their toxicities remain unclear under environmentally relevant ozone conditions. We herein tested the multiphase gas-surface ozone reactivity of four select PPDs [6PPD, N-isopropyl-N′-phenyl-p-phenylenediamine (IPPD), N,N′-diphenyl-p-phenylenediamine (DPPD), and N-phenyl-N′-cyclohexyl-p-phenylenediamine (CPPD)] and evaluated the toxicity of their reaction mixtures in coho salmon, rainbow trout (Oncorhynchus mykiss), and fathead minnow (Pimephales promelas). 6PPD and IPPD were found to rapidly react with ozone, while no significant multiphase ozone reactivity was observed for DPPD or CPPD. The viability of coho salmon CSE-119 cells was strongly affected by the ozonolysis products of 6PPD but not by those of the other three PPDs. Acute mortality was only observed in juvenile rainbow trout that were exposed to oxidized 6PPD, suggesting a common mechanism of toxic action in the two salmonid fish species. This study reports the structurally selective ozone reactivity of PPDs and the unique toxicity of 6PPD ozonolysis mixtures, which demonstrates that other PPDs are potential alternative antioxidants.
{"title":"Structurally Selective Ozonolysis of p-Phenylenediamines and Toxicity in Coho Salmon and Rainbow Trout","authors":"Linna Xie, Jie Yu, Pranav Nair, Jianxian Sun, Holly Barrett, Oliver Meek, Xing Qian, Diwen Yang, Lisa Kennedy, Derek Kozakiewicz, Chunyan Hao, John D. Hansen, Justin B. Greer, Jonathan P. D. Abbatt, Hui Peng","doi":"10.1021/acs.est.4c04817","DOIUrl":"https://doi.org/10.1021/acs.est.4c04817","url":null,"abstract":"The tire-rubber-derived ozonation product of <i>N</i>-(1,3-dimethylbutyl)-<i>N</i>′-phenyl-<i>p</i>-phenylenediamine (6PPD), <i>N</i>-(1,3-dimethylbutyl)-<i>N</i>′-phenyl-<i>p</i>-phenylenediamine-quinone (6PPD-Q), was recently discovered to cause acute mortality in coho salmon (<i>Oncorhynchus kisutch</i>). <i>para</i>-Phenylenediamines (PPDs) with variable side chains distinct from 6PPD have been identified as potential replacement antioxidants, but their toxicities remain unclear under environmentally relevant ozone conditions. We herein tested the multiphase gas-surface ozone reactivity of four select PPDs [6PPD, <i>N</i>-isopropyl-<i>N</i>′-phenyl-<i>p</i>-phenylenediamine (IPPD), <i>N</i>,<i>N</i>′-diphenyl-<i>p</i>-phenylenediamine (DPPD), and <i>N</i>-phenyl-<i>N</i>′-cyclohexyl-<i>p</i>-phenylenediamine (CPPD)] and evaluated the toxicity of their reaction mixtures in coho salmon, rainbow trout (<i>Oncorhynchus mykiss</i>), and fathead minnow (<i>Pimephales promelas</i>). 6PPD and IPPD were found to rapidly react with ozone, while no significant multiphase ozone reactivity was observed for DPPD or CPPD. The viability of coho salmon CSE-119 cells was strongly affected by the ozonolysis products of 6PPD but not by those of the other three PPDs. Acute mortality was only observed in juvenile rainbow trout that were exposed to oxidized 6PPD, suggesting a common mechanism of toxic action in the two salmonid fish species. This study reports the structurally selective ozone reactivity of PPDs and the unique toxicity of 6PPD ozonolysis mixtures, which demonstrates that other PPDs are potential alternative antioxidants.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"163 1","pages":""},"PeriodicalIF":9.028,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhipeng Qi, Yue Zhai, Yi Han, Keying Li, Tianchen Wang, Peng Li, Jianan Li, Xiaomai Zhou, Xinying Zhao, Weiyi Song
Estrogens play a crucial role in regulating various biological responses during the early stages of neurodevelopment. Benzophenone-2 (BP2), a widely used organic ultraviolet (UV) filter, has been proven as an estrogenic compound, whereas the estrogenic effects of BP2 on neurodevelopment remain largely unknown. Here, we investigated the neurodevelopmental toxicity of BP2 by exposing zebrafish embryos from 2 to 120 h postfertilization (hpf) at environmentally relevant concentrations. We demonstrated that early life exposure to BP2 induced multiple concentration-dependent impairments in the nervous system, including hypoactivity, abnormal brain morphology, impaired neurocyte proliferation, shortened axon, and increased neurocyte apoptosis. Moreover, metabolomic profiling revealed a decrease in dopamine (DA) and its metabolites in BP2-treated larvae. Using E2 treatment and morpholino knockdown assays, we provided strong genetic evidence that the BP2-induced behavioral disorders were associated with estrogen-dependent signaling, especially estrogen receptors 2a and 2b (esr2). Subsequently, transcriptomic profiling indicated that the activation of esr2 further inhibited the expression of LIM homeobox transcription factor 1 β a (lmx1ba), which is vital for normal neurodevelopment. Consistently, the overexpression of lmx1ba and inhibition of esr2 obviously alleviated BP2-caused neurotoxicity, uncovering a seminal role of esr2 and lmx1ba in BP2-induced neurodevelopmental toxicity. Our findings provide the first evidence in fish that BP2 can induce neurodevelopmental deficits and brain dysfunction and offer novel insights into the mechanisms of toxicity of BP2 as well as other emerging benzophenones.
{"title":"Genetic Evidence for Estrogenic Effects of Benzophenone-2 on Zebrafish Neurodevelopment and Its Signaling Mechanism","authors":"Zhipeng Qi, Yue Zhai, Yi Han, Keying Li, Tianchen Wang, Peng Li, Jianan Li, Xiaomai Zhou, Xinying Zhao, Weiyi Song","doi":"10.1021/acs.est.4c06892","DOIUrl":"https://doi.org/10.1021/acs.est.4c06892","url":null,"abstract":"Estrogens play a crucial role in regulating various biological responses during the early stages of neurodevelopment. Benzophenone-2 (BP2), a widely used organic ultraviolet (UV) filter, has been proven as an estrogenic compound, whereas the estrogenic effects of BP2 on neurodevelopment remain largely unknown. Here, we investigated the neurodevelopmental toxicity of BP2 by exposing zebrafish embryos from 2 to 120 h postfertilization (hpf) at environmentally relevant concentrations. We demonstrated that early life exposure to BP2 induced multiple concentration-dependent impairments in the nervous system, including hypoactivity, abnormal brain morphology, impaired neurocyte proliferation, shortened axon, and increased neurocyte apoptosis. Moreover, metabolomic profiling revealed a decrease in dopamine (DA) and its metabolites in BP2-treated larvae. Using E2 treatment and morpholino knockdown assays, we provided strong genetic evidence that the BP2-induced behavioral disorders were associated with estrogen-dependent signaling, especially estrogen receptors 2a and 2b (<i>esr2</i>). Subsequently, transcriptomic profiling indicated that the activation of <i>esr2</i> further inhibited the expression of LIM homeobox transcription factor 1 β a (<i>lmx1ba)</i>, which is vital for normal neurodevelopment. Consistently, the overexpression of <i>lmx1ba</i> and inhibition of <i>esr2</i> obviously alleviated BP2-caused neurotoxicity, uncovering a seminal role of <i>esr2</i> and <i>lmx1ba</i> in BP2-induced neurodevelopmental toxicity. Our findings provide the first evidence in fish that BP2 can induce neurodevelopmental deficits and brain dysfunction and offer novel insights into the mechanisms of toxicity of BP2 as well as other emerging benzophenones.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"1 1","pages":""},"PeriodicalIF":9.028,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Assessing the fate of contaminants in the environment requires a deep understanding of intrinsic adsorption mechanisms on natural minerals such as Fe-oxyhydroxides. In this study, we proposed an innovative approach to probe site heterogeneities on the goethite surface by comparing the adsorption behavior of rare earth elements (REEs, including Sc, Y, and all lanthanides; Ln) except Pm, as well as Th and U. A surface loading-dependent adsorption of Ln and Y was observed, with a shift from (i) preferential middle to heavy REE adsorption and (ii) limited to substantial fractionation between Y and Ho as the loading increased. These observations are likely attributable to the formation of strong and weak complexes onto the (021) and (110)/(100) goethite faces at low and high loadings, respectively. Additionally, Ce-anomaly, characteristic of Ce(III) partial oxidation to Ce(IV), was observed only at high loading. By drawing an analogy with Th(IV) and Sc(III), Ce(IV) is expected to outcompete Ln(III) and Y adsorptions and stabilize primarily at the strong sites on the (021) face, even under conditions of high loading. The outcome of this study, supported by charge distribution-multisite complexation (CD-MUSIC) calculation, provides new insights into the impact of facet-dependent adsorption and redox processes on Fe-oxyhydroxides.
评估污染物在环境中的归宿需要深入了解铁氧氢氧化物等天然矿物的内在吸附机制。在这项研究中,我们提出了一种创新方法,通过比较稀土元素(REEs,包括 Sc、Y 和除 Pm 以外的所有镧系元素;Ln)以及 Th 和 U 的吸附行为来探究鹅绿泥石表面的位点异质性。观察到 Ln 和 Y 的吸附与表面负荷有关,随着负荷的增加,吸附从(i)优先吸附中重稀土元素转变为(ii)Y 和 Ho 之间的有限分馏到大量分馏。这些观察结果可能是由于在低负荷和高负荷时,分别在(021)和(110)/(100)鹅绿泥石面上形成了强络合物和弱络合物。此外,只有在高负载时才观察到 Ce(III)部分氧化为 Ce(IV)的特征--Ce 异常。与 Th(IV) 和 Sc(III) 相似,即使在高负载条件下,Ce(IV) 也会竞争 Ln(III) 和 Y 的吸附,并主要稳定在 (021) 面的强位点上。这项研究的结果得到了电荷分布-多位复性(CD-MUSIC)计算的支持,为了解面依赖性吸附和氧化还原过程对 Fe-oxyhydroxides 的影响提供了新的见解。
{"title":"Facet-Dependent Adsorption of Rare Earth Elements (REEs) and Actinides onto Goethite: REE Pattern Variability and Cerium Anomaly","authors":"Muqeet Iqbal, Keran Zhang, Mélanie Davranche, Aline Dia, Lionel Dutruch, Delphine Vantelon, Gildas Ratié, Benoit Maxit, Khalil Hanna, Rémi Marsac","doi":"10.1021/acs.est.4c04406","DOIUrl":"https://doi.org/10.1021/acs.est.4c04406","url":null,"abstract":"Assessing the fate of contaminants in the environment requires a deep understanding of intrinsic adsorption mechanisms on natural minerals such as Fe-oxyhydroxides. In this study, we proposed an innovative approach to probe site heterogeneities on the goethite surface by comparing the adsorption behavior of rare earth elements (REEs, including Sc, Y, and all lanthanides; Ln) except Pm, as well as Th and U. A surface loading-dependent adsorption of Ln and Y was observed, with a shift from (i) preferential middle to heavy REE adsorption and (ii) limited to substantial fractionation between Y and Ho as the loading increased. These observations are likely attributable to the formation of strong and weak complexes onto the (021) and (110)/(100) goethite faces at low and high loadings, respectively. Additionally, Ce-anomaly, characteristic of Ce(III) partial oxidation to Ce(IV), was observed only at high loading. By drawing an analogy with Th(IV) and Sc(III), Ce(IV) is expected to outcompete Ln(III) and Y adsorptions and stabilize primarily at the strong sites on the (021) face, even under conditions of high loading. The outcome of this study, supported by charge distribution-multisite complexation (CD-MUSIC) calculation, provides new insights into the impact of facet-dependent adsorption and redox processes on Fe-oxyhydroxides.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"61 1","pages":""},"PeriodicalIF":9.028,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adam Gallaher, Sarah M. Klionsky, Yan Chen, Brian Becker, Mark C. Urban
Solar energy is expected to play a large role in decarbonization of the energy sector globally. In the United States, solar energy is forecasted to generate roughly 45% of the electricity by 2050. Although solar energy mitigates the negative effects of climate change by providing electricity without releasing greenhouse gases, little is known about the implications of solar energy development for ecosystem services. In this study, we developed a spatially explicit, techno-ecological solar suitability model consisting of six scenarios designed to evaluate the trade-offs between ground-mounted solar energy generation and multiple ecosystem services. By incorporating solar suitability modeling with ecosystem service evaluation, we develop a method that provides a comprehensive understanding of potential techno-ecological trade-offs. To test our methodology, we used Connecticut (USA) as a study site for analyzing the potential trade-offs of future solar energy facilities, but the methods can be widely applied. Our results suggest that well-sited solar energy development can decrease sediment and nutrient export while offsetting carbon emissions from power plants. This study provides a holistic assessment of incorporating ecosystem services in future solar energy development decision-making and presents an approach for minimizing trade-offs and maximizing sustainable outcomes.
{"title":"Incorporating Ecosystem Services into Solar Energy Siting to Enhance Sustainable Energy Transitions","authors":"Adam Gallaher, Sarah M. Klionsky, Yan Chen, Brian Becker, Mark C. Urban","doi":"10.1021/acs.est.4c07894","DOIUrl":"https://doi.org/10.1021/acs.est.4c07894","url":null,"abstract":"Solar energy is expected to play a large role in decarbonization of the energy sector globally. In the United States, solar energy is forecasted to generate roughly 45% of the electricity by 2050. Although solar energy mitigates the negative effects of climate change by providing electricity without releasing greenhouse gases, little is known about the implications of solar energy development for ecosystem services. In this study, we developed a spatially explicit, techno-ecological solar suitability model consisting of six scenarios designed to evaluate the trade-offs between ground-mounted solar energy generation and multiple ecosystem services. By incorporating solar suitability modeling with ecosystem service evaluation, we develop a method that provides a comprehensive understanding of potential techno-ecological trade-offs. To test our methodology, we used Connecticut (USA) as a study site for analyzing the potential trade-offs of future solar energy facilities, but the methods can be widely applied. Our results suggest that well-sited solar energy development can decrease sediment and nutrient export while offsetting carbon emissions from power plants. This study provides a holistic assessment of incorporating ecosystem services in future solar energy development decision-making and presents an approach for minimizing trade-offs and maximizing sustainable outcomes.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"4 1","pages":""},"PeriodicalIF":9.028,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sustainable photocatalysis can effectively reduce the radioactive 99TcO4– to less soluble TcO2·nH2O(s), but the reduction efficiency is highly susceptible to coexisting nitrate (NO3–). Here, we quantitatively investigate photocatalytic remediation conditions for Tc-contaminated water stimulated by the analogue perrhenate (ReO4–) in the presence of NO3–, and we elucidate the influence mechanism of NO3– by in situ characterizations. The interfering NO3– can compete with Re(VII) for the carbonyl radical (·CO2–) produced by formic acid (HCOOH) oxidation to generate nitrogen-containing products such as NH4+, NO2–, and NOx, resulting in the decrease in the Re(VII) reduction ratio. Under the conditions of 4% (volume ratio) HCOOH and pH = 3, the yield of NOx is the lowest, and the selectivity of N2 reaches 93%, which makes the overall reaction more in line with the pollution-free concept. The X-ray absorption fine structure reveals that the redox product Re(IV) mainly exists in the form of ReO2·nH2O(s) and is accompanied by a decrease with the increase in NO3– concentration. Re(VII)/Tc(VII) reduction suffers from a serious interferential effect of NO3–, whereas the higher the concentration of NO3–, the more conducive to slowing down the reoxidation of the reduction products, which is advantageous for the subsequent sequestration or separation.
{"title":"Antagonistic Effect of Nitrate Conversion on Photocatalytic Reduction of Aqueous Pertechnetate and Perrhenate","authors":"Yanyan Chen, Hao Deng, Pengliang Liang, Heng Yang, Long Jiang, Jing Yin, Jia Liu, Shuying Shi, Huiqiang Liu, Yuxiang Li, Ying Xiong","doi":"10.1021/acs.est.4c09431","DOIUrl":"https://doi.org/10.1021/acs.est.4c09431","url":null,"abstract":"Sustainable photocatalysis can effectively reduce the radioactive <sup>99</sup>TcO<sub>4</sub><sup>–</sup> to less soluble TcO<sub>2</sub>·<i>n</i>H<sub>2</sub>O(s), but the reduction efficiency is highly susceptible to coexisting nitrate (NO<sub>3</sub><sup>–</sup>). Here, we quantitatively investigate photocatalytic remediation conditions for Tc-contaminated water stimulated by the analogue perrhenate (ReO<sub>4</sub><sup>–</sup>) in the presence of NO<sub>3</sub><sup>–</sup>, and we elucidate the influence mechanism of NO<sub>3</sub><sup>–</sup> by in situ characterizations. The interfering NO<sub>3</sub><sup>–</sup> can compete with Re(VII) for the carbonyl radical (·CO<sub>2</sub><sup>–</sup>) produced by formic acid (HCOOH) oxidation to generate nitrogen-containing products such as NH<sub>4</sub><sup>+</sup>, NO<sub>2</sub><sup>–</sup>, and NO<sub><i>x</i></sub>, resulting in the decrease in the Re(VII) reduction ratio. Under the conditions of 4% (volume ratio) HCOOH and pH = 3, the yield of NO<sub><i>x</i></sub> is the lowest, and the selectivity of N<sub>2</sub> reaches 93%, which makes the overall reaction more in line with the pollution-free concept. The X-ray absorption fine structure reveals that the redox product Re(IV) mainly exists in the form of ReO<sub>2</sub>·<i>n</i>H<sub>2</sub>O(s) and is accompanied by a decrease with the increase in NO<sub>3</sub><sup>–</sup> concentration. Re(VII)/Tc(VII) reduction suffers from a serious interferential effect of NO<sub>3</sub><sup>–</sup>, whereas the higher the concentration of NO<sub>3</sub><sup>–</sup>, the more conducive to slowing down the reoxidation of the reduction products, which is advantageous for the subsequent sequestration or separation.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"13 1","pages":""},"PeriodicalIF":9.028,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clouds and fogs, consisting of tiny water droplets formed by the condensation of water in supersaturated air, are vital in atmospheric chemistry, as they facilitate multiphase reactions. While measuring high-altitude cloud is challenging, fog as ground-level clouds offer a unique opportunity for direct observation. In this study, we explored radiation fogs in the North China Plain using an advanced aerosol-fog sampling system to measure the chemical and physical properties of both inactivated interstitial aerosols and activated fog droplet residues. Our findings revealed that efficient nitrate formation primarily occurred on fog interstitial aerosols rather than within fog droplets, with observed fog interstitial aerosol nitrate net production rates reaching up to 3.6 μg m–3 h–1. Box model simulations identified the hydrolysis of NO2 and N2O5 as key pathways for nitrate formation. NO2 hydrolysis was often overlooked in previous studies, contributing 40–79 and 57–76% to total nitrate production during nighttime and daytime fog periods. This oversight suggests that substantial nitrate formation through hydrolysis reactions involving interstitial aerosols may have been neglected. Our results highlight the need for further research into the chemistry of cloud and fog interstitial aerosols and their inclusion in atmospheric chemistry models.
{"title":"Efficient Nitrate Formation in Fog Events Implicates Fog Interstitial Aerosols as Significant Drivers of Atmospheric Chemistry","authors":"Wanyun Xu, Ye Kuang, Weiqi Xu, Li Liu, Hanbing Xu, Xinfeng Wang, Yusi Liu, Hongbing Cheng, Xiaoyi Zhang, Miaomiao Zhai, Chang Liu, Linlin Liang, Gen Zhang, Biao Luo, Jiangchuan Tao, Junwen Liu, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Pengfei Liu, Xiaobin Xu, Yele Sun","doi":"10.1021/acs.est.4c09078","DOIUrl":"https://doi.org/10.1021/acs.est.4c09078","url":null,"abstract":"Clouds and fogs, consisting of tiny water droplets formed by the condensation of water in supersaturated air, are vital in atmospheric chemistry, as they facilitate multiphase reactions. While measuring high-altitude cloud is challenging, fog as ground-level clouds offer a unique opportunity for direct observation. In this study, we explored radiation fogs in the North China Plain using an advanced aerosol-fog sampling system to measure the chemical and physical properties of both inactivated interstitial aerosols and activated fog droplet residues. Our findings revealed that efficient nitrate formation primarily occurred on fog interstitial aerosols rather than within fog droplets, with observed fog interstitial aerosol nitrate net production rates reaching up to 3.6 μg m<sup>–3</sup> h<sup>–1</sup>. Box model simulations identified the hydrolysis of NO<sub>2</sub> and N<sub>2</sub>O<sub>5</sub> as key pathways for nitrate formation. NO<sub>2</sub> hydrolysis was often overlooked in previous studies, contributing 40–79 and 57–76% to total nitrate production during nighttime and daytime fog periods. This oversight suggests that substantial nitrate formation through hydrolysis reactions involving interstitial aerosols may have been neglected. Our results highlight the need for further research into the chemistry of cloud and fog interstitial aerosols and their inclusion in atmospheric chemistry models.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"233 1","pages":""},"PeriodicalIF":9.028,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}