Pub Date : 2014-05-05DOI: 10.1109/PLANS.2014.6851506
Daniel P. Shepard, T. Humphreys
A novel navigation system for obtaining high-precision globally-referenced position and attitude is presented and analyzed. The system is centered on a bundle-adjustment-based visual simultaneous localization and mapping (SLAM) algorithm which incorporates carrier-phase differential GPS (CDGPS) position measurements into the bundle adjustment in addition to measurements of point features identified in a subset of the camera images, referred to as keyframes. To track the motion of the camera in real-time, a navigation filter is employed which utilizes the point feature measurements from all non-keyframes, the point feature positions estimated by bundle adjustment, and inertial measurements. Simulations have shown that the system obtains centimeter-level or better absolute positioning accuracy and sub-degree-level absolute attitude accuracy in open outdoor areas. Moreover, the position and attitude solution only drifts slightly with the distance traveled when the system transitions to a GPS-denied environment (e.g., when the navigation system is carried indoors). A novel technique for initializing the globally-referenced bundle adjustment algorithm is also presented which solves the problem of relating the coordinate systems for position estimates based on two disparate sensors while accounting for the distance between the sensors. Simulation results are presented for the globally-referenced bundle adjustment algorithm which demonstrate its performance in the challenging scenario of walking through a hallway where GPS signals are unavailable.
{"title":"High-precision globally-referenced position and attitude via a fusion of visual SLAM, carrier-phase-based GPS, and inertial measurements","authors":"Daniel P. Shepard, T. Humphreys","doi":"10.1109/PLANS.2014.6851506","DOIUrl":"https://doi.org/10.1109/PLANS.2014.6851506","url":null,"abstract":"A novel navigation system for obtaining high-precision globally-referenced position and attitude is presented and analyzed. The system is centered on a bundle-adjustment-based visual simultaneous localization and mapping (SLAM) algorithm which incorporates carrier-phase differential GPS (CDGPS) position measurements into the bundle adjustment in addition to measurements of point features identified in a subset of the camera images, referred to as keyframes. To track the motion of the camera in real-time, a navigation filter is employed which utilizes the point feature measurements from all non-keyframes, the point feature positions estimated by bundle adjustment, and inertial measurements. Simulations have shown that the system obtains centimeter-level or better absolute positioning accuracy and sub-degree-level absolute attitude accuracy in open outdoor areas. Moreover, the position and attitude solution only drifts slightly with the distance traveled when the system transitions to a GPS-denied environment (e.g., when the navigation system is carried indoors). A novel technique for initializing the globally-referenced bundle adjustment algorithm is also presented which solves the problem of relating the coordinate systems for position estimates based on two disparate sensors while accounting for the distance between the sensors. Simulation results are presented for the globally-referenced bundle adjustment algorithm which demonstrate its performance in the challenging scenario of walking through a hallway where GPS signals are unavailable.","PeriodicalId":371808,"journal":{"name":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","volume":"98 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124736934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-05-05DOI: 10.1109/PLANS.2014.6851511
Qian Li, Yueyang Ben, F. Sun, Liang Huo
Common mechanizations are not applicable for a marine strapdown Inertial Navigation System (INS) in Polar Region. Aiming at this problem, transversal strapdown INS mechanization and corresponding damping technology are proposed in this paper to replace common strapdown INS mechanizations. The transversal coordinate system is constructed for the mechanization of transversal strapdown INS, and then an error analysis for transversal strapdown INS is performed. The error analysis for transversal strapdown INS reveals the fact that the system also includes three kinds of periodic oscillating errors as common strapdown INS. To restrain the periodic oscillating errors, damping equalizers applicable to transversal strapdown INS are designed with reference velocity compensating the effect of ship motion. Finally simulation test is carried out to demonstrate the performance of transversal strapdown INS and damping technology in Polar Region.
{"title":"Transversal strapdown INS and damping technology for marine in polar region","authors":"Qian Li, Yueyang Ben, F. Sun, Liang Huo","doi":"10.1109/PLANS.2014.6851511","DOIUrl":"https://doi.org/10.1109/PLANS.2014.6851511","url":null,"abstract":"Common mechanizations are not applicable for a marine strapdown Inertial Navigation System (INS) in Polar Region. Aiming at this problem, transversal strapdown INS mechanization and corresponding damping technology are proposed in this paper to replace common strapdown INS mechanizations. The transversal coordinate system is constructed for the mechanization of transversal strapdown INS, and then an error analysis for transversal strapdown INS is performed. The error analysis for transversal strapdown INS reveals the fact that the system also includes three kinds of periodic oscillating errors as common strapdown INS. To restrain the periodic oscillating errors, damping equalizers applicable to transversal strapdown INS are designed with reference velocity compensating the effect of ship motion. Finally simulation test is carried out to demonstrate the performance of transversal strapdown INS and damping technology in Polar Region.","PeriodicalId":371808,"journal":{"name":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","volume":"212 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132369070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-05-05DOI: 10.1109/PLANS.2014.6851449
B. Schipper
This paper describes a method to observe the likely presence of multipath errors and mitigate them from the computation of the GNSS position solution.
本文描述了一种从GNSS位置解的计算中观察可能存在的多径误差并减轻它们的方法。
{"title":"Multipath detection and mitigation leveraging the growing GNSS constellation","authors":"B. Schipper","doi":"10.1109/PLANS.2014.6851449","DOIUrl":"https://doi.org/10.1109/PLANS.2014.6851449","url":null,"abstract":"This paper describes a method to observe the likely presence of multipath errors and mitigate them from the computation of the GNSS position solution.","PeriodicalId":371808,"journal":{"name":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131541431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-05-05DOI: 10.1109/PLANS.2014.6851490
E. Brewer, Gavin Haentjens, V. Gavrilets, G. McGraw
Several aerial platforms rely on decimeter-level relative position accuracy for various applications including automatic takeoff and landing, precision targeting, and airborne refueling. For such applications, a Real Time Kinematic (RTK) GPS system provides a relatively low cost, robust, and reliable solution. Current commercial RTK products are inherently susceptible to jamming and spoofing. The Selective Availability Anti-Spoof Module (SAASM) implementations to date typically relied on relatively large and complicated architectures which would be difficult to port into a small (Groups 1-3) Unmanned Aircraft System (UAS) due to Size, Weight, and Power (SWaP) constraints. This paper describes the architecture, algorithms, and testing approach from Rockwell Collins high integrity relative navigation system including a SAASM-based RTK implementation for small UAS. A variant of the system was implemented for the Navy's Small Tactical Unmanned Aircraft System (STUAS) program. The STUAS system performed its first successful ship-based launch and recoveries on the U.S.S. Mesa Verde using Rockwell Collins high integrity relative navigation system in February of 2013.
{"title":"A low SWaP implementation of high integrity relative navigation for small UAS","authors":"E. Brewer, Gavin Haentjens, V. Gavrilets, G. McGraw","doi":"10.1109/PLANS.2014.6851490","DOIUrl":"https://doi.org/10.1109/PLANS.2014.6851490","url":null,"abstract":"Several aerial platforms rely on decimeter-level relative position accuracy for various applications including automatic takeoff and landing, precision targeting, and airborne refueling. For such applications, a Real Time Kinematic (RTK) GPS system provides a relatively low cost, robust, and reliable solution. Current commercial RTK products are inherently susceptible to jamming and spoofing. The Selective Availability Anti-Spoof Module (SAASM) implementations to date typically relied on relatively large and complicated architectures which would be difficult to port into a small (Groups 1-3) Unmanned Aircraft System (UAS) due to Size, Weight, and Power (SWaP) constraints. This paper describes the architecture, algorithms, and testing approach from Rockwell Collins high integrity relative navigation system including a SAASM-based RTK implementation for small UAS. A variant of the system was implemented for the Navy's Small Tactical Unmanned Aircraft System (STUAS) program. The STUAS system performed its first successful ship-based launch and recoveries on the U.S.S. Mesa Verde using Rockwell Collins high integrity relative navigation system in February of 2013.","PeriodicalId":371808,"journal":{"name":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132149705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-05-05DOI: 10.1109/PLANS.2014.6851455
R. H. Wu, S. A. Davidson
An Alternative Positioning Navigation and Timing concept, called Diverse Ranging (DivR) is proposed for sustaining NextGen Performance Based Navigation and Automatic Dependent Surveillance - Broadcast during Global Navigation Satellite System outages. The system consists of a network of ground stations providing navigation signaling services to aircraft. The service is provided by using ground stations to selectively reply to the spontaneous broadcast messages of a small subset of aircraft. These new messages allow avionics to calculate positions in two modes - the Direct-Reply (DR) mode and Non-Reply (NR) mode. The DR mode is used by aircraft receiving addressed replies from the ground stations and is based on observed round-trip range measurements. The NR mode is used by aircraft receiving ground station replies that are addressed to other aircraft, and the processing is based on pseudorange and echoed pseudorange measurements. Timing signal broadcasts are also sent by the ground stations, which are synchronized using aircrafts' position broadcasts. The following analyses were conducted in order to characterize the performance of DivR: (1) nominal error overbounding and a preliminary Fault Modes and Effects Analysis, (2) initial integrity and continuity risk allocations based on Targeted Level of Safety Fault Tree Analysis, (3) theoretical derivations of the Navigation System Error (NSE) and Horizontal Protection Level (HPL) performance bounds, and (4) a terminal case study based on Washington Dulles International Airport for which the NSE, nominal-condition HPL, and spectrum impact were analyzed. The results show that DivR meets the required navigation accuracy and integrity requirements under nominal conditions for terminal operations in both low and high interference environments, with 99% availability and a 1-sec update interval. Further analyses are required to evaluate the performance under faulted conditions and evaluate time to alert and continuity performance. Timing service synchronization accuracy is expected to be sub-microsecond.
{"title":"An Alternative Positioning Navigation and Timing concept based on Diverse Ranging","authors":"R. H. Wu, S. A. Davidson","doi":"10.1109/PLANS.2014.6851455","DOIUrl":"https://doi.org/10.1109/PLANS.2014.6851455","url":null,"abstract":"An Alternative Positioning Navigation and Timing concept, called Diverse Ranging (DivR) is proposed for sustaining NextGen Performance Based Navigation and Automatic Dependent Surveillance - Broadcast during Global Navigation Satellite System outages. The system consists of a network of ground stations providing navigation signaling services to aircraft. The service is provided by using ground stations to selectively reply to the spontaneous broadcast messages of a small subset of aircraft. These new messages allow avionics to calculate positions in two modes - the Direct-Reply (DR) mode and Non-Reply (NR) mode. The DR mode is used by aircraft receiving addressed replies from the ground stations and is based on observed round-trip range measurements. The NR mode is used by aircraft receiving ground station replies that are addressed to other aircraft, and the processing is based on pseudorange and echoed pseudorange measurements. Timing signal broadcasts are also sent by the ground stations, which are synchronized using aircrafts' position broadcasts. The following analyses were conducted in order to characterize the performance of DivR: (1) nominal error overbounding and a preliminary Fault Modes and Effects Analysis, (2) initial integrity and continuity risk allocations based on Targeted Level of Safety Fault Tree Analysis, (3) theoretical derivations of the Navigation System Error (NSE) and Horizontal Protection Level (HPL) performance bounds, and (4) a terminal case study based on Washington Dulles International Airport for which the NSE, nominal-condition HPL, and spectrum impact were analyzed. The results show that DivR meets the required navigation accuracy and integrity requirements under nominal conditions for terminal operations in both low and high interference environments, with 99% availability and a 1-sec update interval. Further analyses are required to evaluate the performance under faulted conditions and evaluate time to alert and continuity performance. Timing service synchronization accuracy is expected to be sub-microsecond.","PeriodicalId":371808,"journal":{"name":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132756986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-05-05DOI: 10.1109/PLANS.2014.6851509
M. Piras, A. Lingua, P. Dabove, I. Aicardi
Today knowing where we are has become an important issue for people who interactively and dynamically live and work in urban cities. Each user has a very complete and complex set of technologies for positioning and navigating in his/her hands which are simple to use even if they are not good at positioning or in Geomatics. Accelerometers, gyroscopes, magnetometers, pressure sensors, GNSS receivers, digital cameras are all tools which can be used for defining a three-dimensional position and their integration could be the key point of this technology. Indoor positioning is the latest challenge to be used whenever GNSS positioning is not always available or null, even using high sensitivity sensors. An alternative solution must be found starting from determining the other available solutions in Smartphone devices. An example of indoor positioning could be obtained by using the Image Based Navigation (IBN) approach, where the coordinates of our device are defined using the photogrammetric principle. Several papers demonstrate that IBN can be an useful approach for positioning and how the device in Smartphones can work indoors. In this study, the authors attempt to combine the IBN method with the potentiality of Smartphone internal sensors, in order to verify their performance in indoor positioning.
{"title":"Indoor navigation using Smartphone technology: A future challenge or an actual possibility?","authors":"M. Piras, A. Lingua, P. Dabove, I. Aicardi","doi":"10.1109/PLANS.2014.6851509","DOIUrl":"https://doi.org/10.1109/PLANS.2014.6851509","url":null,"abstract":"Today knowing where we are has become an important issue for people who interactively and dynamically live and work in urban cities. Each user has a very complete and complex set of technologies for positioning and navigating in his/her hands which are simple to use even if they are not good at positioning or in Geomatics. Accelerometers, gyroscopes, magnetometers, pressure sensors, GNSS receivers, digital cameras are all tools which can be used for defining a three-dimensional position and their integration could be the key point of this technology. Indoor positioning is the latest challenge to be used whenever GNSS positioning is not always available or null, even using high sensitivity sensors. An alternative solution must be found starting from determining the other available solutions in Smartphone devices. An example of indoor positioning could be obtained by using the Image Based Navigation (IBN) approach, where the coordinates of our device are defined using the photogrammetric principle. Several papers demonstrate that IBN can be an useful approach for positioning and how the device in Smartphones can work indoors. In this study, the authors attempt to combine the IBN method with the potentiality of Smartphone internal sensors, in order to verify their performance in indoor positioning.","PeriodicalId":371808,"journal":{"name":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115219581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-05-05DOI: 10.1109/PLANS.2014.6851366
Joseph T. Hansen, J. Cross, D. Jourdan
In this paper we present Sierra Nevada Corporation's (SNC) Generalized Information Fusion Filter (GIFF). GIFF is a robust, sensor-agnostic estimation framework designed to blend measurements from a variety of sensors to produce an optimal estimate of the navigation state. At the core of GIFF is a Rao-Blackwellized (or marginalized) Particle Filter (RB-PF) with specialized Auxiliary Sampling Importance Resampling (ASIR). This algorithm places no limitation on the number of sensors it can use or on the linearity and error characteristics of their measurements, as opposed to more rigid, traditional techniques like Kalman Filters. This enables GIFF to process data from sensors of various kinds directly (3D radar/LIDAR, 2D surveillance radar, EO/IR, radar-altimeter, GPS, IMU, etc.), with minimal pre-processing. In addition, the marginalized implementation enables a large number of states to be estimated in real-time. We illustrate GIFF flexibility and performance using actual sensor data collected on fixed- and rotary-wing platforms equipped with an imaging radar producing 3D points and 2D images, a radar-altimeter, and an IMU. En-route tests show near-optimal accuracy is achieved during a one-hour flight over Virginia with a simulated GPS outage. GIFF is also initialized with large position uncertainty (5km) and shown to converge after only 30 seconds of flight. GIFF performance during terminal operations (landing) is illustrated using data collected on approaches to the Reno Stead airport, showing an accuracy similar to GPS 60 seconds before touchdown.
{"title":"Robust en-route and terminal navigation using topology and intensity returns from a forward-looking millimeter-wave radar","authors":"Joseph T. Hansen, J. Cross, D. Jourdan","doi":"10.1109/PLANS.2014.6851366","DOIUrl":"https://doi.org/10.1109/PLANS.2014.6851366","url":null,"abstract":"In this paper we present Sierra Nevada Corporation's (SNC) Generalized Information Fusion Filter (GIFF). GIFF is a robust, sensor-agnostic estimation framework designed to blend measurements from a variety of sensors to produce an optimal estimate of the navigation state. At the core of GIFF is a Rao-Blackwellized (or marginalized) Particle Filter (RB-PF) with specialized Auxiliary Sampling Importance Resampling (ASIR). This algorithm places no limitation on the number of sensors it can use or on the linearity and error characteristics of their measurements, as opposed to more rigid, traditional techniques like Kalman Filters. This enables GIFF to process data from sensors of various kinds directly (3D radar/LIDAR, 2D surveillance radar, EO/IR, radar-altimeter, GPS, IMU, etc.), with minimal pre-processing. In addition, the marginalized implementation enables a large number of states to be estimated in real-time. We illustrate GIFF flexibility and performance using actual sensor data collected on fixed- and rotary-wing platforms equipped with an imaging radar producing 3D points and 2D images, a radar-altimeter, and an IMU. En-route tests show near-optimal accuracy is achieved during a one-hour flight over Virginia with a simulated GPS outage. GIFF is also initialized with large position uncertainty (5km) and shown to converge after only 30 seconds of flight. GIFF performance during terminal operations (landing) is illustrated using data collected on approaches to the Reno Stead airport, showing an accuracy similar to GPS 60 seconds before touchdown.","PeriodicalId":371808,"journal":{"name":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115243534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-05-05DOI: 10.1109/PLANS.2014.6851497
Y. Stebler, S. Guerrier, J. Skaloud, R. Molinari, Maria-Pia Victoria-Feser
This paper aims at studying the behaviour of the errors coming from inertial sensors when measured in dynamic conditions. After proposing a method for constructing the error process, the properties of these errors are estimated via the Generalized Method of Wavelets Moments methodology. The developed model parameters are compared to those obtained under static conditions. Finally an attempted is presented to find the link between the encountered dynamic of the vehicle and error-model parameters.
{"title":"Study of MEMS-based inertial sensors operating in dynamic conditions","authors":"Y. Stebler, S. Guerrier, J. Skaloud, R. Molinari, Maria-Pia Victoria-Feser","doi":"10.1109/PLANS.2014.6851497","DOIUrl":"https://doi.org/10.1109/PLANS.2014.6851497","url":null,"abstract":"This paper aims at studying the behaviour of the errors coming from inertial sensors when measured in dynamic conditions. After proposing a method for constructing the error process, the properties of these errors are estimated via the Generalized Method of Wavelets Moments methodology. The developed model parameters are compared to those obtained under static conditions. Finally an attempted is presented to find the link between the encountered dynamic of the vehicle and error-model parameters.","PeriodicalId":371808,"journal":{"name":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","volume":"312 5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115359133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-05-05DOI: 10.1109/plans.2014.6851445
Myriam Foucras, Bertrand Ekambi, Fayaz Bacard, O. Julien, C. Macabiau
This article focuses on the bit sign transition and its impact on the acquisition performance in terms of probability of detection. To do so, a theoretical study on the correlation process considering bit sign transition is done leading to the expression of the probability of detection, expressed in function of the bit transition location. Based on this, Monte-Carlo simulations were run to determine the acquisition performance degradations in terms of sensitivity losses and probability of detection for several GNSS civil signals. This allows determining the optimal acquisition parameters when bit sign transitions are considered during the acquisition process.
{"title":"Optimal GNSS acquisition parameters when considering bit transitions","authors":"Myriam Foucras, Bertrand Ekambi, Fayaz Bacard, O. Julien, C. Macabiau","doi":"10.1109/plans.2014.6851445","DOIUrl":"https://doi.org/10.1109/plans.2014.6851445","url":null,"abstract":"This article focuses on the bit sign transition and its impact on the acquisition performance in terms of probability of detection. To do so, a theoretical study on the correlation process considering bit sign transition is done leading to the expression of the probability of detection, expressed in function of the bit transition location. Based on this, Monte-Carlo simulations were run to determine the acquisition performance degradations in terms of sensitivity losses and probability of detection for several GNSS civil signals. This allows determining the optimal acquisition parameters when bit sign transitions are considered during the acquisition process.","PeriodicalId":371808,"journal":{"name":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","volume":"498 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121159180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-05-05DOI: 10.1109/PLANS.2014.6851514
M. J. Jørgensen, Dario Paccagnan, N. K. Poulsen, M. Larsen
This paper treats the IMU calibration and validation problem in three settings: Factory production line with the aid of a precision multi-axis turntable, in-the-field on land and at sea, both without specialist test equipment. The treatment is limited to the IMU calibration parameters of key relevance for gyro-compassing grade optical gyroscopes and force-rebalanced pendulous accelerometers: Scale factor, bias and sensor axes misalignments. Focus is on low-dynamic marine applications e.g., subsea construction and survey. Two different methods of calibration are investigated: Kalman smoothing using an Aided Inertial Navigation System (AINS) framework, augmenting the error state Kalman filter (ESKF) to include the full set of IMU calibration parameters and a least squares approach, where the calibration parameters are determined by minimizing the magnitude of the INS error differential equation output. A method of evaluating calibrations is introduced and discussed. The two calibration methods are evaluated for factory use and results compared to a legacy proprietary method as well as in-field calibration/verification on land and at sea. The calibration methods shows similar navigation performance as the proprietary method. This validates both methods for factory calibration. Furthermore it is shown that the AINS method can calibrate in-field on land and at sea without the use of a precision multi-axis turntable.
{"title":"IMU calibration and validation in a factory, remote on land and at sea","authors":"M. J. Jørgensen, Dario Paccagnan, N. K. Poulsen, M. Larsen","doi":"10.1109/PLANS.2014.6851514","DOIUrl":"https://doi.org/10.1109/PLANS.2014.6851514","url":null,"abstract":"This paper treats the IMU calibration and validation problem in three settings: Factory production line with the aid of a precision multi-axis turntable, in-the-field on land and at sea, both without specialist test equipment. The treatment is limited to the IMU calibration parameters of key relevance for gyro-compassing grade optical gyroscopes and force-rebalanced pendulous accelerometers: Scale factor, bias and sensor axes misalignments. Focus is on low-dynamic marine applications e.g., subsea construction and survey. Two different methods of calibration are investigated: Kalman smoothing using an Aided Inertial Navigation System (AINS) framework, augmenting the error state Kalman filter (ESKF) to include the full set of IMU calibration parameters and a least squares approach, where the calibration parameters are determined by minimizing the magnitude of the INS error differential equation output. A method of evaluating calibrations is introduced and discussed. The two calibration methods are evaluated for factory use and results compared to a legacy proprietary method as well as in-field calibration/verification on land and at sea. The calibration methods shows similar navigation performance as the proprietary method. This validates both methods for factory calibration. Furthermore it is shown that the AINS method can calibrate in-field on land and at sea without the use of a precision multi-axis turntable.","PeriodicalId":371808,"journal":{"name":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","volume":"276 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123414148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}