{"title":"Unplanned dilution prediction in open stope mining: developing new design charts using Artificial Neural Network classifier","authors":"Sultan Korigov, A. Adoko, F. Sengani","doi":"10.46873/2300-3960.1356","DOIUrl":"https://doi.org/10.46873/2300-3960.1356","url":null,"abstract":"","PeriodicalId":37284,"journal":{"name":"Journal of Sustainable Mining","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85427519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Mertuszka, Marcin Szumny, Krzysztof Fuławka, Piotr Kondoł
The present study investigates the possibility of developing a novel method for reducing seismicity and rockbursts in deep underground mines based on modifying drilling and blasting patterns. The main goal was to develop and implement firing patterns for multi-face production blasting, which allow increasing the capability of inducing stress relief in the rock mass, manifested in the seismic event. This method may improve stability control in underground workings, and mitigate risks associated with the dynamic effects of rock mass pressure compared with currently used methods. Thus, the seismic energy may be released immediately after blasting in a controlled way. For this purpose, underground tests using modified blasting patterns and precise electronic detonators were carried out. Vibration data recorded from the multi-face blasting in the considered trial panels were assessed in the scope of amplitude distribution. Results of trials have proven that the method is promising and should be further developed to improve the effectiveness of rockburst prevention in deep hard rock mines.
{"title":"Novel approach for the destress blasting in hard rock underground copper mines","authors":"P. Mertuszka, Marcin Szumny, Krzysztof Fuławka, Piotr Kondoł","doi":"10.46873/2300-3960.1352","DOIUrl":"https://doi.org/10.46873/2300-3960.1352","url":null,"abstract":"The present study investigates the possibility of developing a novel method for reducing seismicity and rockbursts in deep underground mines based on modifying drilling and blasting patterns. The main goal was to develop and implement firing patterns for multi-face production blasting, which allow increasing the capability of inducing stress relief in the rock mass, manifested in the seismic event. This method may improve stability control in underground workings, and mitigate risks associated with the dynamic effects of rock mass pressure compared with currently used methods. Thus, the seismic energy may be released immediately after blasting in a controlled way. For this purpose, underground tests using modified blasting patterns and precise electronic detonators were carried out. Vibration data recorded from the multi-face blasting in the considered trial panels were assessed in the scope of amplitude distribution. Results of trials have proven that the method is promising and should be further developed to improve the effectiveness of rockburst prevention in deep hard rock mines.","PeriodicalId":37284,"journal":{"name":"Journal of Sustainable Mining","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90896336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research advances into mine safety science and engineering","authors":"H. Mitri, R. Mitra, Ting-Ting Ren","doi":"10.46873/2300-3960.1355","DOIUrl":"https://doi.org/10.46873/2300-3960.1355","url":null,"abstract":"","PeriodicalId":37284,"journal":{"name":"Journal of Sustainable Mining","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77467972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xianwei Dong, Gaojin Li, Xuanmeng Dong, Fusheng Wang
{"title":"Study on the effect of coal microscopic pore structure to its spontaneous combustion tendency","authors":"Xianwei Dong, Gaojin Li, Xuanmeng Dong, Fusheng Wang","doi":"10.46873/2300-3960.1351","DOIUrl":"https://doi.org/10.46873/2300-3960.1351","url":null,"abstract":"","PeriodicalId":37284,"journal":{"name":"Journal of Sustainable Mining","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83153030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soundless Chemical Demolition Agents (SCDAs) are an environmentally friendly and safer alternative to traditional rock fragmentation methods. Admixtures are used to change the rheological properties and performance of SCDAs. This study aimed to investigate the effect of various concentrations of chemical accelerators (chloride salts) and viscosity enhancing agents (VEAs: Xanthan gum, Guar gum, and Gellan gum) on the fracture onset compared to an unmodified SCDA (BRISTAR 100®). All experiments were conducted on Portland Type 1 (OPC 1) cement blocks. The flowability of the mixtures was determined by mini-slump tests. Results show that 4wt% MgCl2 and 3wt% CaCl2 have accelerated the fracture onset by 47.4% and 61.2%, respectively. VEAs have a decelerating effect, which is mitigated by the addition of the aforementioned chloride salts. Combining 4wt% MgCl2 with 0.2wt% Xanthan gum reduced the fracture onset time by 66.8%. A cost analysis shows that the initial price of the SCDA mainly determines a potential cost reduction by using admixtures. For a low-cost SCDA, the focus is likely to shift to saving time. This study can serve as a basis for future studies to further improve performance and cost as well as diversify the range of applications for SCDAs.
无声化学爆破剂(SCDAs)是传统岩石破碎方法的一种环保且安全的替代方法。外加剂用于改变scda的流变性能和性能。本研究旨在研究不同浓度的化学促进剂(氯盐)和黏度增强剂(VEAs:黄原胶、瓜尔胶和结冷胶)与未改性SCDA (BRISTAR 100®)相比对骨折发生的影响。所有实验均在Portland Type 1 (opc1)水泥砌块上进行。通过微坍落度试验确定了混合物的流动性。结果表明,4wt% MgCl2和3wt% CaCl2分别使断裂发生加速47.4%和61.2%。vea具有减速作用,通过添加上述氯化物盐可以减轻减速作用。4wt% MgCl2和0.2wt%黄原胶的组合可使断裂发生时间缩短66.8%。成本分析表明,SCDA的初始价格主要决定了外加剂的潜在成本降低。对于低成本的SCDA,重点可能转向节省时间。该研究可为进一步提高scda的性能和成本以及拓宽其应用范围奠定基础。
{"title":"Influence of admixtures on the performance of soundless chemical demolition agents and implications for their utilization","authors":"Nattamon Maneenoi, R. Bissen, S. Chawchai","doi":"10.46873/2300-3960.1350","DOIUrl":"https://doi.org/10.46873/2300-3960.1350","url":null,"abstract":"Soundless Chemical Demolition Agents (SCDAs) are an environmentally friendly and safer alternative to traditional rock fragmentation methods. Admixtures are used to change the rheological properties and performance of SCDAs. This study aimed to investigate the effect of various concentrations of chemical accelerators (chloride salts) and viscosity enhancing agents (VEAs: Xanthan gum, Guar gum, and Gellan gum) on the fracture onset compared to an unmodified SCDA (BRISTAR 100®). All experiments were conducted on Portland Type 1 (OPC 1) cement blocks. The flowability of the mixtures was determined by mini-slump tests. Results show that 4wt% MgCl2 and 3wt% CaCl2 have accelerated the fracture onset by 47.4% and 61.2%, respectively. VEAs have a decelerating effect, which is mitigated by the addition of the aforementioned chloride salts. Combining 4wt% MgCl2 with 0.2wt% Xanthan gum reduced the fracture onset time by 66.8%. A cost analysis shows that the initial price of the SCDA mainly determines a potential cost reduction by using admixtures. For a low-cost SCDA, the focus is likely to shift to saving time. This study can serve as a basis for future studies to further improve performance and cost as well as diversify the range of applications for SCDAs.","PeriodicalId":37284,"journal":{"name":"Journal of Sustainable Mining","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89670705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
According to regulations of the mining industry in China, it is necessary to carry out gas hazard prevention projects in advance when mining coal seams with gas hazard potential, and gas geological research should be taken as the basic work for optimal design and effective construction of gas hazard prevention projects. Research on coal seam with gas hazard potential have shown that anomalous geological area could be the gas hazard potential area as well, where superimposed tectonic and mining stress field usually results in tectonically disturbed coal and pressured gas. A 4D gas geological research method is used to find out the anomalous geological area and assess its gas hazard potential. The method covers two ranges of gas geological research: fine geological survey and 4D analysis. The former includes a comprehensive prospect of concealed small geological anomalies (such as small fault, small fold and coal thickness variation) by use of gas extraction projects; The latter includes a dynamic forecast of gas hazard potential from space-time perspective based on numerical simulation analysis on additional stress fields around small geological structures beyond coal mining face. Its research benefit the optimal design and effective implementation of gas hazard prevention measures in coal mining panel with high coal and gas outburst potential.
{"title":"4D gas geological research on coal seam with gas hazard potential in mining panel","authors":"H. Cui, Xin-Yue He, Zehua Wang","doi":"10.46873/2300-3960.1353","DOIUrl":"https://doi.org/10.46873/2300-3960.1353","url":null,"abstract":"According to regulations of the mining industry in China, it is necessary to carry out gas hazard prevention projects in advance when mining coal seams with gas hazard potential, and gas geological research should be taken as the basic work for optimal design and effective construction of gas hazard prevention projects. Research on coal seam with gas hazard potential have shown that anomalous geological area could be the gas hazard potential area as well, where superimposed tectonic and mining stress field usually results in tectonically disturbed coal and pressured gas. A 4D gas geological research method is used to find out the anomalous geological area and assess its gas hazard potential. The method covers two ranges of gas geological research: fine geological survey and 4D analysis. The former includes a comprehensive prospect of concealed small geological anomalies (such as small fault, small fold and coal thickness variation) by use of gas extraction projects; The latter includes a dynamic forecast of gas hazard potential from space-time perspective based on numerical simulation analysis on additional stress fields around small geological structures beyond coal mining face. Its research benefit the optimal design and effective implementation of gas hazard prevention measures in coal mining panel with high coal and gas outburst potential.","PeriodicalId":37284,"journal":{"name":"Journal of Sustainable Mining","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84592223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved Methodology for Monitoring the Impact of Mining Activities on Socio-Economic Conditions of Local Communities","authors":"Bina Pandey, D. P. Mishra","doi":"10.46873/2300-3960.1348","DOIUrl":"https://doi.org/10.46873/2300-3960.1348","url":null,"abstract":"","PeriodicalId":37284,"journal":{"name":"Journal of Sustainable Mining","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81856677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Government of Ghana prohibited Artisanal and Small-Scale Mining (ASM) operations from 2017 to 2018 as part of its strategy to address the socio-environmental issues caused by illegal mining activities, also referred to as “galamsey” operations. This study assessed the trend in the water quality of raw water abstracted at the Konongo Water Treatment Plant (WTP) for treatment before and after implementing the ban on “galamsey” operations. The main source of raw water for the Konongo WTP is the Anuru River. Secondary data on physicochemical water quality from 2006 to 2019 was sourced from the Konongo WTP and the Ashanti Regional Water Quality Assurance Unit of Ghana Water Company Limited (GWCL). Mann-Kendall seasonality test was used to determine trends in the water quality data using XLSTAT statistical tool. The results showed a statistically significant (5% level of significance) upward trend in colour, turbidity, temperature, total iron, and sulphate before the ban on “galamsey” activities. There was statistically significant evidence of a downward trend in total hardness, calcium hardness, turbidity, total alkalinity, and chloride after the ban on “galamsey” operations.
{"title":"Impact of the ban on illegal mining activities on raw water quality: A case-study of Konongo Water Treatment Plant, Ashanti Region of Ghana","authors":"Sadique Anyame Bawa, P. Antwi-Agyei, M. K. Domfeh","doi":"10.46873/2300-3960.1349","DOIUrl":"https://doi.org/10.46873/2300-3960.1349","url":null,"abstract":"The Government of Ghana prohibited Artisanal and Small-Scale Mining (ASM) operations from 2017 to 2018 as part of its strategy to address the socio-environmental issues caused by illegal mining activities, also referred to as “galamsey” operations. This study assessed the trend in the water quality of raw water abstracted at the Konongo Water Treatment Plant (WTP) for treatment before and after implementing the ban on “galamsey” operations. The main source of raw water for the Konongo WTP is the Anuru River. Secondary data on physicochemical water quality from 2006 to 2019 was sourced from the Konongo WTP and the Ashanti Regional Water Quality Assurance Unit of Ghana Water Company Limited (GWCL). Mann-Kendall seasonality test was used to determine trends in the water quality data using XLSTAT statistical tool. The results showed a statistically significant (5% level of significance) upward trend in colour, turbidity, temperature, total iron, and sulphate before the ban on “galamsey” activities. There was statistically significant evidence of a downward trend in total hardness, calcium hardness, turbidity, total alkalinity, and chloride after the ban on “galamsey” operations.","PeriodicalId":37284,"journal":{"name":"Journal of Sustainable Mining","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73031678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Bagherzadeh, M. Najafi, M. F. Marji, M. Noroozi
{"title":"A proper borehole pattern design for coal seam methane drainage in Tabas coal mine using Comsol Multiphysics","authors":"A. Bagherzadeh, M. Najafi, M. F. Marji, M. Noroozi","doi":"10.46873/2300-3960.1347","DOIUrl":"https://doi.org/10.46873/2300-3960.1347","url":null,"abstract":"","PeriodicalId":37284,"journal":{"name":"Journal of Sustainable Mining","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73124952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Use of InSAR in Linear Discontinuous Ground Deformation Generation Analysis: Case Study of a Mine in Poland","authors":"Bartosz Apanowicz","doi":"10.46873/2300-3960.1346","DOIUrl":"https://doi.org/10.46873/2300-3960.1346","url":null,"abstract":"","PeriodicalId":37284,"journal":{"name":"Journal of Sustainable Mining","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87222323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}