Abstract Rivets are critical areas in metal airframes from the fatigue point of view. Fatigue behaviour of riveted joints depends strongly on the residual stress system around the rivet holes. The both most convenient and most common method of determining these stresses is the Finite Element (FE) analyses. The validation of models used is necessary to ensure the reliability of results. This paper presents the validation process of the riveting FE simulations for the universal and the countersunk rivets. At first, the material model of the rivets was validated with the use of the force–displacement curves of the press stamp obtained experimentally. Because of the displacement measurement method, it was necessary to take into account the flexibility of the stand. After that, good correlation between the numerical simulations and the experiment was obtained for both rivet types. At the second stage, strains around driven heads measured with the use of strip gauge patterns were compared with the results of the FE simulations. Quite good correlation was obtained for the countersunk rivet. In the case of the universal rivet, the numerical results are significantly higher values than the measured ones. Differences in correlation of the experiments and FE simulations for the analysed rivet types probably result from material differences of the rivets.
{"title":"Experimental Validation of Riveting Process Fe Simulation","authors":"Wojciech Wronicz","doi":"10.2478/fas-2018-0006","DOIUrl":"https://doi.org/10.2478/fas-2018-0006","url":null,"abstract":"Abstract Rivets are critical areas in metal airframes from the fatigue point of view. Fatigue behaviour of riveted joints depends strongly on the residual stress system around the rivet holes. The both most convenient and most common method of determining these stresses is the Finite Element (FE) analyses. The validation of models used is necessary to ensure the reliability of results. This paper presents the validation process of the riveting FE simulations for the universal and the countersunk rivets. At first, the material model of the rivets was validated with the use of the force–displacement curves of the press stamp obtained experimentally. Because of the displacement measurement method, it was necessary to take into account the flexibility of the stand. After that, good correlation between the numerical simulations and the experiment was obtained for both rivet types. At the second stage, strains around driven heads measured with the use of strip gauge patterns were compared with the results of the FE simulations. Quite good correlation was obtained for the countersunk rivet. In the case of the universal rivet, the numerical results are significantly higher values than the measured ones. Differences in correlation of the experiments and FE simulations for the analysed rivet types probably result from material differences of the rivets.","PeriodicalId":37629,"journal":{"name":"Fatigue of Aircraft Structures","volume":"2018 1","pages":"63 - 72"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43007159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Kubryn, Henryk Gruszecki, L. Pieróg, Jerzy Chodur, J. Pietruszka, J. Brzęczek
Abstract The cable flight control systems are commonly used for the control of small airplanes. In these systems, the cables are the only elements transmitting loads from the pilot to the control surfaces. During a flight the cables are moving through pulleys and are subjected to variable loads. A simple analysis of stress in the cable shows that the stress generated by the cyclical bending on the pulleys causes the fatigue of the wires. This phenomenon was noticed on a military aircraft of the M28 family during periodic maintenance inspection in 2007. The endurance tests of KSAN cables of the diameter equal to 3.5 mm and 1.8 mm were performed at the PZL MIELEC. The tests showed the limited fatigue life of the cables due to a progressive increase in the number of broken wires.
{"title":"The Fatigue Life of Cables in Aircraft Flight Control Systems","authors":"M. Kubryn, Henryk Gruszecki, L. Pieróg, Jerzy Chodur, J. Pietruszka, J. Brzęczek","doi":"10.2478/fas-2018-0005","DOIUrl":"https://doi.org/10.2478/fas-2018-0005","url":null,"abstract":"Abstract The cable flight control systems are commonly used for the control of small airplanes. In these systems, the cables are the only elements transmitting loads from the pilot to the control surfaces. During a flight the cables are moving through pulleys and are subjected to variable loads. A simple analysis of stress in the cable shows that the stress generated by the cyclical bending on the pulleys causes the fatigue of the wires. This phenomenon was noticed on a military aircraft of the M28 family during periodic maintenance inspection in 2007. The endurance tests of KSAN cables of the diameter equal to 3.5 mm and 1.8 mm were performed at the PZL MIELEC. The tests showed the limited fatigue life of the cables due to a progressive increase in the number of broken wires.","PeriodicalId":37629,"journal":{"name":"Fatigue of Aircraft Structures","volume":"2018 1","pages":"53 - 62"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43544389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The publication describes how diffraction methods and mathematical bases can be used for measurement of various types of stresses in single-phase and multiphase materials. Firstly, the paper defines the stresses and classifies them from the scale of their interactions point of view. Subsequently, the phenomenon of radiation diffraction on the crystalline lattice is presented including formulas describing this phenomenon and the dependencies enabling stress measurements. The key part of the paper is the description of one of the second order stress estimation methods based on diffraction data and a self-consistent model.
{"title":"Methods for Different Orders Stresses Estimation with Diffraction Methods","authors":"Elżbieta Gadalińska","doi":"10.1515/fas-2017-0004","DOIUrl":"https://doi.org/10.1515/fas-2017-0004","url":null,"abstract":"Abstract The publication describes how diffraction methods and mathematical bases can be used for measurement of various types of stresses in single-phase and multiphase materials. Firstly, the paper defines the stresses and classifies them from the scale of their interactions point of view. Subsequently, the phenomenon of radiation diffraction on the crystalline lattice is presented including formulas describing this phenomenon and the dependencies enabling stress measurements. The key part of the paper is the description of one of the second order stress estimation methods based on diffraction data and a self-consistent model.","PeriodicalId":37629,"journal":{"name":"Fatigue of Aircraft Structures","volume":"2017 1","pages":"39 - 54"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49077241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Static tension test allows characterization of material strength properties. This simple test provides input data for numerical calculation of structural components made of the tested alloy. Elastic, plastic and failure behavior of the structural component in question is simulated, using, for example, the FEM package, based on parameters obtained as the result of tensile testing. When using the results of the tensile test for modeling the material failure it is important to estimate correctly plastic strain corresponding to failure. It is common practice to use elongation of the specimen gage part for the calculation of failure strain. On the other side, the most popular ductile failure criterion used by engineers performing numerical simulation of the material’s behavior relies on the equivalent plastic strain as the criterial quantity. Those two parameters can differ significantly. In order to calculate the equivalent plastic strain correctly, we have to remember about strain localization (necking) appearing during tensile tests and take into account the fact that during tensile testing we have three non-zero strain tensor components. Ignoring this fact, and using only elongation as the criterial quantity can lead to enormous simulation error. This error is analyzed in this paper for nickel based superalloy tested at elevated temperatures.
{"title":"Calibration of the Ductile Failure Criterion for Nickel-Based Superalloys taking into Account the Localization of the Strain","authors":"Bartosz Madejski, G. Socha","doi":"10.1515/fas-2017-0003","DOIUrl":"https://doi.org/10.1515/fas-2017-0003","url":null,"abstract":"Abstract Static tension test allows characterization of material strength properties. This simple test provides input data for numerical calculation of structural components made of the tested alloy. Elastic, plastic and failure behavior of the structural component in question is simulated, using, for example, the FEM package, based on parameters obtained as the result of tensile testing. When using the results of the tensile test for modeling the material failure it is important to estimate correctly plastic strain corresponding to failure. It is common practice to use elongation of the specimen gage part for the calculation of failure strain. On the other side, the most popular ductile failure criterion used by engineers performing numerical simulation of the material’s behavior relies on the equivalent plastic strain as the criterial quantity. Those two parameters can differ significantly. In order to calculate the equivalent plastic strain correctly, we have to remember about strain localization (necking) appearing during tensile tests and take into account the fact that during tensile testing we have three non-zero strain tensor components. Ignoring this fact, and using only elongation as the criterial quantity can lead to enormous simulation error. This error is analyzed in this paper for nickel based superalloy tested at elevated temperatures.","PeriodicalId":37629,"journal":{"name":"Fatigue of Aircraft Structures","volume":"2017 1","pages":"27 - 37"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49227713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Composite materials are increasingly being used in aviation. Specific stiffness and strength of composite materials (especially CFRP laminate, sandwich structure) are higher compared to metal alloys. They are beneficial features of materials used in aviation. Mass reduction of aircraft structures (e.g. due to the use of composite materials) contributes to an aircraft’s better performance in terms of its range, top speed and ceiling and consequently causes an increase in airplanes capacity. Moreover, the use of high-strength and lightweight materials in aviation contributes to longer life time and lower exploitation costs. The aim of the paper was the study the possibilities of replacing the aluminum spar of an airplane wing with a composite structure. In order to compare the mass and strength of the aluminum with the composite spar, the global shell and local solid models were created and finite elements analysis was performed. The analysis was carried out for the front spar of the wing of the agricultural aircraft PZL-106.
{"title":"Study on Possible Replacement of the Aluminum Spar with a Composite Structure Illustrated with the Case of Agricultural Aircraft","authors":"Mateusz Fałek, E. Szymczyk, J. Jachimowicz","doi":"10.1515/fas-2017-0007","DOIUrl":"https://doi.org/10.1515/fas-2017-0007","url":null,"abstract":"Composite materials are increasingly being used in aviation. Specific stiffness and strength of composite materials (especially CFRP laminate, sandwich structure) are higher compared to metal alloys. They are beneficial features of materials used in aviation. Mass reduction of aircraft structures (e.g. due to the use of composite materials) contributes to an aircraft’s better performance in terms of its range, top speed and ceiling and consequently causes an increase in airplanes capacity. Moreover, the use of high-strength and lightweight materials in aviation contributes to longer life time and lower exploitation costs. The aim of the paper was the study the possibilities of replacing the aluminum spar of an airplane wing with a composite structure. In order to compare the mass and strength of the aluminum with the composite spar, the global shell and local solid models were created and finite elements analysis was performed. The analysis was carried out for the front spar of the wing of the agricultural aircraft PZL-106.","PeriodicalId":37629,"journal":{"name":"Fatigue of Aircraft Structures","volume":"2017 1","pages":"85 - 99"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46238673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract An acoustic holography and its practical applications in engineering began to develop at the end of the 20th century. Currently, this technique is being commonly used to locate sound sources. This paper presents the use of an acoustic camera to locate sound sources during the Full Scale Fatigue Test of the MiG-29 stabilizer. During fatigue tests, the tested structure issues a series of sounds in the form of glitches, creaks or beats. These sounds are typical for a structure subjected to dynamic loading, but they can also be a source of diagnostic information about places of fatigue failures. The paper presents the results of measurements made during the fatigue test. Thanks to the analysis of the measurement results, it was possible to identify areas that are the basic source of sounds.
{"title":"Localization of Sound Sources during Full Scale Fatigue Test of the Vertical Stabilizer with the Acoustic Holography Technique","authors":"A. Leski","doi":"10.1515/fas-2017-0002","DOIUrl":"https://doi.org/10.1515/fas-2017-0002","url":null,"abstract":"Abstract An acoustic holography and its practical applications in engineering began to develop at the end of the 20th century. Currently, this technique is being commonly used to locate sound sources. This paper presents the use of an acoustic camera to locate sound sources during the Full Scale Fatigue Test of the MiG-29 stabilizer. During fatigue tests, the tested structure issues a series of sounds in the form of glitches, creaks or beats. These sounds are typical for a structure subjected to dynamic loading, but they can also be a source of diagnostic information about places of fatigue failures. The paper presents the results of measurements made during the fatigue test. Thanks to the analysis of the measurement results, it was possible to identify areas that are the basic source of sounds.","PeriodicalId":37629,"journal":{"name":"Fatigue of Aircraft Structures","volume":"2017 1","pages":"17 - 25"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42524109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The paper discusses the results of selected fatigue tests of a motor glider’s insulated spar structure. The results of the experimental tests were used to assess the potential of the strain-gauge method for diagnosing the spar damage involving the unbolting of one of metal fittings in the spar pin. The usefulness of the deformation measurement method in the composite structure diagnostic process was confirmed, while simultaneously drawing attention to the need for conducting a process optimizing the number of sensors and their distribution on a tested object, in the context of the sensitivity of diagnostic signals received.
{"title":"Evaluation of the Suitability of the Strain-Gauge Method for Measuring Deformations during the Fatigue Tests of Aviation Composite Structures","authors":"M. Rośkowicz, P. Leszczyński","doi":"10.1515/fas-2017-0006","DOIUrl":"https://doi.org/10.1515/fas-2017-0006","url":null,"abstract":"Abstract The paper discusses the results of selected fatigue tests of a motor glider’s insulated spar structure. The results of the experimental tests were used to assess the potential of the strain-gauge method for diagnosing the spar damage involving the unbolting of one of metal fittings in the spar pin. The usefulness of the deformation measurement method in the composite structure diagnostic process was confirmed, while simultaneously drawing attention to the need for conducting a process optimizing the number of sensors and their distribution on a tested object, in the context of the sensitivity of diagnostic signals received.","PeriodicalId":37629,"journal":{"name":"Fatigue of Aircraft Structures","volume":"2017 1","pages":"75 - 84"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41941763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Over the last 60 years, several models have been developed governing different zones of fatigue crack growth from the threshold zone to final failure. The best known model is the Paris law and a number of its based on mechanical, metallurgical and loading parameters governing the propagation of cracks. This paper presents an analytical model developed to predict the fatigue crack propagation rate in the Paris regime, for different material properties, yield strength (σy), Young’s modulus (E) and cyclic hardening parameters (K’, n’) and their influence by variability. The cyclic plastic deformation at a crack tip or any other cyclic hardening rule may be used to reach this objective, for to investigate this influence, these properties of the model are calibrated using available experimental data in the literature. This FCGR model was validated on Al-alloys specimens under constant amplitude load and shows good agreement with the experimental results.
{"title":"A Model for Fatigue Crack Growth in the Paris Regime under the Variability of Cyclic Hardening and Elastic Properties","authors":"Tayeb Kebir, M. Benguediab, A. Imad","doi":"10.1515/fas-2017-0010","DOIUrl":"https://doi.org/10.1515/fas-2017-0010","url":null,"abstract":"Abstract Over the last 60 years, several models have been developed governing different zones of fatigue crack growth from the threshold zone to final failure. The best known model is the Paris law and a number of its based on mechanical, metallurgical and loading parameters governing the propagation of cracks. This paper presents an analytical model developed to predict the fatigue crack propagation rate in the Paris regime, for different material properties, yield strength (σy), Young’s modulus (E) and cyclic hardening parameters (K’, n’) and their influence by variability. The cyclic plastic deformation at a crack tip or any other cyclic hardening rule may be used to reach this objective, for to investigate this influence, these properties of the model are calibrated using available experimental data in the literature. This FCGR model was validated on Al-alloys specimens under constant amplitude load and shows good agreement with the experimental results.","PeriodicalId":37629,"journal":{"name":"Fatigue of Aircraft Structures","volume":"2017 1","pages":"117 - 135"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44426664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The effect of an anticorrosive layer on the fatigue life of 2024-T-351-aluminium alloy has been studied in the present investigation. The fatigue tests were conducted on the aluminium alloy with and without anodizing to evaluate the fatigue life. The results indicate that the fatigue life of the anodized specimens is significantly shorter than that of untreated specimens. Further, experiments were conducted to evaluate the effect of the anodizing process parameters on the fatigue life of anodized specimens. These results show that the fatigue life of anodized aluminium alloy can be improved by controlling the anodizing process parameters such as process temperature, voltage, and time of immersion.
摘要本文研究了防腐层对2024- t -351铝合金疲劳寿命的影响。对经阳极氧化和未经阳极氧化的铝合金进行了疲劳试验,评价了其疲劳寿命。结果表明,阳极氧化试样的疲劳寿命明显短于未处理试样。此外,通过试验研究了阳极氧化工艺参数对阳极氧化试样疲劳寿命的影响。结果表明,通过控制阳极氧化工艺参数,如工艺温度、电压和浸泡时间,可以提高阳极氧化铝合金的疲劳寿命。
{"title":"The Effect of Anodizing Process Parameters on the Fatigue Life of 2024-T-351-Aluminium Alloy","authors":"Shashidhar K. Kudari, C. M. Sharanaprabhu","doi":"10.1515/fas-2017-0009","DOIUrl":"https://doi.org/10.1515/fas-2017-0009","url":null,"abstract":"Abstract The effect of an anticorrosive layer on the fatigue life of 2024-T-351-aluminium alloy has been studied in the present investigation. The fatigue tests were conducted on the aluminium alloy with and without anodizing to evaluate the fatigue life. The results indicate that the fatigue life of the anodized specimens is significantly shorter than that of untreated specimens. Further, experiments were conducted to evaluate the effect of the anodizing process parameters on the fatigue life of anodized specimens. These results show that the fatigue life of anodized aluminium alloy can be improved by controlling the anodizing process parameters such as process temperature, voltage, and time of immersion.","PeriodicalId":37629,"journal":{"name":"Fatigue of Aircraft Structures","volume":"2017 1","pages":"109 - 115"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48307954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Damage detection and identification is one of the most important tasks of proper operation of technical objects and structures. It is, therefore, essential to develop efficient and sensitive methods of early damage detection. Delamination is the type of damage occurring in laminated composites that is one of the most dangerous and most difficult to detect. In this paper, the computational study was performed on the numerical data of the modal shapes of laminated composite beams with simulated delaminations in order to detect them using a fractal dimension-based approach. The obtained results allowed for improvement of detection accuracy as compared to previously applied wavelet-based approach. An additional benefit was decreasing the computational time. Basing on the obtained results it is reasonable to consider the presented approach as a promising alternative to currently applied signal processing methods used for supporting non-destructive testing of structures.
{"title":"Identification of Delamination in Composite Beams using the Fractal Dimension-Based Damage Identification Algorithm","authors":"A. Katunin, M. Zuba","doi":"10.1515/fas-2017-0001","DOIUrl":"https://doi.org/10.1515/fas-2017-0001","url":null,"abstract":"Abstract Damage detection and identification is one of the most important tasks of proper operation of technical objects and structures. It is, therefore, essential to develop efficient and sensitive methods of early damage detection. Delamination is the type of damage occurring in laminated composites that is one of the most dangerous and most difficult to detect. In this paper, the computational study was performed on the numerical data of the modal shapes of laminated composite beams with simulated delaminations in order to detect them using a fractal dimension-based approach. The obtained results allowed for improvement of detection accuracy as compared to previously applied wavelet-based approach. An additional benefit was decreasing the computational time. Basing on the obtained results it is reasonable to consider the presented approach as a promising alternative to currently applied signal processing methods used for supporting non-destructive testing of structures.","PeriodicalId":37629,"journal":{"name":"Fatigue of Aircraft Structures","volume":"2017 1","pages":"16 - 5"},"PeriodicalIF":0.0,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67372018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}