Pub Date : 2023-10-09DOI: 10.1007/s13272-023-00686-7
Bento S. de Mattos, José A. T. Guerreiro Fregnani
{"title":"Conceptual design of a middle-of-the-market airliner","authors":"Bento S. de Mattos, José A. T. Guerreiro Fregnani","doi":"10.1007/s13272-023-00686-7","DOIUrl":"https://doi.org/10.1007/s13272-023-00686-7","url":null,"abstract":"","PeriodicalId":38083,"journal":{"name":"CEAS Aeronautical Journal","volume":"143 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135094565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Real-time power flow analysis and management for a long-endurance solar UAV during continuous flight","authors":"Nourddine Ghelem, Djamel Boudana, Ouahid Bouchhida","doi":"10.1007/s13272-023-00684-9","DOIUrl":"https://doi.org/10.1007/s13272-023-00684-9","url":null,"abstract":"","PeriodicalId":38083,"journal":{"name":"CEAS Aeronautical Journal","volume":"95 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134975096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-05DOI: 10.1007/s13272-023-00683-w
Yassine Ghanjaoui, Mara Fuchs, Jörn Biedermann, Björn Nagel
Abstract The aviation industry is currently facing major challenges due to environmental and socio-economic trends toward sustainable and digitalized aviation. Revolutionary, more powerful and efficient technologies must be rapidly integrated into aircraft, while aircraft manufacturers must demonstrate the required safety. To support the implementation of new concepts, the DLR Institute of System Architectures in Aeronautics is researching methods for end-to-end digitalization from the preliminary design phase to assembly and production. In this context, Model-Based Systems Engineering (MBSE) and Multidisciplinary Design Optimization are important approaches for the development of complex systems. This paper presents a method for the end-to-end use of digital models for multidisciplinary optimization of system architectures. The Systems Modeling Language (SysML) is used to represent the system architecture. The focus is on the cabin and cabin systems, since they are highly coupled to other aircraft systems and have dynamic, customer-specific configuration requirements. The system architecture in SysML is instantiated and configured by the interface to the aircraft fuselage and cabin design parameter sets in the Common Parametric Configuration Schema. The subsequent coupling of the generated system architecture model with the cabin system design model developed in Matlab allows a multidisciplinary optimization of the system properties. A sensitivity analysis is performed using the Passenger Service Unit as an example. The effects of different cabin configurations on the system architecture are investigated and interdisciplinary synergies are identified and analyzed. The results of this analysis are discussed in this paper.
{"title":"Model-based design and multidisciplinary optimization of complex system architectures in the aircraft cabin","authors":"Yassine Ghanjaoui, Mara Fuchs, Jörn Biedermann, Björn Nagel","doi":"10.1007/s13272-023-00683-w","DOIUrl":"https://doi.org/10.1007/s13272-023-00683-w","url":null,"abstract":"Abstract The aviation industry is currently facing major challenges due to environmental and socio-economic trends toward sustainable and digitalized aviation. Revolutionary, more powerful and efficient technologies must be rapidly integrated into aircraft, while aircraft manufacturers must demonstrate the required safety. To support the implementation of new concepts, the DLR Institute of System Architectures in Aeronautics is researching methods for end-to-end digitalization from the preliminary design phase to assembly and production. In this context, Model-Based Systems Engineering (MBSE) and Multidisciplinary Design Optimization are important approaches for the development of complex systems. This paper presents a method for the end-to-end use of digital models for multidisciplinary optimization of system architectures. The Systems Modeling Language (SysML) is used to represent the system architecture. The focus is on the cabin and cabin systems, since they are highly coupled to other aircraft systems and have dynamic, customer-specific configuration requirements. The system architecture in SysML is instantiated and configured by the interface to the aircraft fuselage and cabin design parameter sets in the Common Parametric Configuration Schema. The subsequent coupling of the generated system architecture model with the cabin system design model developed in Matlab allows a multidisciplinary optimization of the system properties. A sensitivity analysis is performed using the Passenger Service Unit as an example. The effects of different cabin configurations on the system architecture are investigated and interdisciplinary synergies are identified and analyzed. The results of this analysis are discussed in this paper.","PeriodicalId":38083,"journal":{"name":"CEAS Aeronautical Journal","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134975271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/s13272-023-00697-4
Nicolai Neumann, Dieter Peitsch
{"title":"Holistic performance evaluation of a turbofan featuring pressure gain combustion for a short-range mission","authors":"Nicolai Neumann, Dieter Peitsch","doi":"10.1007/s13272-023-00697-4","DOIUrl":"https://doi.org/10.1007/s13272-023-00697-4","url":null,"abstract":"","PeriodicalId":38083,"journal":{"name":"CEAS Aeronautical Journal","volume":"116 3 1","pages":"983 - 995"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139328304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/s13272-023-00693-8
Maria Stolz, A. Papenfuss, Georgia Cesar de Albuquerque Richers, Anna Bahnmüller, Azeem Muhammad Syed, Andreas Gerndt, Martin Fischer, Jan Wegener, Teemu Joonas Lieb, Marcus Biella
{"title":"A mixed-method approach to investigate the public acceptance of drones","authors":"Maria Stolz, A. Papenfuss, Georgia Cesar de Albuquerque Richers, Anna Bahnmüller, Azeem Muhammad Syed, Andreas Gerndt, Martin Fischer, Jan Wegener, Teemu Joonas Lieb, Marcus Biella","doi":"10.1007/s13272-023-00693-8","DOIUrl":"https://doi.org/10.1007/s13272-023-00693-8","url":null,"abstract":"","PeriodicalId":38083,"journal":{"name":"CEAS Aeronautical Journal","volume":"1 1","pages":"835 - 855"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139329298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-25DOI: 10.1007/s13272-023-00682-x
Robert Kowalski, Patrick Juchmann
Abstract Electro-mechanical flight control actuators have become a viable option as a replacement for conventional hydraulic actuators in future more electric aircraft. A rotor angle measurement is generally required for field-oriented control of the electrical machine and usually obtained from a safety-critical resolver. It contributes, however, to a rising local hardware complexity with a negative impact on space allocation, weight, motor inertia, reliability, and cost. This paper investigates sensorless control strategies that might substitute the resolver with an accurate estimate value. A hybrid observer is implemented that allows position control without an angle sensor at all speeds. In the high speed domain, the extended electromotive force of the permanent magnet synchronous machine is used for angle estimation. In the low speed domain, including standstill, anisotropy properties of the motor are exploited by applying the alternating injection method. The performance of the control algorithm is evaluated on an aileron actuator test rig for a large civil aircraft.
{"title":"Sensorless motor control for electro-mechanical flight control actuators","authors":"Robert Kowalski, Patrick Juchmann","doi":"10.1007/s13272-023-00682-x","DOIUrl":"https://doi.org/10.1007/s13272-023-00682-x","url":null,"abstract":"Abstract Electro-mechanical flight control actuators have become a viable option as a replacement for conventional hydraulic actuators in future more electric aircraft. A rotor angle measurement is generally required for field-oriented control of the electrical machine and usually obtained from a safety-critical resolver. It contributes, however, to a rising local hardware complexity with a negative impact on space allocation, weight, motor inertia, reliability, and cost. This paper investigates sensorless control strategies that might substitute the resolver with an accurate estimate value. A hybrid observer is implemented that allows position control without an angle sensor at all speeds. In the high speed domain, the extended electromotive force of the permanent magnet synchronous machine is used for angle estimation. In the low speed domain, including standstill, anisotropy properties of the motor are exploited by applying the alternating injection method. The performance of the control algorithm is evaluated on an aileron actuator test rig for a large civil aircraft.","PeriodicalId":38083,"journal":{"name":"CEAS Aeronautical Journal","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135815414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-20DOI: 10.1007/s13272-023-00679-6
Sébastien Guérin, Damiano Tormen
Abstract The objective of this work is to better understand the acoustic interferences created by distributed propulsion engines based on an approach that combines RANS simulation results for the aerodynamic prediction and analytical models to calculate acoustics. A multi-propeller configuration without wing is considered for this investigation. The propeller geometry and the operating conditions are realistic for a regional transport airplane. In the first part of the paper, the results obtained by two different and independent prediction methods are compared. One method is well-established and serves as validation for the second, low-order method, which is better suited for design-to-noise applications since it requires less details as input and is computationally faster by several orders of magnitude. The good agreement between both methods, obtained for a single propeller as well as for the distributed propeller configuration, is exploited in the second part of the paper to investigate the role of acoustic interferences. Taking acoustic interferences into account drastically affects the directivity of the tonal emission. Compared to the results obtained by considering the propellers as if they were uncorrelated, the far-field sound pressure levels can be significantly lower at the radiation nodes or amplified up to the theoretical limit of 9 dB calculated for eight propellers. The directivity patterns depend on the relative initial angular positions of the propellers. When these positions are randomly varied according to the uniform probability density distribution model, the mean result (expectation) is the same as if the propellers were considered as uncorrelated. Finally, the results show that the probability that the acoustic level is lower than the mean value is higher than 50% because of the positive skewness of the probability distribution of the resulting pressure amplitude. Even though the propeller–propeller and propeller–wing interactions were not considered, the essence of the findings is expected to remain valid for more complex configurations because those interactions are rotor phase-locked.
{"title":"A contribution to the investigation of acoustic interferences in aircraft distributed propulsion","authors":"Sébastien Guérin, Damiano Tormen","doi":"10.1007/s13272-023-00679-6","DOIUrl":"https://doi.org/10.1007/s13272-023-00679-6","url":null,"abstract":"Abstract The objective of this work is to better understand the acoustic interferences created by distributed propulsion engines based on an approach that combines RANS simulation results for the aerodynamic prediction and analytical models to calculate acoustics. A multi-propeller configuration without wing is considered for this investigation. The propeller geometry and the operating conditions are realistic for a regional transport airplane. In the first part of the paper, the results obtained by two different and independent prediction methods are compared. One method is well-established and serves as validation for the second, low-order method, which is better suited for design-to-noise applications since it requires less details as input and is computationally faster by several orders of magnitude. The good agreement between both methods, obtained for a single propeller as well as for the distributed propeller configuration, is exploited in the second part of the paper to investigate the role of acoustic interferences. Taking acoustic interferences into account drastically affects the directivity of the tonal emission. Compared to the results obtained by considering the propellers as if they were uncorrelated, the far-field sound pressure levels can be significantly lower at the radiation nodes or amplified up to the theoretical limit of 9 dB calculated for eight propellers. The directivity patterns depend on the relative initial angular positions of the propellers. When these positions are randomly varied according to the uniform probability density distribution model, the mean result (expectation) is the same as if the propellers were considered as uncorrelated. Finally, the results show that the probability that the acoustic level is lower than the mean value is higher than 50% because of the positive skewness of the probability distribution of the resulting pressure amplitude. Even though the propeller–propeller and propeller–wing interactions were not considered, the essence of the findings is expected to remain valid for more complex configurations because those interactions are rotor phase-locked.","PeriodicalId":38083,"journal":{"name":"CEAS Aeronautical Journal","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136313592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-19DOI: 10.1007/s13272-023-00680-z
Anna A. Kostek, Felix Lößle, Robin Wickersheim, Manuel Keßler, Ronan Boisard, Gabriel Reboul, Antonio Visingardi, Mattia Barbarino, Anthony D. Gardner
Abstract The study provided a base of comparison of known computational techniques with different fidelity levels for performance and noise prediction of a single, fixed-pitch UAV rotor operating with varying flight parameters. The range of aerodynamic tools included blade element theory, potential flow methods (UPM, RAMSYS), lifting-line method (PUMA) and Navier–Stokes solver (FLOWer). Obtained loading distributions served as input for aeroacoustic codes delivering noise estimation for the blade passing frequency on a plane below the rotor. The resulting forces and noise levels showed satisfactory agreement with experimental data; however, differences in accuracy could be noticed depending on the computational method applied. The wake influence on the results was estimated based on vortex trajectories from simulations and those visible in background-oriented schlieren (BOS) pictures. The analysis of scattering effects showed that influence of ground and rotor platform on aeroacoustic results was observable even for low frequencies.
{"title":"Experimental investigation of UAV rotor aeroacoustics and aerodynamics with computational cross-validation","authors":"Anna A. Kostek, Felix Lößle, Robin Wickersheim, Manuel Keßler, Ronan Boisard, Gabriel Reboul, Antonio Visingardi, Mattia Barbarino, Anthony D. Gardner","doi":"10.1007/s13272-023-00680-z","DOIUrl":"https://doi.org/10.1007/s13272-023-00680-z","url":null,"abstract":"Abstract The study provided a base of comparison of known computational techniques with different fidelity levels for performance and noise prediction of a single, fixed-pitch UAV rotor operating with varying flight parameters. The range of aerodynamic tools included blade element theory, potential flow methods (UPM, RAMSYS), lifting-line method (PUMA) and Navier–Stokes solver (FLOWer). Obtained loading distributions served as input for aeroacoustic codes delivering noise estimation for the blade passing frequency on a plane below the rotor. The resulting forces and noise levels showed satisfactory agreement with experimental data; however, differences in accuracy could be noticed depending on the computational method applied. The wake influence on the results was estimated based on vortex trajectories from simulations and those visible in background-oriented schlieren (BOS) pictures. The analysis of scattering effects showed that influence of ground and rotor platform on aeroacoustic results was observable even for low frequencies.","PeriodicalId":38083,"journal":{"name":"CEAS Aeronautical Journal","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135014533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-14DOI: 10.1007/s13272-023-00681-y
Massimo Brunetti, Andrea Nesci, Nicola Bianchi
{"title":"Conceptual design of a distributed electric anti-torque system for enhanced helicopter safety and performance","authors":"Massimo Brunetti, Andrea Nesci, Nicola Bianchi","doi":"10.1007/s13272-023-00681-y","DOIUrl":"https://doi.org/10.1007/s13272-023-00681-y","url":null,"abstract":"","PeriodicalId":38083,"journal":{"name":"CEAS Aeronautical Journal","volume":"360 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134912827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05DOI: 10.1007/s13272-023-00677-8
Nils Schwagerus, M. Stößel, Michael Krummenauer, D. Kožulović, Reinhard Niehuis
{"title":"Numerical investigation of a Coandă-based fluidic thrust vectoring system for subsonic nozzles","authors":"Nils Schwagerus, M. Stößel, Michael Krummenauer, D. Kožulović, Reinhard Niehuis","doi":"10.1007/s13272-023-00677-8","DOIUrl":"https://doi.org/10.1007/s13272-023-00677-8","url":null,"abstract":"","PeriodicalId":38083,"journal":{"name":"CEAS Aeronautical Journal","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45367650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}