Pub Date : 2024-11-15DOI: 10.1016/j.lwt.2024.116977
Yang Zhao , Kun Chen , Lei Rao , Yichen Hu , Haixia Yang , Yongtao Wang , Liang Zhao , Xiaojun Liao
Rutin is prone to degradation during processing, highlighting the need for a suitable protein system for its delivery. This study evaluated the effects of pH and concentration ratios on the interaction between rutin and superoxide dismutase (SOD), aiming to develop a suitable non-covalent delivery system. The highest thermal stability was observed at pH 4 with a rutin-to-SOD concentration ratio of 5:1, where the melting temperature (Tm) reached 67.8 °C, and the half-life was 176 min. Infrared spectroscopy and particle size analysis revealed that rutin has minimal impact on the secondary structure of SOD; however, high concentrations of rutin influence the quaternary structure of SOD, leading to aggregation. Molecular docking and molecular dynamics simulations further confirmed that the interaction between rutin and SOD occurs through hydrogen bonding and hydrophobic interactions, with pH altering their binding sites. At pH 5 and pH 6, the digestive stability of the SOD-rutin complex was the highest. This study provides a theoretical basis for the preparation of highly stable SOD-rutin complexes and identifies a new protein system for the stabilization of rutin.
{"title":"Investigating the non-covalent interactions between rutin and superoxide dismutase: Focus on thermal stability, structure, and in vitro digestion","authors":"Yang Zhao , Kun Chen , Lei Rao , Yichen Hu , Haixia Yang , Yongtao Wang , Liang Zhao , Xiaojun Liao","doi":"10.1016/j.lwt.2024.116977","DOIUrl":"10.1016/j.lwt.2024.116977","url":null,"abstract":"<div><div>Rutin is prone to degradation during processing, highlighting the need for a suitable protein system for its delivery. This study evaluated the effects of pH and concentration ratios on the interaction between rutin and superoxide dismutase (SOD), aiming to develop a suitable non-covalent delivery system. The highest thermal stability was observed at pH 4 with a rutin-to-SOD concentration ratio of 5:1, where the melting temperature (Tm) reached 67.8 °C, and the half-life was 176 min. Infrared spectroscopy and particle size analysis revealed that rutin has minimal impact on the secondary structure of SOD; however, high concentrations of rutin influence the quaternary structure of SOD, leading to aggregation. Molecular docking and molecular dynamics simulations further confirmed that the interaction between rutin and SOD occurs through hydrogen bonding and hydrophobic interactions, with pH altering their binding sites. At pH 5 and pH 6, the digestive stability of the SOD-rutin complex was the highest. This study provides a theoretical basis for the preparation of highly stable SOD-rutin complexes and identifies a new protein system for the stabilization of rutin.</div></div>","PeriodicalId":382,"journal":{"name":"LWT - Food Science and Technology","volume":"212 ","pages":"Article 116977"},"PeriodicalIF":6.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.lwt.2024.117021
Lijuan Han , Mengjie Liu , Yahui Sun , Jinyu Chen , Weinong Zhang , Hailong Zhang , Yanxia Cong
The present work aimed to prepare inflatable reduced-fat mayonnaise by using sunflower wax-based oleofoams (SWOF) as an oil phase. The effects of SW concentrations on the microstructure and the physical properties of oleofoams were investigated. Then the stable oleofoam formulations were chosen to prepare inflatable mayonnaise, and the functionality related to the physical (textural properties and thermal stability) and sensory attributes (appearance, color, and viscosity) of inflatable reduced-fat mayonnaise was compared with commercial low-fat mayonnaise (CLFM) & full-fat mayonnaise (CFFM). The microstructure study of SWOF indicated the presence of clearly visible SW crystals at the air-oil boundary and inside the continuous phase. This suggests that the stability of SWOF was accomplished through both Pickering and network crystallization. The SWOF exhibited a multi-layered sandwich structure, and the crystal layer thickness increased in oleofoams as the SW concentration rose. The oleofoams containing exceeded 6 wt% SW had better foamability and stability, a more elastic network, and a clear surface texture. Inflatable mayonnaise prepared by 10SWOF had comparable brightness, mouthfeel, and texture to CLFM, but sensitized to temperature. In general, the whipped mayonnaise prepared in this investigation had an acceptable appearance and textural properties and was suitable for foods that do not require heating.
{"title":"Preparation of sunflower wax-based oleofoams and its application in inflatable reduced-fat mayonnaise","authors":"Lijuan Han , Mengjie Liu , Yahui Sun , Jinyu Chen , Weinong Zhang , Hailong Zhang , Yanxia Cong","doi":"10.1016/j.lwt.2024.117021","DOIUrl":"10.1016/j.lwt.2024.117021","url":null,"abstract":"<div><div>The present work aimed to prepare inflatable reduced-fat mayonnaise by using sunflower wax-based oleofoams (SWOF) as an oil phase. The effects of SW concentrations on the microstructure and the physical properties of oleofoams were investigated. Then the stable oleofoam formulations were chosen to prepare inflatable mayonnaise, and the functionality related to the physical (textural properties and thermal stability) and sensory attributes (appearance, color, and viscosity) of inflatable reduced-fat mayonnaise was compared with commercial low-fat mayonnaise (CLFM) & full-fat mayonnaise (CFFM). The microstructure study of SWOF indicated the presence of clearly visible SW crystals at the air-oil boundary and inside the continuous phase. This suggests that the stability of SWOF was accomplished through both Pickering and network crystallization. The SWOF exhibited a multi-layered sandwich structure, and the crystal layer thickness increased in oleofoams as the SW concentration rose. The oleofoams containing exceeded 6 wt% SW had better foamability and stability, a more elastic network, and a clear surface texture. Inflatable mayonnaise prepared by 10SWOF had comparable brightness, mouthfeel, and texture to CLFM, but sensitized to temperature. In general, the whipped mayonnaise prepared in this investigation had an acceptable appearance and textural properties and was suitable for foods that do not require heating.</div></div>","PeriodicalId":382,"journal":{"name":"LWT - Food Science and Technology","volume":"212 ","pages":"Article 117021"},"PeriodicalIF":6.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.lwt.2024.116994
Jing Yan , Yingling Zhang , Hui Liang , Zibin Jiao , Lifan Song , Ji Liu , Qing Zhang , Yaowen Liu , Wen Qin
This study aimed to apply an ultrasonic pulse-echo system to characterize thermally oxidized rapeseed oil. After 60 h of heating treatment (165 ± 5 °C), the physicochemical (density, viscosity, acid value, iodine value and polar compounds) and acoustic properties (velocity, acoustic impedance, maximum amplitude of the first echo, difference in amplitude, and area under the curve) of rapeseed oil were measured. Support vector machine, random forest (RF), and backpropagation neural network algorithms were used to establish quantitative prediction models for viscosity and polar compounds based on the acoustic properties of rapeseed oil. The results indicated significant correlations between acoustic impedance and viscosity (R = 0.70), as well as between acoustic impedance and polar compounds (R = 0.79). Heating treatment reduced oil unsaturation and led to the formation of oxidative and polymeric compounds, which in turn increased the velocity and impedance, while decreasing the other three acoustic features. The RF model yielded the best performance in predicting viscosity (R2 = 0.7944) and polar compounds (R2 = 0.8385). These findings highlight that ultrasonic technology not only accurately predicts key quality parameters, but also provides a rapid, non-destructive, and cost-effective alternative to traditional methods for characterizing thermally oxidized rapeseed oil.
{"title":"Physicochemical characterization of thermally oxidized rapeseed oil: An insight into combining acoustic diagnostic technique and chemometrics","authors":"Jing Yan , Yingling Zhang , Hui Liang , Zibin Jiao , Lifan Song , Ji Liu , Qing Zhang , Yaowen Liu , Wen Qin","doi":"10.1016/j.lwt.2024.116994","DOIUrl":"10.1016/j.lwt.2024.116994","url":null,"abstract":"<div><div>This study aimed to apply an ultrasonic pulse-echo system to characterize thermally oxidized rapeseed oil. After 60 h of heating treatment (165 ± 5 °C), the physicochemical (density, viscosity, acid value, iodine value and polar compounds) and acoustic properties (velocity, acoustic impedance, maximum amplitude of the first echo, difference in amplitude, and area under the curve) of rapeseed oil were measured. Support vector machine, random forest (RF), and backpropagation neural network algorithms were used to establish quantitative prediction models for viscosity and polar compounds based on the acoustic properties of rapeseed oil. The results indicated significant correlations between acoustic impedance and viscosity (R = 0.70), as well as between acoustic impedance and polar compounds (R = 0.79). Heating treatment reduced oil unsaturation and led to the formation of oxidative and polymeric compounds, which in turn increased the velocity and impedance, while decreasing the other three acoustic features. The RF model yielded the best performance in predicting viscosity (R<sup>2</sup> = 0.7944) and polar compounds (R<sup>2</sup> = 0.8385). These findings highlight that ultrasonic technology not only accurately predicts key quality parameters, but also provides a rapid, non-destructive, and cost-effective alternative to traditional methods for characterizing thermally oxidized rapeseed oil.</div></div>","PeriodicalId":382,"journal":{"name":"LWT - Food Science and Technology","volume":"212 ","pages":"Article 116994"},"PeriodicalIF":6.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.lwt.2024.117008
C. Bas-Bellver , C. Barrera , N. Betoret , L. Seguí , J. Harasym
Fruit and vegetable industrialization generates large amounts of organic residues abundant in bioactive compounds. In the present work, white cabbage powders (WCP) were used to partially replace rice flour (5, 10, 20 and 30% w/w) in the formulation of gluten-free breadsticks. Physicochemical (moisture content, water and oil absorption capacity), pasting, and antioxidant properties (reducing sugars, total phenols and DPPH scavenge ability) were evaluated in flour blends. Breadsticks quality was evaluated by analysing dough rheology, physicochemical (aw, colour, texture) and antioxidant properties. Water and oil absorption capacities improved with WCP addition, whereas pasting properties worsened. Dynamic oscillatory tests revealed that WCP incorporation increased G′ and G″ values. Colour attributes were also significantly modified with WCP addition, whereas breadsticks hardness reduced compared to control formulation. Nutritional properties of breadsticks improved with WCP addition, as deduced from the better antioxidant characteristics obtained for both blends and breadsticks, when vegetable powders were added. In conclusion, this study reveals that WCP can be suggested as functional food ingredient to increase the nutritional properties of new, rice-based gluten-free breadsticks.
{"title":"White cabbage waste powder improves gluten-free rice-based breadsticks functional and nutritional characteristics","authors":"C. Bas-Bellver , C. Barrera , N. Betoret , L. Seguí , J. Harasym","doi":"10.1016/j.lwt.2024.117008","DOIUrl":"10.1016/j.lwt.2024.117008","url":null,"abstract":"<div><div>Fruit and vegetable industrialization generates large amounts of organic residues abundant in bioactive compounds. In the present work, white cabbage powders (WCP) were used to partially replace rice flour (5, 10, 20 and 30% w/w) in the formulation of gluten-free breadsticks. Physicochemical (moisture content, water and oil absorption capacity), pasting, and antioxidant properties (reducing sugars, total phenols and DPPH scavenge ability) were evaluated in flour blends. Breadsticks quality was evaluated by analysing dough rheology, physicochemical (a<sub>w</sub>, colour, texture) and antioxidant properties. Water and oil absorption capacities improved with WCP addition, whereas pasting properties worsened. Dynamic oscillatory tests revealed that WCP incorporation increased G′ and G″ values. Colour attributes were also significantly modified with WCP addition, whereas breadsticks hardness reduced compared to control formulation. Nutritional properties of breadsticks improved with WCP addition, as deduced from the better antioxidant characteristics obtained for both blends and breadsticks, when vegetable powders were added. In conclusion, this study reveals that WCP can be suggested as functional food ingredient to increase the nutritional properties of new, rice-based gluten-free breadsticks.</div></div>","PeriodicalId":382,"journal":{"name":"LWT - Food Science and Technology","volume":"212 ","pages":"Article 117008"},"PeriodicalIF":6.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.lwt.2024.117050
Chengkun Yang , Xiaowen Wang , Wencan Zhu , Zhongrui Weng , Feili Li , Yawen Zhang , Hongxia Wu , Kaibing Zhou , Åke Strid , Minjie Qian
Phenolics are important secondary metabolites and antioxidants in plants. Mango fruit accumulate abundant phenolic compounds, while the effect of light on the accumulation of different phenolic components in mango peel and the relevant molecular mechanism are still unknown. In this study, mature ‘Guifei’ mango fruit was subjected to postharvest UV-B/white light treatment, fruit peel was sampled for metabolomic and transcriptomic analyses. The results showed that light induced the accumulation of anthocyanins, flavonoids, and phenolics, thus increasing the antioxidant capacity in mango peel. A total of 1223 phenolic metabolites were detected in mango peel, 36 phenolic compounds were defined as key differentially accumulated metabolites (DAMs) regulated by light. Among the DAMs, the accumulation of 33 compounds was promoted by light, and 30 of these were flavonoids. Light up-regulated most phenolics biosynthesis and light signaling pathway genes and also regulated expression of plant hormone signaling pathway genes. Transcription factors (TFs) such as MYB, C2H2 and HSF were identified as candidates regulating phenolics biosynthesis in mango. Our findings not only provide information for commercial application of light in promoting mango fruit appearance and increasing phenolics content and antioxidant capacity, but also reveal important aspects of the molecular regulation of light-induced phenolics accumulation in mango peel.
{"title":"Metabolomic and transcriptomic analyses reveal the regulation mechanism of postharvest light-induced phenolics accumulation in mango peel","authors":"Chengkun Yang , Xiaowen Wang , Wencan Zhu , Zhongrui Weng , Feili Li , Yawen Zhang , Hongxia Wu , Kaibing Zhou , Åke Strid , Minjie Qian","doi":"10.1016/j.lwt.2024.117050","DOIUrl":"10.1016/j.lwt.2024.117050","url":null,"abstract":"<div><div>Phenolics are important secondary metabolites and antioxidants in plants. Mango fruit accumulate abundant phenolic compounds, while the effect of light on the accumulation of different phenolic components in mango peel and the relevant molecular mechanism are still unknown. In this study, mature ‘Guifei’ mango fruit was subjected to postharvest UV-B/white light treatment, fruit peel was sampled for metabolomic and transcriptomic analyses. The results showed that light induced the accumulation of anthocyanins, flavonoids, and phenolics, thus increasing the antioxidant capacity in mango peel. A total of 1223 phenolic metabolites were detected in mango peel, 36 phenolic compounds were defined as key differentially accumulated metabolites (DAMs) regulated by light. Among the DAMs, the accumulation of 33 compounds was promoted by light, and 30 of these were flavonoids. Light up-regulated most phenolics biosynthesis and light signaling pathway genes and also regulated expression of plant hormone signaling pathway genes. Transcription factors (TFs) such as MYB, C2H2 and HSF were identified as candidates regulating phenolics biosynthesis in mango. Our findings not only provide information for commercial application of light in promoting mango fruit appearance and increasing phenolics content and antioxidant capacity, but also reveal important aspects of the molecular regulation of light-induced phenolics accumulation in mango peel.</div></div>","PeriodicalId":382,"journal":{"name":"LWT - Food Science and Technology","volume":"213 ","pages":"Article 117050"},"PeriodicalIF":6.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.lwt.2024.117054
Cristina Campos-Vázquez , Juan J. Román-Camacho , Roger Consuegra-Rivera , Inés M. Santos-Dueñas , Isidoro García-García , Teresa García-Martínez , Juan C. Mauricio
The identification of microorganisms in vinegar production remains a challenge mainly, due to the difficulty of isolating and characterizing the microbiota involved. This implies that despite progress in understanding the composition and role of these microbial communities, there are still virtually unknown microorganisms in these environments. Metaproteomics reveals microbial diversity and behavior by analysis of proteins, offering precise insights into key moments and conditions in biological processes like acetification. This study consists of a thorough metaproteomic analysis during the elaboration of an innovative vinegar, Verdejo wine vinegar. Acetic acid fermentation occurred by submerged culture in an 8L automated Frings reactor operated in semi-continuous mode. LC-MS/MS identified 1626 proteins from 149 taxonomic groups, mainly Acetobacteraceae (1529), followed by yeast (47), lactic acid bacteria (29), and Archaea (21). Komagataeibacter (73.7%), Acetobacter (10.7%), Gluconacetobacter (1.7%), Novacetimonas (1.6%), and Gluconobacter (1.3%) were prevalent genera, with K. europaeus being the dominant species (56.7%). To our knowledge, this is the first metaproteomic approach to comprehensively address the study of so diverse microbial populations. GO Term analysis emphasized "heterocyclic compound binding" and "organic substance metabolic process", while analysis of protein-protein interactions identified key metabolic processes, such as amino acid biosynthesis, especially BCAAs, and crucial energetic pathways such as the TCA cycle. Stress response mechanisms, such as the dnaK-dnaJ-grpE and cl2p system, have been also highlighted. These analyses revealed the molecular and functional complexity of the acetification process, highlighting the critical importance of diverse metabolic routes in the adaptation of the microbiota members to the medium conditions. Overall, this study aims to characterize the microbiota driving Verdejo wine acetification and explore its composition, functions, and key metabolic processes.
{"title":"Exploring microbial diversity and functionality in Verdejo wine vinegar fermentation through LC-MS/MS analysis","authors":"Cristina Campos-Vázquez , Juan J. Román-Camacho , Roger Consuegra-Rivera , Inés M. Santos-Dueñas , Isidoro García-García , Teresa García-Martínez , Juan C. Mauricio","doi":"10.1016/j.lwt.2024.117054","DOIUrl":"10.1016/j.lwt.2024.117054","url":null,"abstract":"<div><div>The identification of microorganisms in vinegar production remains a challenge mainly, due to the difficulty of isolating and characterizing the microbiota involved. This implies that despite progress in understanding the composition and role of these microbial communities, there are still virtually unknown microorganisms in these environments. Metaproteomics reveals microbial diversity and behavior by analysis of proteins, offering precise insights into key moments and conditions in biological processes like acetification. This study consists of a thorough metaproteomic analysis during the elaboration of an innovative vinegar, Verdejo wine vinegar. Acetic acid fermentation occurred by submerged culture in an 8L automated Frings reactor operated in semi-continuous mode. LC-MS/MS identified 1626 proteins from 149 taxonomic groups, mainly Acetobacteraceae (1529), followed by yeast (47), lactic acid bacteria (29), and Archaea (21). <em>Komagataeibacter</em> (73.7%), <em>Acetobacter</em> (10.7%), <em>Gluconacetobacter</em> (1.7%), <em>Novacetimonas</em> (1.6%), and <em>Gluconobacter</em> (1.3%) were prevalent genera, with <em>K. europaeus</em> being the dominant species (56.7%). To our knowledge, this is the first metaproteomic approach to comprehensively address the study of so diverse microbial populations. GO Term analysis emphasized \"heterocyclic compound binding\" and \"organic substance metabolic process\", while analysis of protein-protein interactions identified key metabolic processes, such as amino acid biosynthesis, especially BCAAs, and crucial energetic pathways such as the TCA cycle. Stress response mechanisms, such as the dnaK-dnaJ-grpE and cl2p system, have been also highlighted. These analyses revealed the molecular and functional complexity of the acetification process, highlighting the critical importance of diverse metabolic routes in the adaptation of the microbiota members to the medium conditions. Overall, this study aims to characterize the microbiota driving Verdejo wine acetification and explore its composition, functions, and key metabolic processes.</div></div>","PeriodicalId":382,"journal":{"name":"LWT - Food Science and Technology","volume":"213 ","pages":"Article 117054"},"PeriodicalIF":6.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142702377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.lwt.2024.116976
Yu Zhang , Xiaohong Kou , Guohe Zhang , Donglan Luo , Sen Cao
Blueberries are susceptible to decay and spoilage due to increased respiration rates and metabolism after harvest. The aim of this study was to examine the impact of postharvest application of exogenous glycine betaine (GB) on blueberry storage quality, antioxidant system, and energy metabolism in order to enhance understanding of the regulatory mechanisms of GB on blueberry quality. Fresh blueberries were soaked for 5 min in different concentrations of GB. Preliminary pre-tests revealed that 10 mmol L−1 GB treatment significantly retarded the quality deterioration, decay and dent rate, while increasing the firmness and soluble solid content. Concurrently, exogenous GB treatment resulted in an increase in the content of anthocyanosides, total flavonoids, total phenols, and reduced glutathione, also exhibited higher antioxidant enzyme activities, including superoxide dismutase, catalase, ascorbate peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase, glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase. In GB-treated blueberries, endogenous GB content was significantly higher. The hydrogen peroxide value, superoxide anion, and malondialdehyde content, and higher levels of free radical scavenging rate (DPPH), which significantly improved antioxidant capacity. Meanwhile, succinate dehydrogenase, cytochrome C oxidase, H+-ATPase, and Ca2+-ATPase, decreased and slowed the senescence of blueberries, the ATP content and energy charge were observed to be elevated. In summary, exogenous GB treatment maintained the quality of post-harvest blueberries by increasing their antioxidant capacity and inhibiting the decrease in the activity of energy metabolism-related enzymes. The results indicate that 10 mmol L−1 GB treatment may be an efficacious approach for maintaining the quality and prolonging the shelf life of blueberries, offering novel insights into the preservation of this fruit.
{"title":"Exogenous glycine betaine maintains postharvest blueberry quality by modulating antioxidant capacity and energy metabolism","authors":"Yu Zhang , Xiaohong Kou , Guohe Zhang , Donglan Luo , Sen Cao","doi":"10.1016/j.lwt.2024.116976","DOIUrl":"10.1016/j.lwt.2024.116976","url":null,"abstract":"<div><div>Blueberries are susceptible to decay and spoilage due to increased respiration rates and metabolism after harvest. The aim of this study was to examine the impact of postharvest application of exogenous glycine betaine (GB) on blueberry storage quality, antioxidant system, and energy metabolism in order to enhance understanding of the regulatory mechanisms of GB on blueberry quality. Fresh blueberries were soaked for 5 min in different concentrations of GB. Preliminary pre-tests revealed that 10 mmol L<sup>−1</sup> GB treatment significantly retarded the quality deterioration, decay and dent rate, while increasing the firmness and soluble solid content. Concurrently, exogenous GB treatment resulted in an increase in the content of anthocyanosides, total flavonoids, total phenols, and reduced glutathione, also exhibited higher antioxidant enzyme activities, including superoxide dismutase, catalase, ascorbate peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase, glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase. In GB-treated blueberries, endogenous GB content was significantly higher. The hydrogen peroxide value, superoxide anion, and malondialdehyde content, and higher levels of free radical scavenging rate (DPPH), which significantly improved antioxidant capacity. Meanwhile, succinate dehydrogenase, cytochrome C oxidase, H<sup>+</sup>-ATPase, and Ca<sup>2+</sup>-ATPase, decreased and slowed the senescence of blueberries, the ATP content and energy charge were observed to be elevated. In summary, exogenous GB treatment maintained the quality of post-harvest blueberries by increasing their antioxidant capacity and inhibiting the decrease in the activity of energy metabolism-related enzymes. The results indicate that 10 mmol L<sup>−1</sup> GB treatment may be an efficacious approach for maintaining the quality and prolonging the shelf life of blueberries, offering novel insights into the preservation of this fruit.</div></div>","PeriodicalId":382,"journal":{"name":"LWT - Food Science and Technology","volume":"212 ","pages":"Article 116976"},"PeriodicalIF":6.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigates the enzymatic hydrolysis of white-cheek shark (Carcharhinus dussumieri) skin gelatin using Alcalase to produce antioxidant peptides. Response surface methodology was employed to optimize enzyme-substrate ratio (E/S) and hydrolysis time. The optimal conditions, with an E/S of 4.8% for 133 min, achieved the highest degree of hydrolysis (DH) of 23.4%, as well as maximum DPPH radical scavenging activity (56.8%) and FRAP value (0.24 mg AAE/g). Subsequent evaluations of hydrolyzed (WCSG-H) and non-hydrolyzed gelatin (WCSG) revealed significant differences in their properties (p<0.05). Specifically, gel electrophoresis showed molecular weight fractions of 72–165 kDa for WCSG and <8 kDa for WCSG-H, while amino acid profiling indicated high levels of glycine, proline, and alanine in both samples. ATR-FTIR spectroscopy demonstrated that enzymatic hydrolysis led to a more disordered secondary structure in WCSG. Furthermore, WCSG exhibited superior emulsion activity, foaming capacity, and foam stability, though differences in emulsion stability were not statistically significant (p>0.05). In contrast, WCSG-H showed significantly higher solubility (97.7%) and antioxidant capacity (56.8% DPPH radical scavenging activity and FRAP of 0.24 mg AAE/g) compared to WCSG (85.22%, 52.82%, and 0.08 mg AAE/g, respectively). Therefore, these findings suggest that both WCSG and WCSG-H are promising natural antioxidants for functional food applications.
{"title":"Enzymatic hydrolysis of white-cheek shark skin gelatin: Optimization, structural transformations, functional characteristics, and antioxidant potential","authors":"Hoda Shahiri Tabarestani, Homa Shahram, Alireza Sadeghi Mahoonak, Ali Moayedi, Shima Kaveh","doi":"10.1016/j.lwt.2024.117060","DOIUrl":"10.1016/j.lwt.2024.117060","url":null,"abstract":"<div><div>This study investigates the enzymatic hydrolysis of white-cheek shark (<em>Carcharhinus dussumieri</em>) skin gelatin using Alcalase to produce antioxidant peptides. Response surface methodology was employed to optimize enzyme-substrate ratio (E/S) and hydrolysis time. The optimal conditions, with an E/S of 4.8% for 133 min, achieved the highest degree of hydrolysis (DH) of 23.4%, as well as maximum DPPH radical scavenging activity (56.8%) and FRAP value (0.24 mg AAE/g). Subsequent evaluations of hydrolyzed (WCSG-H) and non-hydrolyzed gelatin (WCSG) revealed significant differences in their properties (p<0.05). Specifically, gel electrophoresis showed molecular weight fractions of 72–165 kDa for WCSG and <8 kDa for WCSG-H, while amino acid profiling indicated high levels of glycine, proline, and alanine in both samples. ATR-FTIR spectroscopy demonstrated that enzymatic hydrolysis led to a more disordered secondary structure in WCSG. Furthermore, WCSG exhibited superior emulsion activity, foaming capacity, and foam stability, though differences in emulsion stability were not statistically significant (p>0.05). In contrast, WCSG-H showed significantly higher solubility (97.7%) and antioxidant capacity (56.8% DPPH radical scavenging activity and FRAP of 0.24 mg AAE/g) compared to WCSG (85.22%, 52.82%, and 0.08 mg AAE/g, respectively). Therefore, these findings suggest that both WCSG and WCSG-H are promising natural antioxidants for functional food applications.</div></div>","PeriodicalId":382,"journal":{"name":"LWT - Food Science and Technology","volume":"213 ","pages":"Article 117060"},"PeriodicalIF":6.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142702379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study used trypsin to hydrolyze soybean protein isolate (SPI), Cyperus esculentus protein (CEP), Wheat gluten protein (WGP), and flaxseed protein (FP) to varying extents, comparing the structure and physicochemical properties of four plant proteins as well as their enzymatic hydrolysates. Results indicate SPI's surface hydrophobicity rises with hydrolysis, whereas CEP's decreases. Additionally, all four plant proteins exhibit improved essential amino acid content and oil-holding capacity as hydrolysis progresses. The CEP with a 20% degree of hydrolysis achieved the optimal oil holding capacity, reaching 10.2 g/g. SPI demonstrated superior foam capacity. As the degree of hydrolysis increased, foam stability varied among the four proteins. The CEP hydrolyzed to 10% exhibited the highest emulsifying activity index, achiving a value of 60 m2/g. Additionally, the emulsifying stability index of CEP hydrolysates significantly improved as the degree of hydrolysis increased. According to the DPPH• assay, both CEP and their enzymatic hydrolysate had the highest free radical scavenging rate. These findings provided a theoretical basis and empirical evidence for the use and adaptation of plant protein hydrolysates as a promising and environmentally sustainable source of plant-derived peptides in food processing reaprocessing.
{"title":"Comparative study of physicochemical and structural properties of plant proteins hydrolyzed by different","authors":"Chang Liu, Meng Li, Wanting Zhang, Yiming Chen, Jinjing Chen, Xiuli Wu","doi":"10.1016/j.lwt.2024.116956","DOIUrl":"10.1016/j.lwt.2024.116956","url":null,"abstract":"<div><div>This study used trypsin to hydrolyze soybean protein isolate (SPI), Cyperus esculentus protein (CEP), Wheat gluten protein (WGP), and flaxseed protein (FP) to varying extents, comparing the structure and physicochemical properties of four plant proteins as well as their enzymatic hydrolysates. Results indicate SPI's surface hydrophobicity rises with hydrolysis, whereas CEP's decreases. Additionally, all four plant proteins exhibit improved essential amino acid content and oil-holding capacity as hydrolysis progresses. The CEP with a 20% degree of hydrolysis achieved the optimal oil holding capacity, reaching 10.2 g/g. SPI demonstrated superior foam capacity. As the degree of hydrolysis increased, foam stability varied among the four proteins. The CEP hydrolyzed to 10% exhibited the highest emulsifying activity index, achiving a value of 60 m<sup>2</sup>/g. Additionally, the emulsifying stability index of CEP hydrolysates significantly improved as the degree of hydrolysis increased. According to the DPPH• assay, both CEP and their enzymatic hydrolysate had the highest free radical scavenging rate. These findings provided a theoretical basis and empirical evidence for the use and adaptation of plant protein hydrolysates as a promising and environmentally sustainable source of plant-derived peptides in food processing reaprocessing.</div></div>","PeriodicalId":382,"journal":{"name":"LWT - Food Science and Technology","volume":"212 ","pages":"Article 116956"},"PeriodicalIF":6.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To improve the fermentation quality and increase safety when using nitrite in the production of Sichuan dry sausages, two isolated Lactiplantibacillus strains were used in their processing. The nitrite content, counts of Lactiplantibacillus and total bacteria, pH, color, hydrolysis of proteins, oxidation of lipids, water content and water activity, volatile flavor compounds, and sensory characteristics of the fermented sausage were determined. The results showed that the inoculation of L. plantarum SR2 and L. farciminis SR9 reduced the nitrite content, increased the protein hydrolysis, decreased the lipid oxidation, inhibited the activity of spoilage micro -organisms, decreased the pH of the end products, increased the flavor compounds, and enhanced the sensory attributes, including color, texture, taste, flavor, and overall acceptability, of the Sichuan dry sausage. In brief, L. plantarum SR2 and L. farciminis SR9 are effective in reducing the content of nitrite in sausages without decreasing its a∗ values and sensory qualities.
{"title":"Effect of isolated bacteria on nitrite degradation and quality of Sichuan dry sausages","authors":"Yin Zhang, Jianlin Jia, Qin Qian, Haoxin Ma, Jiao Zhou, Yuzhu Lin, Pengcheng Zhang, Qiuyue Chen, Qing Zeng, Qing Li, Li Dong","doi":"10.1016/j.lwt.2024.117039","DOIUrl":"10.1016/j.lwt.2024.117039","url":null,"abstract":"<div><div>To improve the fermentation quality and increase safety when using nitrite in the production of Sichuan dry sausages, two isolated <em>Lactiplantibacillus</em> strains were used in their processing. The nitrite content, counts of <em>Lactiplantibacillus</em> and total bacteria, pH, color, hydrolysis of proteins, oxidation of lipids, water content and water activity, volatile flavor compounds, and sensory characteristics of the fermented sausage were determined. The results showed that the inoculation of <em>L. plantarum</em> SR2 and <em>L. farciminis</em> SR9 reduced the nitrite content, increased the protein hydrolysis, decreased the lipid oxidation, inhibited the activity of spoilage micro -organisms, decreased the pH of the end products, increased the flavor compounds, and enhanced the sensory attributes, including color, texture, taste, flavor, and overall acceptability, of the Sichuan dry sausage. In brief, <em>L. plantarum</em> SR2 and <em>L. farciminis</em> SR9 are effective in reducing the content of nitrite in sausages without decreasing its <em>a∗</em> values and sensory qualities.</div></div>","PeriodicalId":382,"journal":{"name":"LWT - Food Science and Technology","volume":"212 ","pages":"Article 117039"},"PeriodicalIF":6.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}