首页 > 最新文献

生物医学工程学杂志最新文献

英文 中文
[Mass transfer of bilirubin and bovine serum albumin in hollow fiber membrane module of artificial liver]. [人工肝中空纤维膜组件中胆红素和牛血清白蛋白的传质]。
Q4 Medicine Pub Date : 2024-08-25 DOI: 10.7507/1001-5515.202311011
Ziheng Wang, Shaofeng Xu, Yifan Yu, JunJie Lu, Xuechang Zhang

Understanding the mass transfer behaviors in hollow fiber membrane module of artificial liver is important for improving toxin removal efficiency. A three-dimensional numerical model was established to study the mass transfer of small molecule bilirubin and macromolecule bovine serum albumin (BSA) in the hollow fiber membrane module. Effects of tube-side flow rate, shell-side flow rate, and hollow fiber length on the mass transfer of bilirubin and BSA were discussed. The simulation results showed that the clearance of bilirubin was significantly affected by both convective and diffusive solute transport, while the clearance of macromolecule BSA was dominated by convective solute transport. The clearance rates of bilirubin and BSA increasd with the increase of tube-side flow rate and hollow fiber length. With the increase of shell-side flow rate, the clearance rate of bilirubin first rose rapidly, then slowly rose to an asymptotic value, while the clearance rate of BSA gradually decreased. The results can provide help for designing structures of hollow fiber membrane module and operation parameters of clinical treatment.

了解人工肝中空纤维膜组件中的传质行为对于提高毒素去除效率非常重要。本文建立了一个三维数值模型来研究小分子胆红素和大分子牛血清白蛋白(BSA)在中空纤维膜组件中的传质行为。讨论了管侧流速、壳侧流速和中空纤维长度对胆红素和牛血清白蛋白传质的影响。模拟结果表明,胆红素的清除受对流和扩散溶质传输的显著影响,而大分子 BSA 的清除则以对流溶质传输为主。胆红素和 BSA 的清除率随着管侧流速和中空纤维长度的增加而增加。随着壳侧流速的增加,胆红素的清除率先快速上升,然后缓慢上升到一个渐近值,而 BSA 的清除率则逐渐下降。这些结果有助于设计中空纤维膜组件的结构和临床治疗的操作参数。
{"title":"[Mass transfer of bilirubin and bovine serum albumin in hollow fiber membrane module of artificial liver].","authors":"Ziheng Wang, Shaofeng Xu, Yifan Yu, JunJie Lu, Xuechang Zhang","doi":"10.7507/1001-5515.202311011","DOIUrl":"10.7507/1001-5515.202311011","url":null,"abstract":"<p><p>Understanding the mass transfer behaviors in hollow fiber membrane module of artificial liver is important for improving toxin removal efficiency. A three-dimensional numerical model was established to study the mass transfer of small molecule bilirubin and macromolecule bovine serum albumin (BSA) in the hollow fiber membrane module. Effects of tube-side flow rate, shell-side flow rate, and hollow fiber length on the mass transfer of bilirubin and BSA were discussed. The simulation results showed that the clearance of bilirubin was significantly affected by both convective and diffusive solute transport, while the clearance of macromolecule BSA was dominated by convective solute transport. The clearance rates of bilirubin and BSA increasd with the increase of tube-side flow rate and hollow fiber length. With the increase of shell-side flow rate, the clearance rate of bilirubin first rose rapidly, then slowly rose to an asymptotic value, while the clearance rate of BSA gradually decreased. The results can provide help for designing structures of hollow fiber membrane module and operation parameters of clinical treatment.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 4","pages":"742-750"},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366472/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Research progress of electrospinning polyurethane fiber in the field of biomedical tissue engineering]. [生物医学组织工程领域聚氨酯纤维电纺丝的研究进展]。
Q4 Medicine Pub Date : 2024-08-25 DOI: 10.7507/1001-5515.202305051
Enxiang Jiao, Ziru Sun, Meihong Xu, Ze Wu, Yuanbiao Liu, Kai Guo, Guiying Ren, Haijun Zhang, Baichao Liu

Polyurethane materials have good biocompatibility, blood compatibility, mechanical properties, fatigue resistance and processability, and have always been highly valued as medical materials. Polyurethane fibers prepared by electrostatic spinning technology can better mimic the structure of natural extracellular matrices (ECMs), and seed cells can adhere and proliferate better to meet the requirements of tissue repair and reconstruction. The purpose of this review is to present the research progress of electrostatically spun polyurethane fibers in bone tissue engineering, skin tissue engineering, neural tissue engineering, vascular tissue engineering and cardiac tissue engineering, so that researchers can understand the practical applications of electrostatically spun polyurethane fibers in tissue engineering and regenerative medicine.

聚氨酯材料具有良好的生物相容性、血液相容性、机械性能、抗疲劳性和可加工性,作为医用材料一直受到高度重视。利用静电纺丝技术制备的聚氨酯纤维能更好地模拟天然细胞外基质(ECM)的结构,种子细胞能更好地附着和增殖,满足组织修复和重建的要求。本综述旨在介绍静电纺丝聚氨酯纤维在骨组织工程、皮肤组织工程、神经组织工程、血管组织工程和心脏组织工程中的研究进展,以便研究人员了解静电纺丝聚氨酯纤维在组织工程和再生医学中的实际应用。
{"title":"[Research progress of electrospinning polyurethane fiber in the field of biomedical tissue engineering].","authors":"Enxiang Jiao, Ziru Sun, Meihong Xu, Ze Wu, Yuanbiao Liu, Kai Guo, Guiying Ren, Haijun Zhang, Baichao Liu","doi":"10.7507/1001-5515.202305051","DOIUrl":"10.7507/1001-5515.202305051","url":null,"abstract":"<p><p>Polyurethane materials have good biocompatibility, blood compatibility, mechanical properties, fatigue resistance and processability, and have always been highly valued as medical materials. Polyurethane fibers prepared by electrostatic spinning technology can better mimic the structure of natural extracellular matrices (ECMs), and seed cells can adhere and proliferate better to meet the requirements of tissue repair and reconstruction. The purpose of this review is to present the research progress of electrostatically spun polyurethane fibers in bone tissue engineering, skin tissue engineering, neural tissue engineering, vascular tissue engineering and cardiac tissue engineering, so that researchers can understand the practical applications of electrostatically spun polyurethane fibers in tissue engineering and regenerative medicine.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 4","pages":"840-847"},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Study on direct ventricular assist loading mode based on a finite element method]. [基于有限元法的直接心室辅助加载模式研究]。
Q4 Medicine Pub Date : 2024-08-25 DOI: 10.7507/1001-5515.202312070
Chen Li, Xianjie Jiang, Sheng Zhang, Tianbo Wang, Xiaohan Liu, Yue Zhang, Gang Huang, Xiaogang Zhang, Junbo Xu, Zhongmin Jin

To investigate the biomechanical effects of direct ventricular assistance and explore the optimal loading mode, this study established a left ventricular model of heart failure patients based on the finite element method. It proposed a loading mode that maintains peak pressure compression, and compared it with the traditional sinusoidal loading mode from both hemodynamic and biomechanical perspectives. The results showed that both modes significantly improved hemodynamic parameters, with ejection fraction increased from a baseline of 29.33% to 37.32% and 37.77%, respectively, while peak pressure, stroke volume, and stroke work parameters also increased. Additionally, both modes showed improvements in stress concentration and excessive fiber strain. Moreover, considering the phase error of the assist device's working cycle, the proposed assist mode in this study was less affected. Therefore, this research may provide theoretical support for the design and optimization of direct ventricular assist devices.

为了研究直接心室辅助的生物力学效应并探索最佳加载模式,本研究基于有限元方法建立了心衰患者的左心室模型。研究提出了一种保持峰值压力压缩的加载模式,并从血液动力学和生物力学角度将其与传统的正弦加载模式进行了比较。结果表明,两种模式都能明显改善血液动力学参数,射血分数分别从基线的 29.33% 增加到 37.32% 和 37.77%,而峰值压力、每搏量和每搏功参数也有所提高。此外,两种模式在应力集中和纤维过度应变方面都有所改善。此外,考虑到辅助装置工作周期的相位误差,本研究中提出的辅助模式受到的影响较小。因此,这项研究可为直接心室辅助装置的设计和优化提供理论支持。
{"title":"[Study on direct ventricular assist loading mode based on a finite element method].","authors":"Chen Li, Xianjie Jiang, Sheng Zhang, Tianbo Wang, Xiaohan Liu, Yue Zhang, Gang Huang, Xiaogang Zhang, Junbo Xu, Zhongmin Jin","doi":"10.7507/1001-5515.202312070","DOIUrl":"10.7507/1001-5515.202312070","url":null,"abstract":"<p><p>To investigate the biomechanical effects of direct ventricular assistance and explore the optimal loading mode, this study established a left ventricular model of heart failure patients based on the finite element method. It proposed a loading mode that maintains peak pressure compression, and compared it with the traditional sinusoidal loading mode from both hemodynamic and biomechanical perspectives. The results showed that both modes significantly improved hemodynamic parameters, with ejection fraction increased from a baseline of 29.33% to 37.32% and 37.77%, respectively, while peak pressure, stroke volume, and stroke work parameters also increased. Additionally, both modes showed improvements in stress concentration and excessive fiber strain. Moreover, considering the phase error of the assist device's working cycle, the proposed assist mode in this study was less affected. Therefore, this research may provide theoretical support for the design and optimization of direct ventricular assist devices.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 4","pages":"782-789"},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366469/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[An efficient and practical electrode optimization method for transcranial electrical stimulation]. [高效实用的经颅电刺激电极优化方法]。
Q4 Medicine Pub Date : 2024-08-25 DOI: 10.7507/1001-5515.202308016
Xu Xie, Minmin Wang, Shaomin Zhang

Transcranial electrical stimulation (TES) is a non-invasive neuromodulation technique with great potential. Electrode optimization methods based on simulation models of individual TES field could provide personalized stimulation parameters according to individual variations in head tissue structure, significantly enhancing the stimulation accuracy of TES. However, the existing electrode optimization methods suffer from prolonged computation times (typically exceeding 1 d) and limitations such as disregarding the restricted number of output channels from the stimulator, further impeding their clinical applicability. Hence, this paper proposes an efficient and practical electrode optimization method. The proposed method simultaneously optimizes both the intensity and focality of TES within the target brain area while constraining the number of electrodes used, and it achieves faster computational speed. Compared to commonly used electrode optimization methods, the proposed method significantly reduces computation time by 85.9% while maintaining optimization effectiveness. Moreover, our method considered the number of available channels for the stimulator to distribute the current across multiple electrodes, further improving the tolerability of TES. The electrode optimization method proposed in this paper has the characteristics of high efficiency and easy operation, potentially providing valuable supporting data and references for the implementation of individualized TES.

经颅电刺激(TES)是一种潜力巨大的非侵入性神经调控技术。基于个体经颅电刺激场模拟模型的电极优化方法可根据头部组织结构的个体差异提供个性化刺激参数,从而显著提高经颅电刺激的刺激精度。然而,现有的电极优化方法存在计算时间长(通常超过 1 d)、不考虑刺激器输出通道数量限制等局限性,进一步阻碍了其临床应用。因此,本文提出了一种高效实用的电极优化方法。该方法在限制电极使用数量的同时,还能优化目标脑区的 TES 强度和聚焦度,而且计算速度更快。与常用的电极优化方法相比,所提出的方法在保持优化效果的同时,大大减少了 85.9% 的计算时间。此外,我们的方法还考虑了刺激器的可用通道数量,以在多个电极上分配电流,从而进一步提高了 TES 的耐受性。本文提出的电极优化方法具有效率高、操作简便等特点,可为个体化 TES 的实施提供有价值的支持数据和参考。
{"title":"[An efficient and practical electrode optimization method for transcranial electrical stimulation].","authors":"Xu Xie, Minmin Wang, Shaomin Zhang","doi":"10.7507/1001-5515.202308016","DOIUrl":"10.7507/1001-5515.202308016","url":null,"abstract":"<p><p>Transcranial electrical stimulation (TES) is a non-invasive neuromodulation technique with great potential. Electrode optimization methods based on simulation models of individual TES field could provide personalized stimulation parameters according to individual variations in head tissue structure, significantly enhancing the stimulation accuracy of TES. However, the existing electrode optimization methods suffer from prolonged computation times (typically exceeding 1 d) and limitations such as disregarding the restricted number of output channels from the stimulator, further impeding their clinical applicability. Hence, this paper proposes an efficient and practical electrode optimization method. The proposed method simultaneously optimizes both the intensity and focality of TES within the target brain area while constraining the number of electrodes used, and it achieves faster computational speed. Compared to commonly used electrode optimization methods, the proposed method significantly reduces computation time by 85.9% while maintaining optimization effectiveness. Moreover, our method considered the number of available channels for the stimulator to distribute the current across multiple electrodes, further improving the tolerability of TES. The electrode optimization method proposed in this paper has the characteristics of high efficiency and easy operation, potentially providing valuable supporting data and references for the implementation of individualized TES.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 4","pages":"724-731"},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366464/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Research progress on anti-swelling hydrogels in biomedical field]. [生物医学领域抗膨胀水凝胶的研究进展]。
Q4 Medicine Pub Date : 2024-08-25 DOI: 10.7507/1001-5515.202312008
Changlong Song, Xiang Fu, Lu Tang, Zhihong Dong

Hydrogel is a kind of degradable hydrophilic polymer, but excessive hydrophilicity leads to larger volume, lower elastic modulus and looser structure, which further affect its use. Especially in the field of biomedical engineering, excessive swelling of the hydrogel can compress the nerves and improve degradation rate resulting in mismatch of tissue growth and released ions. Therefore, anti-swelling hydrogel has been a research hotspot in recent years. This paper reviews the recent research progress on anti-swelling hydrogel, and expounds the application mechanism and preparation method of hydrogel in biomedical engineering, aiming to provide some references for researchers in the field of anti-swelling hydrogel.

水凝胶是一种可降解的亲水性聚合物,但过度亲水会导致体积增大、弹性模量降低和结构松散,从而进一步影响其使用。特别是在生物医学工程领域,水凝胶的过度膨胀会压迫神经,提高降解速度,导致组织生长与释放的离子不匹配。因此,抗膨胀水凝胶是近年来的研究热点。本文综述了近年来抗溶胀水凝胶的研究进展,阐述了水凝胶在生物医学工程中的应用机理和制备方法,旨在为抗溶胀水凝胶领域的研究人员提供一些参考。
{"title":"[Research progress on anti-swelling hydrogels in biomedical field].","authors":"Changlong Song, Xiang Fu, Lu Tang, Zhihong Dong","doi":"10.7507/1001-5515.202312008","DOIUrl":"10.7507/1001-5515.202312008","url":null,"abstract":"<p><p>Hydrogel is a kind of degradable hydrophilic polymer, but excessive hydrophilicity leads to larger volume, lower elastic modulus and looser structure, which further affect its use. Especially in the field of biomedical engineering, excessive swelling of the hydrogel can compress the nerves and improve degradation rate resulting in mismatch of tissue growth and released ions. Therefore, anti-swelling hydrogel has been a research hotspot in recent years. This paper reviews the recent research progress on anti-swelling hydrogel, and expounds the application mechanism and preparation method of hydrogel in biomedical engineering, aiming to provide some references for researchers in the field of anti-swelling hydrogel.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 4","pages":"848-853"},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[A lightweight recurrence prediction model for high grade serous ovarian cancer based on hierarchical transformer fusion metadata]. [基于分层变换器融合元数据的高级别浆液性卵巢癌轻量级复发预测模型]。
Q4 Medicine Pub Date : 2024-08-25 DOI: 10.7507/1001-5515.202308009
Shaoguo Cui, Yibo Tang, Haoming Wan, Rui Wang, Lili Liu

High-grade serous ovarian cancer has a high degree of malignancy, and at detection, it is prone to infiltration of surrounding soft tissues, as well as metastasis to the peritoneum and lymph nodes, peritoneal seeding, and distant metastasis. Whether recurrence occurs becomes an important reference for surgical planning and treatment methods for this disease. Current recurrence prediction models do not consider the potential pathological relationships between internal tissues of the entire ovary. They use convolutional neural networks to extract local region features for judgment, but the accuracy is low, and the cost is high. To address this issue, this paper proposes a new lightweight deep learning algorithm model for predicting recurrence of high-grade serous ovarian cancer. The model first uses ghost convolution (Ghost Conv) and coordinate attention (CA) to establish ghost counter residual (SCblock) modules to extract local feature information from images. Then, it captures global information and integrates multi-level information through proposed layered fusion Transformer (STblock) modules to enhance interaction between different layers. The Transformer module unfolds the feature map to compute corresponding region blocks, then folds it back to reduce computational cost. Finally, each STblock module fuses deep and shallow layer depth information and incorporates patient's clinical metadata for recurrence prediction. Experimental results show that compared to the mainstream lightweight mobile visual Transformer (MobileViT) network, the proposed slicer visual Transformer (SlicerViT) network improves accuracy, precision, sensitivity, and F1 score, with only 1/6 of the computational cost and half the parameter count. This research confirms that the proposed algorithm model is more accurate and efficient in predicting recurrence of high-grade serous ovarian cancer. In the future, it can serve as an auxiliary diagnostic technique to improve patient survival rates and facilitate the application of the model in embedded devices.

高分化浆液性卵巢癌恶性程度高,发现时易发生周围软组织浸润,以及腹膜和淋巴结转移、腹膜播散和远处转移。是否复发成为该病手术计划和治疗方法的重要参考。目前的复发预测模型没有考虑整个卵巢内部组织之间的潜在病理关系。它们利用卷积神经网络提取局部区域特征进行判断,但准确率低,成本高。针对这一问题,本文提出了一种预测高级别浆液性卵巢癌复发的新型轻量级深度学习算法模型。该模型首先利用幽灵卷积(Ghost Conv)和协调注意力(CA)建立幽灵反残差(SCblock)模块,从图像中提取局部特征信息。然后,它捕捉全局信息,并通过提出的分层融合变换器(STblock)模块整合多层次信息,以增强不同层次之间的互动。变换器模块将特征图展开以计算相应的区域块,然后将其折回以降低计算成本。最后,每个 STblock 模块融合深层和浅层深度信息,并结合患者的临床元数据进行复发预测。实验结果表明,与主流的轻量级移动视觉变换器(MobileViT)网络相比,所提出的切片视觉变换器(SlicerViT)网络提高了准确度、精确度、灵敏度和 F1 分数,而计算成本只有其 1/6 和参数数量的一半。这项研究证实,所提出的算法模型在预测高级别浆液性卵巢癌复发方面更准确、更高效。未来,它可以作为一种辅助诊断技术,提高患者的生存率,并促进该模型在嵌入式设备中的应用。
{"title":"[A lightweight recurrence prediction model for high grade serous ovarian cancer based on hierarchical transformer fusion metadata].","authors":"Shaoguo Cui, Yibo Tang, Haoming Wan, Rui Wang, Lili Liu","doi":"10.7507/1001-5515.202308009","DOIUrl":"10.7507/1001-5515.202308009","url":null,"abstract":"<p><p>High-grade serous ovarian cancer has a high degree of malignancy, and at detection, it is prone to infiltration of surrounding soft tissues, as well as metastasis to the peritoneum and lymph nodes, peritoneal seeding, and distant metastasis. Whether recurrence occurs becomes an important reference for surgical planning and treatment methods for this disease. Current recurrence prediction models do not consider the potential pathological relationships between internal tissues of the entire ovary. They use convolutional neural networks to extract local region features for judgment, but the accuracy is low, and the cost is high. To address this issue, this paper proposes a new lightweight deep learning algorithm model for predicting recurrence of high-grade serous ovarian cancer. The model first uses ghost convolution (Ghost Conv) and coordinate attention (CA) to establish ghost counter residual (SCblock) modules to extract local feature information from images. Then, it captures global information and integrates multi-level information through proposed layered fusion Transformer (STblock) modules to enhance interaction between different layers. The Transformer module unfolds the feature map to compute corresponding region blocks, then folds it back to reduce computational cost. Finally, each STblock module fuses deep and shallow layer depth information and incorporates patient's clinical metadata for recurrence prediction. Experimental results show that compared to the mainstream lightweight mobile visual Transformer (MobileViT) network, the proposed slicer visual Transformer (SlicerViT) network improves accuracy, precision, sensitivity, and F1 score, with only 1/6 of the computational cost and half the parameter count. This research confirms that the proposed algorithm model is more accurate and efficient in predicting recurrence of high-grade serous ovarian cancer. In the future, it can serve as an auxiliary diagnostic technique to improve patient survival rates and facilitate the application of the model in embedded devices.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 4","pages":"807-817"},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366459/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Research status of lower limb exoskeleton rehabilitation robot]. [下肢外骨骼康复机器人的研究现状]。
Q4 Medicine Pub Date : 2024-08-25 DOI: 10.7507/1001-5515.202211055
Ming Li, Hui Li, Hongliu Yu

Lower limb exoskeleton rehabilitation robots are used to improve or restore the walking and movement ability of people with lower limb movement disorders. However, the required functions for patients differ based on various diseases. For example, patients with weak muscle strength require power assistance, patients with spinal cord injuries require motion compensation, patients with gait abnormalities require gait correction, and patients with strokes require neural rehabilitation. To design a more targeted lower limb exoskeleton rehabilitation robot for different diseases, this article summarised and compared existing lower limb exoskeleton rehabilitation robots according to their main functions and the characteristics and rehabilitation needs of various lower limb movement disorders. The correlations between the functions of existing devices and diseases were summarised to provide certain references for the development of new lower limb exoskeleton rehabilitation robots.

下肢外骨骼康复机器人用于改善或恢复下肢运动障碍患者的行走和运动能力。然而,不同疾病的患者所需的功能也不尽相同。例如,肌力弱的患者需要动力辅助,脊髓损伤的患者需要运动补偿,步态异常的患者需要步态矫正,中风患者需要神经康复。为了针对不同疾病设计出更有针对性的下肢外骨骼康复机器人,本文根据现有下肢外骨骼康复机器人的主要功能,结合各种下肢运动障碍的特点和康复需求,对现有下肢外骨骼康复机器人进行了总结和比较。总结了现有设备的功能与疾病之间的相关性,为新型下肢外骨骼康复机器人的开发提供一定的参考。
{"title":"[Research status of lower limb exoskeleton rehabilitation robot].","authors":"Ming Li, Hui Li, Hongliu Yu","doi":"10.7507/1001-5515.202211055","DOIUrl":"10.7507/1001-5515.202211055","url":null,"abstract":"<p><p>Lower limb exoskeleton rehabilitation robots are used to improve or restore the walking and movement ability of people with lower limb movement disorders. However, the required functions for patients differ based on various diseases. For example, patients with weak muscle strength require power assistance, patients with spinal cord injuries require motion compensation, patients with gait abnormalities require gait correction, and patients with strokes require neural rehabilitation. To design a more targeted lower limb exoskeleton rehabilitation robot for different diseases, this article summarised and compared existing lower limb exoskeleton rehabilitation robots according to their main functions and the characteristics and rehabilitation needs of various lower limb movement disorders. The correlations between the functions of existing devices and diseases were summarised to provide certain references for the development of new lower limb exoskeleton rehabilitation robots.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 4","pages":"833-839"},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366457/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Design and simulation study of positive pressure ventilation system in a simulated human biological lung]. [模拟人体生物肺内正压通气系统的设计与模拟研究]。
Q4 Medicine Pub Date : 2024-08-25 DOI: 10.7507/1001-5515.202401063
Qincheng Yan, Quanyu Wu, Weimin Zhang, Lingjiao Pan, Xiaojie Liu, Weige Tao

Simulation of the human biological lung is a crucial method for medical professionals to learn and practice the use of new pulmonary interventional diagnostic and therapeutic devices. The study on ventilation effects of the simulation under positive pressure ventilation mode provide valuable guidance for clinical ventilation treatment. This study focused on establishing an electrical simulation ventilation model, which aims to address the complexities in parameter configuration and slow display of air pressure and airflow waveforms in simulating the human biological lung under positive pressure ventilation mode. A simulated ventilation experiment was conducted under pressure-regulated volume control (PRVC) positive pressure ventilation mode, and the resulting ventilation waveform was compared with that of normal adults. The experimental findings indicated that the average error of the main reference index moisture value was 9.8% under PRVC positive pressure ventilation mode, effectively simulating the ventilatory effect observed in normal adults. So the established electrical simulation ventilation model is feasible, and provides a foundation for further research on the simulation of human biological lung positive pressure ventilation experimental platform.

人体生物肺模拟是医学专业人员学习和练习使用新型肺介入诊断和治疗设备的重要方法。对正压通气模式下模拟通气效果的研究为临床通气治疗提供了宝贵的指导。本研究的重点是建立电模拟通气模型,旨在解决正压通气模式下模拟人体生物肺的参数配置复杂、气压和气流波形显示缓慢等问题。在压力调节容积控制(PRVC)正压通气模式下进行了模拟通气实验,并将得出的通气波形与正常成人的通气波形进行了比较。实验结果表明,在 PRVC 正压通气模式下,主要参考指标湿度值的平均误差为 9.8%,有效模拟了正常成人的通气效果。因此建立的电模拟通气模型是可行的,为进一步研究模拟人体生物肺正压通气实验平台提供了基础。
{"title":"[Design and simulation study of positive pressure ventilation system in a simulated human biological lung].","authors":"Qincheng Yan, Quanyu Wu, Weimin Zhang, Lingjiao Pan, Xiaojie Liu, Weige Tao","doi":"10.7507/1001-5515.202401063","DOIUrl":"10.7507/1001-5515.202401063","url":null,"abstract":"<p><p>Simulation of the human biological lung is a crucial method for medical professionals to learn and practice the use of new pulmonary interventional diagnostic and therapeutic devices. The study on ventilation effects of the simulation under positive pressure ventilation mode provide valuable guidance for clinical ventilation treatment. This study focused on establishing an electrical simulation ventilation model, which aims to address the complexities in parameter configuration and slow display of air pressure and airflow waveforms in simulating the human biological lung under positive pressure ventilation mode. A simulated ventilation experiment was conducted under pressure-regulated volume control (PRVC) positive pressure ventilation mode, and the resulting ventilation waveform was compared with that of normal adults. The experimental findings indicated that the average error of the main reference index moisture value was 9.8% under PRVC positive pressure ventilation mode, effectively simulating the ventilatory effect observed in normal adults. So the established electrical simulation ventilation model is feasible, and provides a foundation for further research on the simulation of human biological lung positive pressure ventilation experimental platform.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 4","pages":"775-781"},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Biomechanical study of three-dimensional printed filler block design in open wedge high tibial osteotomy]. [三维打印填充块设计在开放式楔形高胫骨截骨术中的生物力学研究]。
Q4 Medicine Pub Date : 2024-08-25 DOI: 10.7507/1001-5515.202403056
Jing Zhang, Jianing Zhang, Lei Guo, Shibin Chen, Zhongmin Jin, Zhenxian Chen

The use of a filling block can improve the initial stability of the fixation plate in the open wedge high tibial osteotomy (OWHTO), and promote bone healing. However, the biomechanical effects of filling block structures and materials on OWHTO remain unclear. OWHTO anatomical filling block model was designed and built. The finite element analysis method was adopted to study the influence of six filling block structure designs and four different materials on the stress of the fixed plate, tibia, screw, and filling block, and the micro-displacement at the wedge gap of the OWHTO fixation system. After the filling block was introduced in the OWHTO, the maximum von Mises stress of the fixation plate was reduced by more than 30%, the maximum von Mises stress of the tibia decreased by more than 15%, and the lateral hinge decreased by 81%. When the filling block was designed to be filled in the posterior position of the wedge gap, the maximum von Mises stress of the fixation system was 97.8 MPa, which was smaller than other filling methods. The minimum micro-displacement of osteotomy space was -2.9 μm, which was larger than that of other filling methods. Compared with titanium alloy and tantalum metal materials, porous hydroxyapatite material could obtain larger micro-displacement in the osteotomy cavity, which is conducive to stimulating bone healing. The results demonstrate that OWHTO with a filling block can better balance the stress distribution of the fixation system, and a better fixation effect can be obtained by using a filling block filled in the posterior position. Porous HA used as the material of the filling block can obtain a better bone healing effect.

在开放式楔形高胫骨截骨术(OWHTO)中,使用填充块可提高固定板的初始稳定性,并促进骨愈合。然而,填充块的结构和材料对 OWHTO 的生物力学影响仍不清楚。本研究设计并建立了 OWHTO 解剖填充块模型。采用有限元分析方法研究了六种填充块结构设计和四种不同材料对固定板、胫骨、螺钉和填充块应力的影响,以及 OWHTO 固定系统楔形间隙处的微位移。在 OWHTO 中引入填充块后,固定板的最大 von Mises 应力降低了 30% 以上,胫骨的最大 von Mises 应力降低了 15% 以上,侧向铰链降低了 81%。当填充块被设计填充在楔形间隙的后方位置时,固定系统的最大 von Mises 应力为 97.8 MPa,小于其他填充方法。截骨空间的最小微位移为-2.9 μm,大于其他填充方法。与钛合金和钽金属材料相比,多孔羟基磷灰石材料能在截骨腔内获得更大的微位移,有利于刺激骨愈合。结果表明,带有填充块的 OWHTO 能更好地平衡固定系统的应力分布,在后方位置填充填充块能获得更好的固定效果。多孔 HA 作为填充块的材料可以获得更好的骨愈合效果。
{"title":"[Biomechanical study of three-dimensional printed filler block design in open wedge high tibial osteotomy].","authors":"Jing Zhang, Jianing Zhang, Lei Guo, Shibin Chen, Zhongmin Jin, Zhenxian Chen","doi":"10.7507/1001-5515.202403056","DOIUrl":"10.7507/1001-5515.202403056","url":null,"abstract":"<p><p>The use of a filling block can improve the initial stability of the fixation plate in the open wedge high tibial osteotomy (OWHTO), and promote bone healing. However, the biomechanical effects of filling block structures and materials on OWHTO remain unclear. OWHTO anatomical filling block model was designed and built. The finite element analysis method was adopted to study the influence of six filling block structure designs and four different materials on the stress of the fixed plate, tibia, screw, and filling block, and the micro-displacement at the wedge gap of the OWHTO fixation system. After the filling block was introduced in the OWHTO, the maximum von Mises stress of the fixation plate was reduced by more than 30%, the maximum von Mises stress of the tibia decreased by more than 15%, and the lateral hinge decreased by 81%. When the filling block was designed to be filled in the posterior position of the wedge gap, the maximum von Mises stress of the fixation system was 97.8 MPa, which was smaller than other filling methods. The minimum micro-displacement of osteotomy space was -2.9 μm, which was larger than that of other filling methods. Compared with titanium alloy and tantalum metal materials, porous hydroxyapatite material could obtain larger micro-displacement in the osteotomy cavity, which is conducive to stimulating bone healing. The results demonstrate that OWHTO with a filling block can better balance the stress distribution of the fixation system, and a better fixation effect can be obtained by using a filling block filled in the posterior position. Porous HA used as the material of the filling block can obtain a better bone healing effect.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 4","pages":"758-765"},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366453/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Lower limb joint contact forces and ground reaction forces analysis based on Azure Kinect motion capture]. [基于 Azure Kinect 运动捕捉的下肢关节接触力和地面反作用力分析]。
Q4 Medicine Pub Date : 2024-08-25 DOI: 10.7507/1001-5515.202311040
Yinghu Peng, Lin Wang, Zhenxian Chen, Xiaodong Dang, Fei Chen, Guanglin Li

Traditional gait analysis systems are typically complex to operate, lack portability, and involve high equipment costs. This study aims to establish a musculoskeletal dynamics calculation process driven by Azure Kinect. Building upon the full-body model of the Anybody musculoskeletal simulation software and incorporating a foot-ground contact model, the study utilized Azure Kinect-driven skeletal data from depth videos of 10 participants. The in-depth videos were prepossessed to extract keypoint of the participants, which were then adopted as inputs for the musculoskeletal model to compute lower limb joint angles, joint contact forces, and ground reaction forces. To validate the Azure Kinect computational model, the calculated results were compared with kinematic and kinetic data obtained using the traditional Vicon system. The forces in the lower limb joints and the ground reaction forces were normalized by dividing them by the body weight. The lower limb joint angle curves showed a strong correlation with Vicon results (mean ρ values: 0.78 ~ 0.92) but with root mean square errors as high as 5.66°. For lower limb joint force prediction, the model exhibited root mean square errors ranging from 0.44 to 0.68, while ground reaction force root mean square errors ranged from 0.01 to 0.09. The established musculoskeletal dynamics model based on Azure Kinect shows good prediction capabilities for lower limb joint forces and vertical ground reaction forces, but some errors remain in predicting lower limb joint angles.

传统的步态分析系统通常操作复杂,缺乏便携性,设备成本高昂。本研究旨在建立由 Azure Kinect 驱动的肌肉骨骼动力学计算流程。本研究以 Any 肌肉骨骼模拟软件的全身模型为基础,结合脚与地面接触模型,利用 Azure Kinect 驱动的 10 名参与者深度视频中的骨骼数据。通过深度视频提取参与者的关键点,然后将其作为肌肉骨骼模型的输入,计算下肢关节角度、关节接触力和地面反作用力。为了验证 Azure Kinect 计算模型,将计算结果与使用传统 Vicon 系统获得的运动学和动力学数据进行了比较。下肢关节力和地面反作用力通过除以体重进行归一化处理。下肢关节角度曲线与 Vicon 结果显示出很强的相关性(平均 ρ 值:0.78 ~ 0.92),但均方根误差高达 5.66°。在下肢关节力预测方面,该模型显示的均方根误差在 0.44 至 0.68 之间,而地面反作用力均方根误差在 0.01 至 0.09 之间。基于 Azure Kinect 建立的肌肉骨骼动力学模型在下肢关节力和垂直地面反作用力方面显示出良好的预测能力,但在预测下肢关节角度方面仍存在一些误差。
{"title":"[Lower limb joint contact forces and ground reaction forces analysis based on Azure Kinect motion capture].","authors":"Yinghu Peng, Lin Wang, Zhenxian Chen, Xiaodong Dang, Fei Chen, Guanglin Li","doi":"10.7507/1001-5515.202311040","DOIUrl":"10.7507/1001-5515.202311040","url":null,"abstract":"<p><p>Traditional gait analysis systems are typically complex to operate, lack portability, and involve high equipment costs. This study aims to establish a musculoskeletal dynamics calculation process driven by Azure Kinect. Building upon the full-body model of the Anybody musculoskeletal simulation software and incorporating a foot-ground contact model, the study utilized Azure Kinect-driven skeletal data from depth videos of 10 participants. The in-depth videos were prepossessed to extract keypoint of the participants, which were then adopted as inputs for the musculoskeletal model to compute lower limb joint angles, joint contact forces, and ground reaction forces. To validate the Azure Kinect computational model, the calculated results were compared with kinematic and kinetic data obtained using the traditional Vicon system. The forces in the lower limb joints and the ground reaction forces were normalized by dividing them by the body weight. The lower limb joint angle curves showed a strong correlation with Vicon results (mean <i>ρ</i> values: 0.78 ~ 0.92) but with root mean square errors as high as 5.66°. For lower limb joint force prediction, the model exhibited root mean square errors ranging from 0.44 to 0.68, while ground reaction force root mean square errors ranged from 0.01 to 0.09. The established musculoskeletal dynamics model based on Azure Kinect shows good prediction capabilities for lower limb joint forces and vertical ground reaction forces, but some errors remain in predicting lower limb joint angles.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 4","pages":"751-757"},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366463/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
生物医学工程学杂志
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1