首页 > 最新文献

Nanomedicine: Nanotechnology, Biology and Medicine最新文献

英文 中文
The combinational nano-immunotherapy of ferumoxytol and poly(I:C) inhibits melanoma via boosting anti-angiogenic immunity 阿魏木糖醇和聚(I:C)联合纳米免疫疗法通过增强抗血管生成免疫抑制黑色素瘤
IF 5.5 4区 医学 Q1 Social Sciences Pub Date : 2023-04-01 DOI: 10.1016/j.nano.2023.102658
Yunuo Zheng M.S. , Bo Jiang M.S. , Hongmei Guo B.S. , Zhonghai Zhang M.S. , Bo Chen Ph.D. , Zhengkui Zhang Ph.D. , Shaoyuan Wu Ph.D. , Jiaojiao Zhao Ph.D.

Angiogenesis plays a key role in the progression and metastasis of melanoma, and the pro-angiogenic effect of macrophages is one major reason for the failure of current anti-angiogenic therapies. Here, a nano-immunotherapy combining ferumoxytol and poly(I:C) (ferumoxytol/poly(I:C)) has been developed to boost the anti-angiogenic activities of macrophages to inhibit melanoma. Our findings demonstrated that ferumoxytol/poly(I:C) was a highly efficacious anti-tumor therapy with limited toxicity. Both in vivo and in vitro experiments indicated that this combination was successful in impeding angiogenesis. Ferumoxytol/poly(I:C) was demonstrated to reduce the viability of endothelial cells, thus hindering tube formation. Particularly, ferumoxytol/poly(I:C) was able to polarize macrophages to the M1 phenotype and decrease the expression of vascular endothelial growth factor, which in turn amplified the anti-angiogenic properties of ferumoxytol/poly(I:C). This combination of ferumoxytol/poly(I:C) nano-immunotherapy enriches the anti-angiogenic therapeutic nature of ferumoxytol and will shed new light on the treatment of melanoma.

血管生成在黑色素瘤的进展和转移中起着关键作用,巨噬细胞的促血管生成作用是目前抗血管生成治疗失败的主要原因之一。在这里,阿魏木糖醇和聚(I:C)(阿魏木糖醇/聚(I:C))的纳米免疫疗法已经被开发出来,以提高巨噬细胞的抗血管生成活性,从而抑制黑色素瘤。我们的研究结果表明,阿魏木糖醇/聚(I:C)是一种非常有效的抗肿瘤药物,毒性有限。体内和体外实验都表明,这种组合可以成功地阻止血管生成。阿魏木糖醇/聚(I:C)被证明可以降低内皮细胞的活力,从而阻碍管的形成。特别是阿魏木糖醇/聚(I:C)能够使巨噬细胞极化为M1表型,并降低血管内皮生长因子的表达,这反过来又增强了阿魏木糖醇/聚(I:C)的抗血管生成特性。阿魏木糖醇/聚(I:C)纳米免疫疗法的结合丰富了阿魏木糖醇抗血管生成的治疗性质,并将为黑色素瘤的治疗提供新的线索。
{"title":"The combinational nano-immunotherapy of ferumoxytol and poly(I:C) inhibits melanoma via boosting anti-angiogenic immunity","authors":"Yunuo Zheng M.S. ,&nbsp;Bo Jiang M.S. ,&nbsp;Hongmei Guo B.S. ,&nbsp;Zhonghai Zhang M.S. ,&nbsp;Bo Chen Ph.D. ,&nbsp;Zhengkui Zhang Ph.D. ,&nbsp;Shaoyuan Wu Ph.D. ,&nbsp;Jiaojiao Zhao Ph.D.","doi":"10.1016/j.nano.2023.102658","DOIUrl":"https://doi.org/10.1016/j.nano.2023.102658","url":null,"abstract":"<div><p><span><span>Angiogenesis<span> plays a key role in the progression and metastasis of </span></span>melanoma<span>, and the pro-angiogenic effect of macrophages is one major reason for the failure of current anti-angiogenic therapies. Here, a nano-immunotherapy combining ferumoxytol and poly(I:C) (ferumoxytol/poly(I:C)) has been developed to boost the anti-angiogenic activities of macrophages to inhibit melanoma. Our findings demonstrated that ferumoxytol/poly(I:C) was a highly efficacious anti-tumor therapy with limited toxicity. Both </span></span><em>in vivo</em> and <em>in vitro</em><span> experiments indicated that this combination was successful in impeding angiogenesis. Ferumoxytol/poly(I:C) was demonstrated to reduce the viability of endothelial cells<span>, thus hindering tube formation. Particularly, ferumoxytol/poly(I:C) was able to polarize macrophages to the M1 phenotype and decrease the expression of vascular endothelial growth factor, which in turn amplified the anti-angiogenic properties of ferumoxytol/poly(I:C). This combination of ferumoxytol/poly(I:C) nano-immunotherapy enriches the anti-angiogenic therapeutic nature of ferumoxytol and will shed new light on the treatment of melanoma.</span></span></p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3341945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A dandelion-like nanomedicine via hierarchical self-assembly for synergistic chemotherapy and photo-dynamic cancer therapy 一种蒲公英样的纳米药物,通过分层自组装用于协同化疗和光动力癌症治疗
IF 5.5 4区 医学 Q1 Social Sciences Pub Date : 2023-04-01 DOI: 10.1016/j.nano.2023.102660
Binbin Liang PhD , Yuhang Miao MSc , Liying Zhao MSc , Lan Fang PhD , Dawei Deng PhD

The synergistic effect of chemotherapy and photo-dynamic therapy (PDT) is an effective way to improve the efficiency of tumor treatment. However, most synergistic therapeutic drugs have poor water solubility and stability, so it is difficult to achieve high therapeutic effects while avoiding the severe side effects. Herein, a unique dandelion-like nanomedicine (named as cRGDfk-CCPT-mCe6) was successfully synthesized using Ce6-loaded amphiphilic β-cyclodextrins (β-CD) doped lipid-based vesicles as the core (receptacle) and β-CD modified camptothecin (CPT) pro-drug as the flyable dandelion seeds. The β-CD modified CPT pro-drug was introduced into the core vesicles in succession via host-guest interaction between inter-molecular β-CD and CPT, and cRGDfk peptides were further introduced as the outermost layer (stigma) to enhance the internalization into cancer cells. CPT interacted with β-CD through glutathione (GSH)-cleavable disulfide bonds, which led to drug release in glutathione-rich cancer cells, just as spread of dandelion seeds in the wind. GSH consumption further disrupted the intracellular redox homeostasis of cancer cells through combined action of Ce6 with light irradiation and the synergistic anti-tumor effect was thus achieved, resulting in apoptosis of cancer cells. Therefore, the nanomedicine provides a facile and versatile anti-tumor strategy, as well as a persistent anti-cancer effects.

化疗与光动力治疗(PDT)的协同作用是提高肿瘤治疗效率的有效途径。然而,大多数协同治疗药物的水溶性和稳定性都很差,因此很难在达到高疗效的同时避免严重的副作用。本文以负载ce6的两亲性β-环糊精(β-CD)掺杂脂基囊泡为核心(容器),以β-CD修饰喜树碱(CPT)前药为可飞蒲公英种子,成功合成了一种独特的类蒲公英纳米药物cRGDfk-CCPT-mCe6。通过分子间β-CD与CPT的主客体相互作用,将β-CD修饰的CPT前药依次导入核心囊泡中,并进一步将cRGDfk肽作为最外层(柱头)引入,以增强其在癌细胞内的内化。CPT通过谷胱甘肽(GSH)可切割二硫键与β-CD相互作用,导致富含谷胱甘肽的癌细胞释放药物,就像蒲公英种子在风中传播一样。GSH消耗通过Ce6与光照射的联合作用进一步破坏癌细胞细胞内氧化还原稳态,从而达到协同抗肿瘤作用,导致癌细胞凋亡。因此,纳米药物提供了一种简单而通用的抗肿瘤策略,以及持久的抗癌效果。
{"title":"A dandelion-like nanomedicine via hierarchical self-assembly for synergistic chemotherapy and photo-dynamic cancer therapy","authors":"Binbin Liang PhD ,&nbsp;Yuhang Miao MSc ,&nbsp;Liying Zhao MSc ,&nbsp;Lan Fang PhD ,&nbsp;Dawei Deng PhD","doi":"10.1016/j.nano.2023.102660","DOIUrl":"https://doi.org/10.1016/j.nano.2023.102660","url":null,"abstract":"<div><p><span><span>The synergistic effect<span><span> of chemotherapy and photo-dynamic therapy (PDT) is an effective way to improve the efficiency of tumor treatment. However, most synergistic therapeutic </span>drugs have poor water solubility and stability, so it is difficult to achieve high therapeutic effects while avoiding the severe side effects. Herein, a unique dandelion-like </span></span>nanomedicine<span><span><span><span> (named as cRGDfk-CCPT-mCe6) was successfully synthesized using Ce6-loaded amphiphilic β-cyclodextrins (β-CD) doped lipid-based vesicles as the core (receptacle) and β-CD modified camptothecin<span> (CPT) pro-drug as the flyable dandelion seeds. The β-CD modified CPT pro-drug was introduced into the core vesicles in succession via host-guest interaction between inter-molecular β-CD and CPT, and cRGDfk peptides were further introduced as the outermost layer (stigma) to enhance the </span></span>internalization into </span>cancer cells. CPT interacted with β-CD through </span>glutathione (GSH)-cleavable </span></span>disulfide<span><span> bonds, which led to drug release in glutathione-rich cancer cells, just as spread of dandelion seeds in the wind. GSH consumption further disrupted the intracellular redox homeostasis<span> of cancer cells through combined action of Ce6 with light irradiation and the synergistic anti-tumor effect was thus achieved, resulting in </span></span>apoptosis of cancer cells. Therefore, the nanomedicine provides a facile and versatile anti-tumor strategy, as well as a persistent anti-cancer effects.</span></p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1567232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Carborane bearing pullulan nanogel-boron oxide nanoparticle hybrid for boron neutron capture therapy 含碳硼烷普鲁兰纳米凝胶-氧化硼纳米颗粒杂化硼中子俘获治疗
IF 5.5 4区 医学 Q1 Social Sciences Pub Date : 2023-04-01 DOI: 10.1016/j.nano.2023.102659
Riku Kawasaki Ph. D. , Hidetoshi Hirano , Keita Yamana , Hinata Isozaki , Shogo Kawamura , Yu Sanada Ph. D. , Kaori Bando , Anri Tabata , Kouhei Yoshikawa , Hideki Azuma Ph. D. , Takushi Takata Ph. D. , Hiroki Tanaka Ph.D. , Yoshinori Sakurai Ph. D. , Minoru Suzuki M. D. , Naoki Tarutani Ph. D. , Kiyofumi Katagiri Ph. D. , Shin-ichi Sawada Ph. D. , Yoshihiro Sasaki Ph. D. , Kazunari Akiyoshi Ph. D. , Takeshi Nagasaki Ph. D. , Atsushi Ikeda Ph. D.

Boron neutron capture therapy shows is a promising approach to cancer therapy, but the delivery of effective boron agents is challenging. To address the requirements for efficient boron delivery, we used a hybrid nanoparticle comprising a carborane = bearing pullulan nanogel and hydrophobized boron oxide nanoparticle (HBNGs) enabling the preparation of highly concentrated boron agents for efficient delivery. The HBNGs showed better anti-cancer effects on Colon26 cells than a clinically boron agent, L-BPA/fructose complex, by enhancing the accumulation and retention amount of the boron agent within cells in vitro. The accumulation of HBNGs in tumors, due to the enhanced permeation and retention effect, enabled the delivery of boron agents with high tumor selectivity, meeting clinical demands. Intravenous injection of boron neutron capture therapy (BNCT) using HBNGs decreased tumor volume without significant body weight loss, and no regrowth of tumor was observed three months after complete regression. The therapeutic efficacy of HBNGs was better than that of L-BPA/fructose complex. BNCT with HBNGs is a promising approach to cancer therapeutics.

硼中子捕获疗法是一种很有前途的癌症治疗方法,但有效硼剂的递送具有挑战性。为了满足高效硼递送的要求,我们使用了一种混合纳米颗粒,包括含碳硼烷的普鲁兰纳米凝胶和疏水氧化硼纳米颗粒(HBNGs),从而制备出高效递送的高浓度硼剂。hbgs通过提高硼剂在体外细胞内的积累和滞留量,对Colon26细胞的抗癌作用优于临床使用的硼剂L-BPA/果糖复合物。hbgs在肿瘤中的积累,由于增强的渗透和滞留作用,使得硼剂的递送具有较高的肿瘤选择性,满足了临床需求。硼中子俘获疗法(BNCT)静脉注射含硼中子俘获治疗(hbgs)后,肿瘤体积减小,体重无明显减轻,肿瘤完全消退后3个月未见再生。hbgs的治疗效果优于L-BPA/果糖复合物。BNCT结合hbgs是一种很有前途的癌症治疗方法。
{"title":"Carborane bearing pullulan nanogel-boron oxide nanoparticle hybrid for boron neutron capture therapy","authors":"Riku Kawasaki Ph. D. ,&nbsp;Hidetoshi Hirano ,&nbsp;Keita Yamana ,&nbsp;Hinata Isozaki ,&nbsp;Shogo Kawamura ,&nbsp;Yu Sanada Ph. D. ,&nbsp;Kaori Bando ,&nbsp;Anri Tabata ,&nbsp;Kouhei Yoshikawa ,&nbsp;Hideki Azuma Ph. D. ,&nbsp;Takushi Takata Ph. D. ,&nbsp;Hiroki Tanaka Ph.D. ,&nbsp;Yoshinori Sakurai Ph. D. ,&nbsp;Minoru Suzuki M. D. ,&nbsp;Naoki Tarutani Ph. D. ,&nbsp;Kiyofumi Katagiri Ph. D. ,&nbsp;Shin-ichi Sawada Ph. D. ,&nbsp;Yoshihiro Sasaki Ph. D. ,&nbsp;Kazunari Akiyoshi Ph. D. ,&nbsp;Takeshi Nagasaki Ph. D. ,&nbsp;Atsushi Ikeda Ph. D.","doi":"10.1016/j.nano.2023.102659","DOIUrl":"https://doi.org/10.1016/j.nano.2023.102659","url":null,"abstract":"<div><p><span><span>Boron neutron capture therapy<span><span> shows is a promising approach to cancer therapy, but the delivery of effective boron agents is challenging. To address the requirements for efficient boron delivery, we used a hybrid nanoparticle comprising a carborane = bearing </span>pullulan </span></span>nanogel and hydrophobized boron oxide nanoparticle (HBNGs) enabling the preparation of highly concentrated boron agents for efficient delivery. The HBNGs showed better anti-cancer effects on Colon26 cells than a clinically boron agent, L-BPA/fructose complex, by enhancing the accumulation and retention amount of the boron agent within cells </span><em>in vitro</em><span>. The accumulation of HBNGs in tumors, due to the enhanced permeation<span> and retention effect, enabled the delivery of boron agents with high tumor selectivity, meeting clinical demands. Intravenous injection<span><span> of boron neutron capture therapy (BNCT) using HBNGs decreased tumor volume without significant body weight loss, and no </span>regrowth of tumor was observed three months after complete regression. The therapeutic efficacy of HBNGs was better than that of L-BPA/fructose complex. BNCT with HBNGs is a promising approach to cancer therapeutics.</span></span></span></p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1567233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
HPMA copolymer conjugated 5-aminolevulinic acid exhibits superior efficacy for photodynamic therapy with tumor-responsive and targeting properties HPMA共聚物共轭5-氨基乙酰丙酸在光动力治疗中具有优异的肿瘤反应性和靶向性
IF 5.5 4区 医学 Q1 Social Sciences Pub Date : 2023-02-01 DOI: 10.1016/j.nano.2022.102636
Rayhanul Islam Ph.D. , Kevin Kotalík BSc. , Vladimír Šubr Ph.D. , Shanghui Gao M.Sc. , Jian-Rong Zhou Ph.D. , Kazumi Yokomizo Ph.D. , Tomáš Etrych Ph.D., DSc. , Jun Fang Ph.D., M.D.

In this study, we developed a nanoformulation of 5-aminolevulinic acid (5-ALA) for tumor-targeted photodynamic therapy, in which 5-ALA was conjugated with a biocompatible polymer N-(2-hydroxypropyl)methacrylamide (HPMA) through the hydrazone bond, i.e., P-ALA. P-ALA behaves as the nano-sized molecule with an average size of 5.5 nm in aqueous solution. P-ALA shows a largely increased release rate in acidic pH than physiological pH, suggesting the rapid release profile in acidic tumor environment. P-ALA did not show apparent cytotoxicity up to 0.1 mg/ml, however, under light irradiation, remarkable cell death was induced with the IC50 of 20–30 μg/ml. More importantly, we found significantly higher tumor accumulation of P-ALA than 5-ALA which benefit from its nano-size by taking advantage of the enhanced permeability and retention (EPR) effect. Consequently, P-ALA exhibited much improved in vivo antitumor efficacy without any apparent side effects. We thus anticipate the application of P-ALA as a nano-designed photosensitizer for anticancer photodynamic therapy.

在这项研究中,我们开发了一种用于肿瘤靶向光动力治疗的5-氨基乙酰丙酸(5-ALA)纳米配方,其中5-ALA通过腙键与生物相容性聚合物N-(2-羟丙基)甲基丙烯酰胺(HPMA)偶联,即P-ALA。P-ALA在水溶液中表现为纳米级分子,平均尺寸为5.5 nm。P-ALA在酸性pH下的释放速率明显高于生理pH,说明其在酸性肿瘤环境下具有快速释放的特点。当P-ALA浓度达到0.1 mg/ml时,未表现出明显的细胞毒性,但在光照射下,IC50为20 ~ 30 μg/ml,可诱导细胞明显死亡。更重要的是,我们发现P-ALA的肿瘤蓄积量明显高于5-ALA,这得益于其纳米尺寸,利用了增强的渗透性和滞留性(EPR)效应。因此,P-ALA在体内抗肿瘤效果明显提高,且无明显副作用。因此,我们期望P-ALA作为纳米光敏剂用于抗癌光动力治疗。
{"title":"HPMA copolymer conjugated 5-aminolevulinic acid exhibits superior efficacy for photodynamic therapy with tumor-responsive and targeting properties","authors":"Rayhanul Islam Ph.D. ,&nbsp;Kevin Kotalík BSc. ,&nbsp;Vladimír Šubr Ph.D. ,&nbsp;Shanghui Gao M.Sc. ,&nbsp;Jian-Rong Zhou Ph.D. ,&nbsp;Kazumi Yokomizo Ph.D. ,&nbsp;Tomáš Etrych Ph.D., DSc. ,&nbsp;Jun Fang Ph.D., M.D.","doi":"10.1016/j.nano.2022.102636","DOIUrl":"https://doi.org/10.1016/j.nano.2022.102636","url":null,"abstract":"<div><p>In this study, we developed a nanoformulation of 5-aminolevulinic acid (5-ALA) for tumor-targeted photodynamic therapy, in which 5-ALA was conjugated with a biocompatible polymer <em>N</em>-(2-hydroxypropyl)methacrylamide (HPMA) through the hydrazone bond, i.e., P-ALA. P-ALA behaves as the nano-sized molecule with an average size of 5.5 nm in aqueous solution. P-ALA shows a largely increased release rate in acidic pH than physiological pH, suggesting the rapid release profile in acidic tumor environment. P-ALA did not show apparent cytotoxicity up to 0.1 mg/ml, however, under light irradiation, remarkable cell death was induced with the IC<sub>50</sub> of 20–30 μg/ml. More importantly, we found significantly higher tumor accumulation of P-ALA than 5-ALA which benefit from its nano-size by taking advantage of the enhanced permeability and retention (EPR) effect. Consequently, P-ALA exhibited much improved in vivo antitumor efficacy without any apparent side effects. We thus anticipate the application of P-ALA as a nano-designed photosensitizer for anticancer photodynamic therapy.</p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3021362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxygen-independent alkyl radical nanogenerator enhances breast cancer therapy 不依赖氧的烷基自由基纳米发生器增强乳腺癌治疗
IF 5.5 4区 医学 Q1 Social Sciences Pub Date : 2023-02-01 DOI: 10.1016/j.nano.2022.102630
Pilei Si PhD , Wenyan Yu PhD , Chengzhen Li M.M. , Haijun Chen M.M. , Enzhao Zhang M.M. , Jiaojiao Gu M.M. , Ruoyan Wang M.M. , Jinjin Shi PhD

The hypoxic microenvironment of breast cancer substantially reduces oxygen-dependent free radical generation. Overexpression of glutathione (GSH) in tumor cells mitigates the impact of free radical generation. In this study, we designed and developed an oxygen-independent alkyl radical nanogenerator (copper monosulfide/2,2′-azabis(2-imidazoline) dihydrochloride@bovine serum albumin; CuS/AIPH@BSA) with spatiotemporally controlled properties and GSH consumption to enhance breast cancer therapy. We encapsulated the alkyl radical initiator, AIPH, in hollow mesoporous CuS nanoparticles with photothermal conversion effect and enveloped them in BSA. AIPH was released and decomposed to generate alkyl radicals in hypoxic breast cancer with the photothermal conversion effect of CuS under near-infrared laser irradiation. CuS consumed high GSH levels in tumor cells because it could form complex with GSH and thereby enhanced free radical treatment. In vivo and in vitro assays demonstrated the anti-tumor efficacy of the rationally designed free-radical nanogenerator in hypoxic microenvironment of breast cancer without showing systemic toxicity.

乳腺癌的低氧微环境大大减少了氧依赖性自由基的产生。肿瘤细胞中谷胱甘肽(GSH)的过度表达减轻了自由基产生的影响。在这项研究中,我们设计并开发了一种氧不依赖的烷基自由基纳米发生器(单硫化铜/2,2 ' -阿扎比斯(2-咪唑啉)dihydrochloride@bovine血清白蛋白;cu /AIPH@BSA)具有时空控制特性和谷胱甘肽消耗,以加强乳腺癌治疗。我们将烷基自由基引发剂AIPH包封在具有光热转化效应的中空介孔cu纳米颗粒中,并包覆在BSA中。AIPH在近红外激光照射下,利用cu的光热转化效应,在缺氧乳腺癌中释放分解生成烷基自由基。CuS在肿瘤细胞中消耗高GSH水平,因为它可以与GSH形成复合物,从而增强自由基治疗。体内和体外实验表明,合理设计的自由基纳米发生器在乳腺癌缺氧微环境中具有抗肿瘤作用,且无全身毒性。
{"title":"Oxygen-independent alkyl radical nanogenerator enhances breast cancer therapy","authors":"Pilei Si PhD ,&nbsp;Wenyan Yu PhD ,&nbsp;Chengzhen Li M.M. ,&nbsp;Haijun Chen M.M. ,&nbsp;Enzhao Zhang M.M. ,&nbsp;Jiaojiao Gu M.M. ,&nbsp;Ruoyan Wang M.M. ,&nbsp;Jinjin Shi PhD","doi":"10.1016/j.nano.2022.102630","DOIUrl":"https://doi.org/10.1016/j.nano.2022.102630","url":null,"abstract":"<div><p><span><span><span><span>The hypoxic microenvironment<span> of breast cancer substantially reduces oxygen-dependent free radical generation. </span></span>Overexpression of </span>glutathione<span> (GSH) in tumor cells mitigates the impact of free radical generation. In this study, we designed and developed an oxygen-independent alkyl radical nanogenerator (copper monosulfide/2,2′-azabis(2-imidazoline) dihydrochloride@bovine serum albumin; CuS/AIPH@BSA) with spatiotemporally controlled properties and GSH consumption to enhance breast cancer therapy. We encapsulated the alkyl radical initiator, AIPH, in hollow mesoporous CuS nanoparticles with photothermal conversion effect and enveloped them in BSA. AIPH was released and decomposed to generate alkyl radicals in hypoxic breast cancer with the photothermal conversion effect of CuS under near-infrared laser irradiation. CuS consumed high GSH levels in tumor cells because it could form complex with GSH and thereby enhanced free radical </span></span>treatment. </span><em>In vivo</em> and <em>in vitro</em> assays demonstrated the anti-tumor efficacy of the rationally designed free-radical nanogenerator in hypoxic microenvironment of breast cancer without showing systemic toxicity.</p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3210032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Incorporation of glycyrrhizic acid and polyene phosphatidylcholine in lipid nanoparticles ameliorates acute liver injury via delivering p65 siRNA 在脂质纳米颗粒中掺入甘草酸和多烯磷脂酰胆碱可通过传递p65 siRNA改善急性肝损伤
IF 5.5 4区 医学 Q1 Social Sciences Pub Date : 2023-02-01 DOI: 10.1016/j.nano.2022.102649
Qiming Yin PhD , Xiang Song PhD , Peng Yang MSc , Wen Yang MSc , Xinyu Li BSc , Xuejun Wang PhD , Shengqi Wang PhD

Liver injury caused by hepatitis is the pathological basis of varied hepatic diseases with high morbidity and mortality. Although siRNA appears promising in therapeutics of hepatitis, efficient and safe delivery remains a challenge. In this study, we developed a new strategy of incorporating glycyrrhizic acid (GA) and polyene phosphatidylcholine (PPC) into lipid nanoparticles (GA/PPC-modified LNPs), which was capable of promoting cellular uptake, enhancing gene-silencing, reducing cytotoxicity and improving siRNA stability. GA/PPC-modified LNP and siRNA lipoplex targeting NF-κB, a key mediator of inflammation, mitigates acute liver injury, as assessed by liver histology, hematological and pro-inflammatory cytokine analysis. Furthermore, GA/PPC-modified LNPs reveal efficiently intracellular delivery of antisense oligonucleotides (ASOs) and mRNA inhibiting viral infection. In conclusion, GA/PPC-modified LNPs could be used as a promising delivery system for nucleic acid-based therapy.

肝炎引起的肝损伤是多种肝脏疾病的病理基础,具有较高的发病率和死亡率。尽管siRNA在肝炎治疗中似乎很有前景,但有效和安全的递送仍然是一个挑战。在这项研究中,我们开发了一种将甘草酸(GA)和多烯磷脂酰胆碱(PPC)结合到脂质纳米颗粒(GA/PPC修饰的LNPs)中的新策略,该策略能够促进细胞摄取,增强基因沉默,降低细胞毒性并提高siRNA的稳定性。通过肝脏组织学、血液学和促炎细胞因子分析评估,GA/ ppc修饰的LNP和siRNA脂质复合物靶向NF-κB(炎症的关键介质),减轻急性肝损伤。此外,GA/ ppc修饰的LNPs可以有效地在细胞内传递反义寡核苷酸(ASOs)和mRNA,抑制病毒感染。综上所述,GA/ ppc修饰的LNPs可以作为一种有前景的核酸治疗递送系统。
{"title":"Incorporation of glycyrrhizic acid and polyene phosphatidylcholine in lipid nanoparticles ameliorates acute liver injury via delivering p65 siRNA","authors":"Qiming Yin PhD ,&nbsp;Xiang Song PhD ,&nbsp;Peng Yang MSc ,&nbsp;Wen Yang MSc ,&nbsp;Xinyu Li BSc ,&nbsp;Xuejun Wang PhD ,&nbsp;Shengqi Wang PhD","doi":"10.1016/j.nano.2022.102649","DOIUrl":"https://doi.org/10.1016/j.nano.2022.102649","url":null,"abstract":"<div><p><span><span>Liver injury caused by hepatitis is the pathological basis of varied hepatic diseases with high morbidity and mortality. Although siRNA appears promising in therapeutics of hepatitis, efficient and safe delivery remains a challenge. In this study, we developed a new strategy of incorporating </span>glycyrrhizic acid<span><span><span><span> (GA) and polyene </span>phosphatidylcholine<span> (PPC) into lipid<span> nanoparticles (GA/PPC-modified LNPs), which was capable of promoting cellular uptake, enhancing gene-silencing, reducing cytotoxicity and improving siRNA stability. GA/PPC-modified LNP and siRNA </span></span></span>lipoplex targeting NF-κB, a key mediator of inflammation, mitigates acute liver injury, as assessed by </span>liver histology<span>, hematological and pro-inflammatory cytokine analysis. Furthermore, GA/PPC-modified LNPs reveal efficiently intracellular delivery of antisense oligonucleotides (ASOs) and mRNA inhibiting </span></span></span>viral infection. In conclusion, GA/PPC-modified LNPs could be used as a promising delivery system for nucleic acid-based therapy.</p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2377484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell membrane-camouflaged liposomes and neopeptide-loaded liposomes with TLR agonist R848 provides a prime and boost strategy for efficient personalized cancer vaccine therapy TLR激动剂R848的细胞膜伪装脂质体和新肽负载脂质体为有效的个性化癌症疫苗治疗提供了一种主要和促进策略
IF 5.5 4区 医学 Q1 Social Sciences Pub Date : 2023-02-01 DOI: 10.1016/j.nano.2022.102648
Lu Shi PhD, Hongchen Gu PhD

Recent advances in bioinformatics and nanotechnology offer great opportunities for personalized cancer vaccine development. However, the timely identification of neoantigens and unsatisfactory efficacy of therapeutic cancer vaccines remain two obstacles for clinical transformation. We propose a “prime and boost” strategy to facilitate neoantigen-based immunotherapy. To prime the immune system, we first constructed personalized liposomes with cancer cell membranes and adjuvant R848 to provide immunostimulatory efficacy and time for identifying tumor antigens. Liposomes loaded with personalized neopeptides and adjuvants were used to boost the immune response. In vitro experiments verified potent immune responses, including macrophage polarization, dendritic cell maturation, and T lymphocyte activation. In vivo B16F10 and TC-1 cancer model were used to investigate efficient tumor growth suppression. Liposomal vaccines with neopeptides could stimulate human dendritic cells and T lymphocytes in vitro. These results demonstrate that the “prime and boost” strategy provides simple, quick, and efficient personalized vaccines for cancer therapy.

生物信息学和纳米技术的最新进展为个性化癌症疫苗的开发提供了巨大的机会。然而,新抗原的及时鉴定和治疗性癌症疫苗的疗效不理想仍然是临床转化的两个障碍。我们提出了一个“启动和促进”策略,以促进基于新抗原的免疫治疗。为了启动免疫系统,我们首先用癌细胞膜和佐剂R848构建了个性化脂质体,以提供免疫刺激效果和识别肿瘤抗原的时间。脂质体装载个性化的新肽和佐剂被用来增强免疫反应。体外实验证实了有效的免疫反应,包括巨噬细胞极化、树突状细胞成熟和T淋巴细胞活化。采用体内B16F10和TC-1肿瘤模型研究有效抑制肿瘤生长。含新肽的脂质体疫苗对人树突状细胞和T淋巴细胞具有体外刺激作用。这些结果表明,“启动和促进”策略为癌症治疗提供了简单、快速和有效的个性化疫苗。
{"title":"Cell membrane-camouflaged liposomes and neopeptide-loaded liposomes with TLR agonist R848 provides a prime and boost strategy for efficient personalized cancer vaccine therapy","authors":"Lu Shi PhD,&nbsp;Hongchen Gu PhD","doi":"10.1016/j.nano.2022.102648","DOIUrl":"https://doi.org/10.1016/j.nano.2022.102648","url":null,"abstract":"<div><p><span>Recent advances in bioinformatics and nanotechnology offer great opportunities for personalized cancer vaccine<span> development. However, the timely identification of neoantigens<span><span><span> and unsatisfactory efficacy of therapeutic cancer vaccines remain two obstacles for clinical transformation. We propose a “prime and boost” strategy to facilitate neoantigen-based immunotherapy. To prime the immune system, we first constructed personalized </span>liposomes<span> with cancer cell membranes and adjuvant </span></span>R848<span> to provide immunostimulatory efficacy and time for identifying tumor antigens. Liposomes loaded with personalized neopeptides and adjuvants were used to boost the immune response. </span></span></span></span><em>In vitro</em><span> experiments verified potent immune responses, including macrophage polarization<span>, dendritic cell maturation, and T lymphocyte activation. </span></span><em>In vivo</em> B16F10 and TC-1 cancer model were used to investigate efficient tumor growth suppression. Liposomal vaccines with neopeptides could stimulate human dendritic cells and T lymphocytes <em>in vitro</em>. These results demonstrate that the “prime and boost” strategy provides simple, quick, and efficient personalized vaccines for cancer therapy.</p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1567237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spotlight on mycobacterial lipid exploitation using nanotechnology for diagnosis, vaccines, and treatments 聚焦分枝杆菌脂质利用纳米技术进行诊断、疫苗和治疗
IF 5.5 4区 医学 Q1 Social Sciences Pub Date : 2023-02-01 DOI: 10.1016/j.nano.2023.102653
Carlos M. Valdemar-Aguilar MSc , Ravichandran Manisekaran PhD , Laura S. Acosta-Torres PhD , Luz M. López-Marín PhD

Tuberculosis (TB), historically the most significant cause of human morbidity and mortality, has returned as the top infectious disease worldwide, under circumstances worsened by the COVID-19 pandemic's devastating effects on public health. Although Mycobacterium tuberculosis, the causal agent, has been known of for more than a century, the development of tools to control it has been largely neglected. With the advancement of nanotechnology, the possibility of engineering tools at the nanoscale creates unique opportunities to exploit any molecular type. However, little attention has been paid to one of the major attributes of the pathogen, represented by the atypical coat and its abundant lipids. In this review, an overview of the lipids encountered in M. tuberculosis and interest in exploiting them for the development of TB control tools are presented. Then, the amalgamation of nanotechnology with mycobacterial lipids from both reported and future works are discussed.

结核病历来是人类发病和死亡的最重要原因,但在2019冠状病毒病大流行对公共卫生造成毁灭性影响的情况下,结核病已重新成为全球头号传染病。尽管一个多世纪前人们就已经知道了致病的结核分枝杆菌,但控制它的工具的开发在很大程度上被忽视了。随着纳米技术的进步,纳米级工程工具的可能性为开发任何分子类型创造了独特的机会。然而,很少有人注意到病原体的一个主要特征,即非典型的外壳和丰富的脂质。在这篇综述中,概述了在结核分枝杆菌中遇到的脂质,并介绍了利用它们开发结核控制工具的兴趣。然后,讨论了纳米技术与分枝杆菌脂质的融合。
{"title":"Spotlight on mycobacterial lipid exploitation using nanotechnology for diagnosis, vaccines, and treatments","authors":"Carlos M. Valdemar-Aguilar MSc ,&nbsp;Ravichandran Manisekaran PhD ,&nbsp;Laura S. Acosta-Torres PhD ,&nbsp;Luz M. López-Marín PhD","doi":"10.1016/j.nano.2023.102653","DOIUrl":"https://doi.org/10.1016/j.nano.2023.102653","url":null,"abstract":"<div><p>Tuberculosis (TB), historically the most significant cause of human morbidity and mortality, has returned as the top infectious disease worldwide, under circumstances worsened by the COVID-19 pandemic's devastating effects on public health. Although <em>Mycobacterium tuberculosis</em>, the causal agent, has been known of for more than a century, the development of tools to control it has been largely neglected. With the advancement of nanotechnology, the possibility of engineering tools at the nanoscale creates unique opportunities to exploit any molecular type. However, little attention has been paid to one of the major attributes of the pathogen, represented by the atypical coat and its abundant lipids. In this review, an overview of the lipids encountered in <em>M. tuberculosis</em> and interest in exploiting them for the development of TB control tools are presented. Then, the amalgamation of nanotechnology with mycobacterial lipids from both reported and future works are discussed.</p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839462/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3021359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Targeted poly(L-glutamic acid)-based hybrid peptosomes co-loaded with doxorubicin and USPIONs as a theranostic platform for metastatic breast cancer 靶向聚(l -谷氨酸)为基础的杂化肽体与阿霉素和USPIONs共同负载作为转移性乳腺癌的治疗平台
IF 5.5 4区 医学 Q1 Social Sciences Pub Date : 2023-02-01 DOI: 10.1016/j.nano.2022.102645
Maliheh Hasannia PhD , Kamran Lamei PhD , Khalil Abnous PhD , Seyed Mohammad Taghdisi PhD , Sirous Nekooei MD, PhD , Negar Nekooei MD , Mohammad Ramezani PhD , Mona Alibolandi PhD

Peptosomes, as a vesicular polypeptide-based system and a versatile carrier for co-delivery of hydrophilic and hydrophobic materials, provide great delivery opportunities due to the intrinsic biocompatibility and biodegradability of the polypeptides backbone. In the current study, a novel poly(L-glutamic acid)-block-polylactic acid di-block copolymer (PGA-PLA) was synthesized in two steps. Firstly, γ-benzyl L-glutamate-N-carboxy anhydride (BLG-NCA) and 3,6-dimethyl-1,4-dioxane-2,5-dione were polymerized using N-hexylamine and benzyl alcohol as initiators to produce poly(γ-benzyl L-glutamate (PBLG) and polylactic acid. Then, PBLG was deprotected to produce PGA. Secondly, PGA was conjugated to the benzyl-PLGA to fabricate PGA-PLA diblock copolymer. The synthesized diblock copolymer was used for the encapsulation of doxorubicin, as hydrophilic anticancer and ultra-small superparamagnetic iron oxide nanoparticles (USPIONs) as hydrophobic contrast agent within aqueous core and bilayer of vesicular peptosome, respectively via double emulsion method. The prepared peptosomes (Pep@USPIONs-DOX) controlled the release of DOX (<15 % of the encapsulated DOX release up to 240 h of incubation at the physiological conditions) while increasing the stability and solubility of the hydrophobic USPIONs. Then, AS1411 DNA aptamer was decorated on the surface of the PGA-PLA peptosomes (Apt-Pep@USPIONs-DOX). The prepared targeted and non-targeted platforms showed spherical morphology with hydrodynamic sizes of 265 ± 52 and 229 ± 44 nm respectively. In vitro cellular cytotoxicity and cellular uptake were studied in nucleolin positive (4T1) and nucleolin negative (CHO) cell lines. Cellular uptake of the targeted formulation was greater than that of non-targeted peptosome, while cellular internalization of these peptosomes was identical in CHO cells. Moreover, targeted peptosomes showed greater toxicity than non-targeted peptosome in 4T1 cell line. The prepared theranostic targeted peptosomes demonstrated improved capability in terms of survival rate, biodistribution, tumor suppression efficiency, and MR imaging in the 4T1 tumor-bearing mice.

肽体作为一种以囊泡多肽为基础的系统,是一种多用途的载体,用于亲疏水材料的共递送,由于多肽主链固有的生物相容性和可生物降解性,提供了很大的递送机会。本研究分两步合成了一种新型聚l -谷氨酸嵌段聚乳酸二嵌段共聚物(PGA-PLA)。首先,以n -己胺和苯甲醇为引发剂,对γ-苄基谷氨酸- n -羧基酸酐(BLG-NCA)和3,6-二甲基-1,4-二恶烷-2,5-二酮进行聚合,制备聚γ-苄基谷氨酸(PBLG)和聚乳酸。然后将PBLG去保护生成PGA。其次,将PGA与苄基plga偶联制备PGA- pla二嵌段共聚物。将合成的二嵌段共聚物分别用双乳液法将阿霉素作为亲水性抗癌剂和超小超顺磁性氧化铁纳米颗粒(USPIONs)作为疏水造影剂包封在囊泡型蛋白酶体的水核和双层内。制备的肽体(Pep@USPIONs-DOX)控制DOX的释放(生理条件下240 h内,约占包封DOX释放量的15%),同时提高疏水uspion的稳定性和溶解度。然后,将AS1411 DNA适体修饰在PGA-PLA酶体表面(Apt-Pep@USPIONs-DOX)。制备的靶平台和非靶平台均为球形,水动力尺寸分别为265±52 nm和229±44 nm。研究了核仁蛋白阳性(4T1)和核仁蛋白阴性(CHO)细胞株的体外细胞毒性和细胞摄取。靶向制剂的细胞摄取大于非靶向肽体,而这些肽体的细胞内化在CHO细胞中是相同的。此外,在4T1细胞系中,靶向酶体比非靶向酶体表现出更大的毒性。制备的靶向治疗性肽体在4T1荷瘤小鼠的存活率、生物分布、抑瘤效率和MR成像方面均有改善。
{"title":"Targeted poly(L-glutamic acid)-based hybrid peptosomes co-loaded with doxorubicin and USPIONs as a theranostic platform for metastatic breast cancer","authors":"Maliheh Hasannia PhD ,&nbsp;Kamran Lamei PhD ,&nbsp;Khalil Abnous PhD ,&nbsp;Seyed Mohammad Taghdisi PhD ,&nbsp;Sirous Nekooei MD, PhD ,&nbsp;Negar Nekooei MD ,&nbsp;Mohammad Ramezani PhD ,&nbsp;Mona Alibolandi PhD","doi":"10.1016/j.nano.2022.102645","DOIUrl":"https://doi.org/10.1016/j.nano.2022.102645","url":null,"abstract":"<div><p><span><span><span>Peptosomes, as a vesicular polypeptide-based system and a versatile carrier for co-delivery of hydrophilic<span> and hydrophobic materials, provide great delivery opportunities due to the intrinsic biocompatibility<span><span> and biodegradability of the polypeptides </span>backbone. In the current study, a novel poly(L-glutamic acid)-block-polylactic acid di-block </span></span></span>copolymer (PGA-PLA) was synthesized in two steps. Firstly, γ-benzyl L-glutamate-N-carboxy </span>anhydride<span><span><span> (BLG-NCA) and 3,6-dimethyl-1,4-dioxane-2,5-dione were polymerized using N-hexylamine and benzyl alcohol<span> as initiators to produce poly(γ-benzyl L-glutamate (PBLG) and polylactic acid. Then, PBLG was deprotected to produce PGA. Secondly, PGA was conjugated to the benzyl-PLGA to fabricate PGA-PLA diblock copolymer. The synthesized diblock copolymer was used for the encapsulation of </span></span>doxorubicin, as hydrophilic anticancer and ultra-small superparamagnetic iron oxide </span>nanoparticles<span> (USPIONs) as hydrophobic contrast agent within aqueous core and bilayer of vesicular peptosome, respectively </span></span></span><em>via</em><span><span> double emulsion method. The prepared peptosomes (Pep@USPIONs-DOX) controlled the release of DOX (&lt;15 % of the encapsulated DOX release up to 240 h of incubation at the physiological conditions) while increasing the stability and solubility of the hydrophobic USPIONs. Then, AS1411 </span>DNA<span><span><span> aptamer was decorated on the surface of the PGA-PLA peptosomes (Apt-Pep@USPIONs-DOX). The prepared targeted and non-targeted platforms showed spherical morphology with </span>hydrodynamic sizes of 265 ± 52 and 229 ± 44 </span>nm respectively. </span></span><em>In vitro</em><span> cellular cytotoxicity<span><span> and cellular uptake were studied in nucleolin<span> positive (4T1) and nucleolin negative (CHO) cell lines. Cellular uptake of the targeted formulation was greater than that of non-targeted peptosome, while cellular internalization of these peptosomes was identical in </span></span>CHO<span> cells. Moreover, targeted peptosomes showed greater toxicity than non-targeted peptosome in 4T1 cell line<span>. The prepared theranostic targeted peptosomes demonstrated improved capability in terms of survival rate, biodistribution, tumor suppression efficiency, and MR imaging in the 4T1 tumor-bearing mice.</span></span></span></span></p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3342721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Lipid nanocapsules for the nose-to-brain delivery of the anti-inflammatory bioactive lipid PGD2-G 抗炎生物活性脂质PGD2-G经鼻至脑输送的脂质纳米胶囊
IF 5.5 4区 医学 Q1 Social Sciences Pub Date : 2023-02-01 DOI: 10.1016/j.nano.2022.102633
Ariane Mwema M BBMC , Pauline Bottemanne PhD , Adrien Paquot M FARM , Bernard Ucakar Bachelor , Kevin Vanvarenberg Bachelor , Mireille Alhouayek PhD , Giulio G. Muccioli PhD , Anne des Rieux PhD

Here, prostaglandin D2-glycerol ester (PGD2-G) was selected to target neuroinflammation. As PGD2-G is reported to have a short plasmatic half-life, we propose to use lipid nanocapsules (LNC) as vehicle to safely transport PGD2-G to the central nervous system (CNS). PGD2-G-loaded LNC (PGD2-G-LNC) reduced pro-inflammatory cytokine expression in activated microglial cells, even so after crossing a primary olfactory cell monolayer. A single nasal administration of PGD2-G-LNC in lipopolysaccharide (LPS)-treated mice reduced pro-inflammatory cytokine expression in the olfactory bulb. Coating LNC's surface with a cell-penetrating peptide, transactivator of transcription (TAT), increased its accumulation in the brain. Although TAT-coated PGD2-G-LNC modestly exerted its anti-inflammatory effect in a mouse model of multiple sclerosis similar to free PGD2-G after nasal administration, TAT-coated LNC surprisingly reduced the expression of pro-inflammatory chemokines in the CNS. These data propose LNC as an interesting drug delivery tool and TAT-coated PGD2-G-LNC remains a good candidate, in need of further work.

在这里,前列腺素d2 -甘油酯(PGD2-G)被选择用于神经炎症。由于PGD2-G具有较短的血浆半衰期,我们建议使用脂质纳米胶囊(LNC)作为载体将PGD2-G安全运输到中枢神经系统(CNS)。pgd2 - g负载的LNC (PGD2-G-LNC)在激活的小胶质细胞中降低了促炎细胞因子的表达,即使在穿过初级嗅觉细胞单层后也是如此。在脂多糖(LPS)处理的小鼠中,单次鼻腔给予PGD2-G-LNC可降低嗅球中促炎细胞因子的表达。在LNC表面覆盖细胞穿透肽,转录反激活因子(TAT),增加了其在大脑中的积累。尽管经鼻给药后,tat包被的PGD2-G-LNC在多发性硬化症小鼠模型中适度发挥其抗炎作用,但tat包被的LNC出人意料地降低了中枢神经系统中促炎趋化因子的表达。这些数据表明LNC是一种有趣的药物递送工具,tat包被的PGD2-G-LNC仍然是一个很好的候选者,需要进一步的研究。
{"title":"Lipid nanocapsules for the nose-to-brain delivery of the anti-inflammatory bioactive lipid PGD2-G","authors":"Ariane Mwema M BBMC ,&nbsp;Pauline Bottemanne PhD ,&nbsp;Adrien Paquot M FARM ,&nbsp;Bernard Ucakar Bachelor ,&nbsp;Kevin Vanvarenberg Bachelor ,&nbsp;Mireille Alhouayek PhD ,&nbsp;Giulio G. Muccioli PhD ,&nbsp;Anne des Rieux PhD","doi":"10.1016/j.nano.2022.102633","DOIUrl":"https://doi.org/10.1016/j.nano.2022.102633","url":null,"abstract":"<div><p>Here, prostaglandin D<sub>2</sub>-glycerol ester (PGD<sub>2</sub>-G) was selected to target neuroinflammation. As PGD<sub>2</sub>-G is reported to have a short plasmatic half-life, we propose to use lipid nanocapsules (LNC) as vehicle to safely transport PGD<sub>2</sub>-G to the central nervous system (CNS). PGD<sub>2</sub>-G-loaded LNC (PGD<sub>2</sub>-G-LNC) reduced pro-inflammatory cytokine expression in activated microglial cells, even so after crossing a primary olfactory cell monolayer. A single nasal administration of PGD<sub>2</sub>-G-LNC in lipopolysaccharide (LPS)-treated mice reduced pro-inflammatory cytokine expression in the olfactory bulb. Coating LNC's surface with a cell-penetrating peptide, transactivator of transcription (TAT), increased its accumulation in the brain. Although TAT-coated PGD<sub>2</sub>-G-LNC modestly exerted its anti-inflammatory effect in a mouse model of multiple sclerosis similar to free PGD<sub>2</sub>-G after nasal administration, TAT-coated LNC surprisingly reduced the expression of pro-inflammatory chemokines in the CNS. These data propose LNC as an interesting drug delivery tool and TAT-coated PGD<sub>2</sub>-G-LNC remains a good candidate, in need of further work.</p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":5.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3457442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
Nanomedicine: Nanotechnology, Biology and Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1