With a modest adoption of biometrics for security controls, privacy remains a great concern for many individuals as biometric features, once compromised, cannot be renewed and will render protected resources vulnerable to a number of attacks by a threat agent. Several biometric encryption mechanisms have been proposed to preserve privacy, however there has been very little industry usage and implementation. In this paper, a practical biometric encryption technique is presented. The proposed approach is used to provide the desired level of privacy for stored biometric templates through anonymization. This scheme also addresses the limitation of renewability as biometric templates are fused with a biometric key, which may be renewed in the event of compromise of the biometric key. A prototype of the proposed scheme indicates that it could be a viable replacement for traditional biometric security controls with an increased confidence in the preservation of the end-user's privacy.
{"title":"A Privacy Enhanced Facial Recognition Access Control System Using Biometric Encryption","authors":"Orane Cole, K. El-Khatib","doi":"10.1109/DCOSS.2017.19","DOIUrl":"https://doi.org/10.1109/DCOSS.2017.19","url":null,"abstract":"With a modest adoption of biometrics for security controls, privacy remains a great concern for many individuals as biometric features, once compromised, cannot be renewed and will render protected resources vulnerable to a number of attacks by a threat agent. Several biometric encryption mechanisms have been proposed to preserve privacy, however there has been very little industry usage and implementation. In this paper, a practical biometric encryption technique is presented. The proposed approach is used to provide the desired level of privacy for stored biometric templates through anonymization. This scheme also addresses the limitation of renewability as biometric templates are fused with a biometric key, which may be renewed in the event of compromise of the biometric key. A prototype of the proposed scheme indicates that it could be a viable replacement for traditional biometric security controls with an increased confidence in the preservation of the end-user's privacy.","PeriodicalId":399222,"journal":{"name":"2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121640800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Achieving fast and efficient many-to-many communication is one of the most complex communication problems, especially in wireless systems. A compact form of many-to-many communication in a distributed system has the potential to bring huge benefit to many distributed algorithms and protocols. Many-to-many communication can be implemented as a sequential instantiations of a network wide one-to-many communication. One limitation of such an approach is that each individual instance of a one-to-many communication has to be given enough time to propagate through the whole network before the next instance. In addition, there is large overhead in generating the schedule for the sequence of individual one-to-many communications. In this work, we show that many-to-many communication can be more efficiently implemented as many parallel many-to-one communications. In this direction, we first develop an efficient TDMA based many-to-one communication module, and then use it in many-to-many setting. Our approach achieves a minimum about 20% to 50% improvements on latency (radio-on time) over the state-of-the-art solutions in a 90-node wireless sensor network testbed.
{"title":"Efficient Many-to-Many Data Sharing Using Synchronous Transmission and TDMA","authors":"Sudipta Saha, O. Landsiedel, M. Chan","doi":"10.1109/DCOSS.2017.11","DOIUrl":"https://doi.org/10.1109/DCOSS.2017.11","url":null,"abstract":"Achieving fast and efficient many-to-many communication is one of the most complex communication problems, especially in wireless systems. A compact form of many-to-many communication in a distributed system has the potential to bring huge benefit to many distributed algorithms and protocols. Many-to-many communication can be implemented as a sequential instantiations of a network wide one-to-many communication. One limitation of such an approach is that each individual instance of a one-to-many communication has to be given enough time to propagate through the whole network before the next instance. In addition, there is large overhead in generating the schedule for the sequence of individual one-to-many communications. In this work, we show that many-to-many communication can be more efficiently implemented as many parallel many-to-one communications. In this direction, we first develop an efficient TDMA based many-to-one communication module, and then use it in many-to-many setting. Our approach achieves a minimum about 20% to 50% improvements on latency (radio-on time) over the state-of-the-art solutions in a 90-node wireless sensor network testbed.","PeriodicalId":399222,"journal":{"name":"2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127597023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Selavo, Dhruv Vyas, Moosa Yahyazadeh, O. Chipara
This paper describes the design and empirical evaluation of PHASER — a mote prototype for low-power directional communication in wireless sensor networks. PHASER has a modular design that includes three components: a low-power radio, an RF signal processing chip, and two off-the-shelf antennas. Directional communication is achieved by splitting the output signal from the low-power radio chip and controlling programmatically the phase of each signal as it transmitted to each antenna. The net effect of controlling the phase of the signals is that they generate patterns of constructive and destructive interference as signals propagate. PHASER is well-suited for wireless sensor networks as it does not require heavyweight signal processing techniques and consumes minimal additional energy. We have extensively evaluated the performance of five PHASER prototypes. Empirical results clearly demonstrate that changing the phase configuration of PHASER can generate diverse anisotropic radiation patterns. The diverse radiation patterns may be used to increase the signal strength at an intended receiver. Our data indicates that the signal strength of a link can be increased by at least 13 dBm. We also show it is possible to take advantage of the anisotropy of the radiation patterns to facilitate spatial reuse. More importantly, we show that the quality of the links from the same PHASER mote has a common pattern that can be predicted using a simple model. Our evaluation shows that model introduces an median absolute error of about 2 dBm. The model may be used for realistic simulations or integrated into protocol stacks to identify the phase configurations that improve link quality or spatial reuse.
{"title":"PHASER – A Phase-Shifting Antenna for Low-Power Directional Communication","authors":"L. Selavo, Dhruv Vyas, Moosa Yahyazadeh, O. Chipara","doi":"10.1109/DCOSS.2017.30","DOIUrl":"https://doi.org/10.1109/DCOSS.2017.30","url":null,"abstract":"This paper describes the design and empirical evaluation of PHASER — a mote prototype for low-power directional communication in wireless sensor networks. PHASER has a modular design that includes three components: a low-power radio, an RF signal processing chip, and two off-the-shelf antennas. Directional communication is achieved by splitting the output signal from the low-power radio chip and controlling programmatically the phase of each signal as it transmitted to each antenna. The net effect of controlling the phase of the signals is that they generate patterns of constructive and destructive interference as signals propagate. PHASER is well-suited for wireless sensor networks as it does not require heavyweight signal processing techniques and consumes minimal additional energy. We have extensively evaluated the performance of five PHASER prototypes. Empirical results clearly demonstrate that changing the phase configuration of PHASER can generate diverse anisotropic radiation patterns. The diverse radiation patterns may be used to increase the signal strength at an intended receiver. Our data indicates that the signal strength of a link can be increased by at least 13 dBm. We also show it is possible to take advantage of the anisotropy of the radiation patterns to facilitate spatial reuse. More importantly, we show that the quality of the links from the same PHASER mote has a common pattern that can be predicted using a simple model. Our evaluation shows that model introduces an median absolute error of about 2 dBm. The model may be used for realistic simulations or integrated into protocol stacks to identify the phase configurations that improve link quality or spatial reuse.","PeriodicalId":399222,"journal":{"name":"2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114270201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A wireless sensor network (WSN) is usually deployed in a field of interest (FoI) for detecting or monitoring some special events and then forwarding the aggregated data to the designated data center through sink nodes or gateways. Traditionally, the WSN requires the intensive deployment in which the extra sensor nodes are deployed to achieve the required coverage level. Fortunately, depending on the developments of the unmanned aerial vehicle (UAV) techniques, the UAV has been widely adopted in both military and civilian applications. Comparing with the traditional mobile sensor nodes, the UAV has much faster moving speed, longer deployment range and relatively longer serving time. Consequently, the UAV can be considered as a perfect carrier for the existing sensing equipment and used to form a UAV-based WSN (UWSN). In this paper, we theoretically analyse the coverage problem in the UWSN. Based on the integral geometry, we solve the aforementioned question. The experimental results further verifies our theoretical results.
{"title":"Theoretical Analysis of the Area Coverage in a UAV-based Wireless Sensor Network","authors":"Peng Sun, A. Boukerche, Yanjie Tao","doi":"10.1109/DCOSS.2017.18","DOIUrl":"https://doi.org/10.1109/DCOSS.2017.18","url":null,"abstract":"A wireless sensor network (WSN) is usually deployed in a field of interest (FoI) for detecting or monitoring some special events and then forwarding the aggregated data to the designated data center through sink nodes or gateways. Traditionally, the WSN requires the intensive deployment in which the extra sensor nodes are deployed to achieve the required coverage level. Fortunately, depending on the developments of the unmanned aerial vehicle (UAV) techniques, the UAV has been widely adopted in both military and civilian applications. Comparing with the traditional mobile sensor nodes, the UAV has much faster moving speed, longer deployment range and relatively longer serving time. Consequently, the UAV can be considered as a perfect carrier for the existing sensing equipment and used to form a UAV-based WSN (UWSN). In this paper, we theoretically analyse the coverage problem in the UWSN. Based on the integral geometry, we solve the aforementioned question. The experimental results further verifies our theoretical results.","PeriodicalId":399222,"journal":{"name":"2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115699111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Brokalakis, N. Tampouratzis, A. Nikitakis, Stamatis Andrianakis, I. Papaefstathiou, A. Dollas
In this paper, we present an open-source Cyber Physical Systems (CPS) simulation framework that aims to address the limitations of currently available tools. Our solution models the computing devices of the processing nodes and the network that comprise the CPS system and thus provides cycle accurate results, realistic communications and power/energy consumption estimates based on the actual dynamic usage scenarios. The simulator provides the necessary hooks to security testing software and can be extended through an IEEE standardized interface to include additional tools, such as simulators of physical models.
{"title":"An Open-Source Extendable, Highly-Accurate and Security Aware CPS Simulator","authors":"A. Brokalakis, N. Tampouratzis, A. Nikitakis, Stamatis Andrianakis, I. Papaefstathiou, A. Dollas","doi":"10.1109/DCOSS.2017.15","DOIUrl":"https://doi.org/10.1109/DCOSS.2017.15","url":null,"abstract":"In this paper, we present an open-source Cyber Physical Systems (CPS) simulation framework that aims to address the limitations of currently available tools. Our solution models the computing devices of the processing nodes and the network that comprise the CPS system and thus provides cycle accurate results, realistic communications and power/energy consumption estimates based on the actual dynamic usage scenarios. The simulator provides the necessary hooks to security testing software and can be extended through an IEEE standardized interface to include additional tools, such as simulators of physical models.","PeriodicalId":399222,"journal":{"name":"2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121326401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Internet of Things (IoT) systems are inherently built on data gathered from heterogeneous sources. In the quest to gather more data for better analytics, many IoT systems are instigating significant challenges. First, the sheer volume and velocity of data generated by IoT systems are burdening our networking infrastructure, especially at the edge. The mobility and intermittent connectivity of edge IoT nodes are further hampering real-time access and reporting of IoT data. As we attempt to synergize IoT systems to leverage resource discovery and remedy some of these challenges, the rising challenges of Quality of Information (QoI) and Quality of Resource (QoR) calibration, render many IoT interoperability attempts far-fetched. We survey a number of challenges in realizing IoT interoperability, and advocate for a uniform view of data management in IoT systems. We delve into three planes that encompass Big Sensed Data (BSD) research directions, presenting a building block for future research efforts in IoT data management.
{"title":"Big Sensed Data Challenges in the Internet of Things","authors":"H. Hassanein, Sharief M. A. Oteafy","doi":"10.1109/DCOSS.2017.35","DOIUrl":"https://doi.org/10.1109/DCOSS.2017.35","url":null,"abstract":"Internet of Things (IoT) systems are inherently built on data gathered from heterogeneous sources. In the quest to gather more data for better analytics, many IoT systems are instigating significant challenges. First, the sheer volume and velocity of data generated by IoT systems are burdening our networking infrastructure, especially at the edge. The mobility and intermittent connectivity of edge IoT nodes are further hampering real-time access and reporting of IoT data. As we attempt to synergize IoT systems to leverage resource discovery and remedy some of these challenges, the rising challenges of Quality of Information (QoI) and Quality of Resource (QoR) calibration, render many IoT interoperability attempts far-fetched. We survey a number of challenges in realizing IoT interoperability, and advocate for a uniform view of data management in IoT systems. We delve into three planes that encompass Big Sensed Data (BSD) research directions, presenting a building block for future research efforts in IoT data management.","PeriodicalId":399222,"journal":{"name":"2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS)","volume":"26 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132286007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We investigate the problem of efficient computation of a partition of a Random Geometric Graph (RGG) into a limited number of densely packed bipartite grid subgraphs. The study focuses on the collection of subgraphs each individually having similar size and structure and the union employing most (e.g. over 85%) of the vertices. The residual vertices we seek to minimize are attributed to the inherent variations in densities of the randomly placed vertices and to any shortcomings of our greedy algorithms. RGG's have been extensively employed in recent times to model the deployment of numerous instances of Wireless Sensor Networks (WSN's). The properties investigated in our selected bipartite grid backbones are those deemed most relevant for applications to the foundations of this widely growing field. Distributed algorithms are primarily used to determine backbones. Our results review what backbone grid partitions exist in the data. This provides a metric to measure the effectiveness of any distributed algorithm against an existing optimal result. The visual display of selected backbone grids suggests local algorithm design strategies. Furthermore, these partitions must be efficiently computable for highly scalable computation, e.g. WSN's with 100's of thousands of vertices and millions of edges in the resulting RGG. We consider distributions over a segment of the plane and over the surface of the sphere to model sensor distributions both in limited planar regions, all around the globe or on distant planets.
{"title":"Bipartite Grid Partitioning of a Random Geometric Graph","authors":"Zizhen Chen, D. Matula","doi":"10.1109/DCOSS.2017.31","DOIUrl":"https://doi.org/10.1109/DCOSS.2017.31","url":null,"abstract":"We investigate the problem of efficient computation of a partition of a Random Geometric Graph (RGG) into a limited number of densely packed bipartite grid subgraphs. The study focuses on the collection of subgraphs each individually having similar size and structure and the union employing most (e.g. over 85%) of the vertices. The residual vertices we seek to minimize are attributed to the inherent variations in densities of the randomly placed vertices and to any shortcomings of our greedy algorithms. RGG's have been extensively employed in recent times to model the deployment of numerous instances of Wireless Sensor Networks (WSN's). The properties investigated in our selected bipartite grid backbones are those deemed most relevant for applications to the foundations of this widely growing field. Distributed algorithms are primarily used to determine backbones. Our results review what backbone grid partitions exist in the data. This provides a metric to measure the effectiveness of any distributed algorithm against an existing optimal result. The visual display of selected backbone grids suggests local algorithm design strategies. Furthermore, these partitions must be efficiently computable for highly scalable computation, e.g. WSN's with 100's of thousands of vertices and millions of edges in the resulting RGG. We consider distributions over a segment of the plane and over the surface of the sphere to model sensor distributions both in limited planar regions, all around the globe or on distant planets.","PeriodicalId":399222,"journal":{"name":"2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129228452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
André B. Campolina, Paulo H. L. Rettore, M. Machado, A. Loureiro
Physical sensors are an important part of control systems, especially vehicular control systems. Sensor readings help drivers to control their vehicles as well as their internal systems while keeping a vehicle stable and running. Currently, a modern luxury car carries hundreds of diverse and precise sensors and not all of them are visible to the driver. However, there are phenomena and aspects for which there are no physical sensors available. Virtual sensors combine readings from multiple sensors in order to develop their own output values based on conditions and models, and, eventually, substitute and monitor failing physical sensors, as well as sense complex variables. Designing a virtual sensor is usually a difficult process due to the complexity of the different processing stages it comprises. This work studies the process of creating and prototyping vehicular virtual sensors, describing the development stages and presenting examples of virtual sensors created with a framework developed to facilitate the design process.
{"title":"On the Design of Vehicular Virtual Sensors","authors":"André B. Campolina, Paulo H. L. Rettore, M. Machado, A. Loureiro","doi":"10.1109/DCOSS.2017.21","DOIUrl":"https://doi.org/10.1109/DCOSS.2017.21","url":null,"abstract":"Physical sensors are an important part of control systems, especially vehicular control systems. Sensor readings help drivers to control their vehicles as well as their internal systems while keeping a vehicle stable and running. Currently, a modern luxury car carries hundreds of diverse and precise sensors and not all of them are visible to the driver. However, there are phenomena and aspects for which there are no physical sensors available. Virtual sensors combine readings from multiple sensors in order to develop their own output values based on conditions and models, and, eventually, substitute and monitor failing physical sensors, as well as sense complex variables. Designing a virtual sensor is usually a difficult process due to the complexity of the different processing stages it comprises. This work studies the process of creating and prototyping vehicular virtual sensors, describing the development stages and presenting examples of virtual sensors created with a framework developed to facilitate the design process.","PeriodicalId":399222,"journal":{"name":"2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132076353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sunyanan Choochotkaew, H. Yamaguchi, T. Higashino, M. Shibuya, T. Hasegawa
In this paper, we propose a general complex event processing (CEP) engine aiming for accomplishing at smart IoT edge devices in a fully distributed manner. We introduce a pseudo-source mechanism to cover a wide range of processing and obsolete prerequisite of source-specification at the same time, along with a brand-new event specification language defined to support relation-based processing. Against cloud-based approaches, our behind-edge approach can prevent data overflow and privacy issues, and fully distributed processing can draw the power of the edge devices. To achieve that in a resource-limited edge environment, we formulate an optimization problem of processing task assignment and stream delivery, and propose a fully-autonomous workload distribution mechanism. A large-scale simulation with a realistic smart-building scenario shows that our proposed method achieves about 6.6 times smaller flow volume and 2 times lower loss rate compared to centralization and is relatively superior to a hop-based distribution approach. Notably, a prototype engine is successfully deployed over an ad-hoc wireless sensor and actuator network through Intel Edison modules in the real environment.
{"title":"EdgeCEP: Fully-Distributed Complex Event Processing on IoT Edges","authors":"Sunyanan Choochotkaew, H. Yamaguchi, T. Higashino, M. Shibuya, T. Hasegawa","doi":"10.1109/DCOSS.2017.14","DOIUrl":"https://doi.org/10.1109/DCOSS.2017.14","url":null,"abstract":"In this paper, we propose a general complex event processing (CEP) engine aiming for accomplishing at smart IoT edge devices in a fully distributed manner. We introduce a pseudo-source mechanism to cover a wide range of processing and obsolete prerequisite of source-specification at the same time, along with a brand-new event specification language defined to support relation-based processing. Against cloud-based approaches, our behind-edge approach can prevent data overflow and privacy issues, and fully distributed processing can draw the power of the edge devices. To achieve that in a resource-limited edge environment, we formulate an optimization problem of processing task assignment and stream delivery, and propose a fully-autonomous workload distribution mechanism. A large-scale simulation with a realistic smart-building scenario shows that our proposed method achieves about 6.6 times smaller flow volume and 2 times lower loss rate compared to centralization and is relatively superior to a hop-based distribution approach. Notably, a prototype engine is successfully deployed over an ad-hoc wireless sensor and actuator network through Intel Edison modules in the real environment.","PeriodicalId":399222,"journal":{"name":"2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125498467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We consider sensor selection to optimize multiple conditions. Specifically, we model the sensor network as a graph, in which weighted edges indicate the ability of one node to predict the data of another. Each node is associated with several data types, so there are links for each data type. The objective is to maximize the coverage of all data types. This is applicable to such problems as monitoring air quality in cities and coal mines using several indicators of quality. We first define the maximization criteria, and then how to modify the model and existing algorithms to solve the problem. We demonstrate the importance of the problem and the quality of our methodology on synthetic and realistic scenarios.
{"title":"Sensor Selection for Heterogeneous Coverage Measures","authors":"S. Shamoun, T. Abdelzaher, A. Bar-Noy","doi":"10.1109/DCOSS.2017.28","DOIUrl":"https://doi.org/10.1109/DCOSS.2017.28","url":null,"abstract":"We consider sensor selection to optimize multiple conditions. Specifically, we model the sensor network as a graph, in which weighted edges indicate the ability of one node to predict the data of another. Each node is associated with several data types, so there are links for each data type. The objective is to maximize the coverage of all data types. This is applicable to such problems as monitoring air quality in cities and coal mines using several indicators of quality. We first define the maximization criteria, and then how to modify the model and existing algorithms to solve the problem. We demonstrate the importance of the problem and the quality of our methodology on synthetic and realistic scenarios.","PeriodicalId":399222,"journal":{"name":"2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129081331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}