首页 > 最新文献

Progress in Crystal Growth and Characterization of Materials最新文献

英文 中文
Thermodynamic and molecular-kinetic considerations of the initial growth of newly born crystals; crystal size distribution; Dissolution of small crystals during Ostwald ripening due to temperature changes 新生晶体初始生长的热力学和分子动力学研究晶粒尺寸分布;奥斯特瓦尔德成熟过程中由于温度变化导致的小晶体溶解
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2023-10-30 DOI: 10.1016/j.pcrysgrow.2023.100604
Christo N. Nanev

This paper aims to present a comprehensive (rather than complete) review of recent studies and efforts to elucidate the initial growth of newly born crystals, their possible dissolution, and ripening due to temperature changes. It is argued that besides describing the birth of crystals, Gibbs’ thermodynamics also predetermines important features of the following crystal growth: the routes of initial crystal growth, dissolution, and ripening of nanocrystals are encoded in the negative branch of the dependence of the Gibbs’ free energy on crystal size. However, the growth and dissolution of crystals are inherently out of thermodynamic equilibria processes and cannot be established thermodynamically; the mechanism and kinetics of the crystallization process are determined by kinetic factors. (But this does not mean that the thermodynamics and the kinetics are opposed concept; rather they supplement each other.)

In this paper, key points of the crystallization theory have been revisited and further elucidated. At first, the initial growth of the just-born crystals has been considered from a thermodynamic point of view; an equation has been derived that quantifies the variation of the Gibbs’ thermodynamic potential with the change in the size of continuously growing crystals. Then, using a molecular-scale kinetic approach, the probabilities for attachment and possible detachment of molecules to/from just-born crystals have been calculated. It is thus shown that the probability of decomposition of super-critically sized crystals down to subcritical dimension is negligibly small already for crystals larger than the critical size by three molecules only.

This paper focuses on crystal ripening because, being the final crystallization stage, it determines the ultimate crystal size distribution - which is of significant interest. It is emphasized that, due to the relatively small driving energy and the diffusion-limited mass transfer, the isothermal Ostwald ripening is an extremely slow process - it proceeds for weeks or even months (therefore, the isothermal ripening does not find technological application). In contrast, with substances having temperature-dependent solubility ripening can be substantially accelerated under the impact of repeated changes in the temperature. The reason is that during the time of increased solubility, that is induced by the temperature change, the smallest crystals, which had been in equilibrium with the solution at the starting temperature, become under-critically sized and can dissolve faster than isothermally. So, to quantify the effect of the temperature changes on Ostwald ripening, the time needed for complete dissolution of small crystals (so small that they obey Gibbs–Thomson rule) is calculated; and since ripening takes place by diffusion of molecules, it has been assumed that the diffusion is the rate-determining step of the crystal dissolution (and growth) p

本文旨在全面(而不是完整)回顾最近的研究和努力,以阐明新生晶体的初始生长,它们可能的溶解,以及由于温度变化而成熟。本文认为,除了描述晶体的诞生外,吉布斯热力学还预先决定了以下晶体生长的重要特征:纳米晶体的初始生长、溶解和成熟路线编码在吉布斯自由能与晶体尺寸依赖关系的负分支中。然而,晶体的生长和溶解是固有的热力学平衡过程,不能建立热力学;结晶过程的机理和动力学由动力学因素决定。(但这并不意味着热力学和动力学是对立的概念;相反,它们是相互补充的。)本文对结晶理论中的一些关键问题进行了回顾和进一步阐述。首先,从热力学的角度考虑了新生晶体的初始生长;导出了一个方程,量化了吉布斯热力学势随连续生长晶体尺寸变化的变化。然后,使用分子尺度的动力学方法,计算了分子附着和脱离刚形成的晶体的可能性。由此可见,对于仅比临界尺寸大3个分子的晶体,超临界尺寸的晶体分解到亚临界尺寸的概率已经小到可以忽略不计。本文的重点是晶体成熟,因为它是最后的结晶阶段,决定了最终的晶体尺寸分布-这是一个重要的兴趣。需要强调的是,由于驱动能量相对较小,传质受扩散限制,等温奥斯特瓦尔德成熟是一个极其缓慢的过程,需要数周甚至数月的时间(因此,等温成熟没有技术应用)。相反,对于具有温度依赖性溶解度的物质,在温度反复变化的影响下,成熟可以大大加速。这是因为在温度变化引起的溶解度增加的过程中,在起始温度下与溶液处于平衡状态的最小晶体变得小于临界尺寸,并且可以比等温溶解更快。因此,为了量化温度变化对奥斯特瓦尔德成熟的影响,计算小晶体(小到服从吉布斯-汤姆森规则)完全溶解所需的时间;由于成熟是通过分子的扩散发生的,所以人们认为扩散是晶体溶解(和生长)过程的速率决定步骤。通过比较扩散控制和动力学控制的晶体生长速率,支持了这一假设。重要的是,完全溶解小晶体所需时间的方程可能对实践有帮助。当然,虽然晶体的数量在成熟过程中减少,但从溶解的溶质中“滋养”,幸存的晶体变大;在长时间的过程中,所有可结晶的溶质只能集成在一个晶体中(这意味着晶体表面对体积能量的最小可达值)。因此,为了进一步阐明成熟过程,还确定了只生长一个大晶体的时间点。
{"title":"Thermodynamic and molecular-kinetic considerations of the initial growth of newly born crystals; crystal size distribution; Dissolution of small crystals during Ostwald ripening due to temperature changes","authors":"Christo N. Nanev","doi":"10.1016/j.pcrysgrow.2023.100604","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2023.100604","url":null,"abstract":"<div><p><span>This paper aims to present a comprehensive (rather than complete) review of recent studies and efforts to elucidate the initial growth of newly born crystals, their possible dissolution, and ripening due to temperature changes. It is argued that besides describing the birth of crystals, Gibbs’ thermodynamics also predetermines important features of the following crystal growth: the routes of initial crystal growth, dissolution, and ripening of nanocrystals are encoded in the negative branch of the dependence of the Gibbs’ free energy on crystal size. However, the growth and dissolution of crystals are inherently out of </span>thermodynamic equilibria<span> processes and cannot be established thermodynamically; the mechanism and kinetics of the crystallization process are determined by kinetic factors. (But this does not mean that the thermodynamics and the kinetics are opposed concept; rather they supplement each other.)</span></p><p>In this paper, key points of the crystallization theory have been revisited and further elucidated. At first, the initial growth of the just-born crystals has been considered from a thermodynamic point of view; an equation has been derived that quantifies the variation of the Gibbs’ thermodynamic potential with the change in the size of continuously growing crystals. Then, using a molecular-scale kinetic approach, the probabilities for attachment and possible detachment of molecules to/from just-born crystals have been calculated. It is thus shown that the probability of decomposition of super-critically sized crystals down to subcritical dimension is negligibly small already for crystals larger than the critical size by three molecules only.</p><p><span>This paper focuses on crystal ripening because, being the final crystallization stage, it determines the ultimate crystal size distribution - which is of significant interest. It is emphasized that, due to the relatively small driving energy and the diffusion-limited mass transfer, the isothermal Ostwald ripening is an extremely slow process - it proceeds for weeks or even months (therefore, the isothermal ripening does not find technological application). In contrast, with substances having temperature-dependent solubility ripening can be substantially accelerated under the impact of repeated changes in the temperature. The reason is that during the time of increased solubility, that is induced by the temperature change, the smallest crystals, which had been in equilibrium with the solution at the starting temperature, become under-critically sized and can dissolve faster than isothermally. So, to quantify the effect of the temperature changes on Ostwald ripening, the time needed for complete dissolution of small crystals (so small that they obey Gibbs–Thomson rule) is calculated; and since ripening takes place by </span>diffusion of molecules, it has been assumed that the diffusion is the rate-determining step of the crystal dissolution (and growth) p","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"69 2","pages":"Article 100604"},"PeriodicalIF":5.1,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92043243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the multifaceted journey for the invention of epitaxial quantum dots 外延量子点的发明历程
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2023-10-19 DOI: 10.1016/j.pcrysgrow.2023.100603
Emanuele Pelucchi

Epitaxial semiconductor quantum dots have been, in the last 40 years or so, at the center of the research effort of a large community. The focus being on “semiconductor physics and devices”, in view of the broad applications and potential, e.g., for efficient temperature insensitive lasers at telecom wavelengths, or as “artificial atoms” for quantum information processing. Our manuscript aims at addressing, with an historical perspective, the specifics of (III-V) epitaxial quantum dot early developments (largely for light emitting) and subsequent years. We will not only highlight the variety of epitaxial structures and methods, but also, intentionally glancing a didactic approach, discuss aspects that are, in general, little acknowledged or debated in the present literature. The analyses will also naturally bring us to examine some of current challenges, in a field which, despite sensational achievements, is, remarkably, still far from being mature in its developments and applications.

在过去40年左右的时间里,外延半导体量子点一直是一个大型社区研究工作的中心。鉴于其广泛的应用和潜力,重点是“半导体物理和器件”,例如,用于电信波长的高效温度不敏感激光器,或用于量子信息处理的“人造原子”。我们的手稿旨在从历史的角度解决(III-V)外延量子点早期发展(主要用于发光)和随后几年的具体问题。我们不仅会强调各种外延结构和方法,而且还会有意地略读教学方法,讨论目前文献中一般很少承认或争论的方面。这些分析自然也会使我们审视这个领域目前面临的一些挑战,尽管取得了轰动的成就,但值得注意的是,这个领域的发展和应用还远远不够成熟。
{"title":"On the multifaceted journey for the invention of epitaxial quantum dots","authors":"Emanuele Pelucchi","doi":"10.1016/j.pcrysgrow.2023.100603","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2023.100603","url":null,"abstract":"<div><p><span><span>Epitaxial semiconductor quantum dots have been, in the last 40 years or so, at the center of the research effort of a large community. The focus being on “semiconductor </span>physics and devices”, in view of the broad applications and potential, e.g., for efficient temperature insensitive lasers at telecom wavelengths, or as “artificial atoms” for </span>quantum information processing. Our manuscript aims at addressing, with an historical perspective, the specifics of (III-V) epitaxial quantum dot early developments (largely for light emitting) and subsequent years. We will not only highlight the variety of epitaxial structures and methods, but also, intentionally glancing a didactic approach, discuss aspects that are, in general, little acknowledged or debated in the present literature. The analyses will also naturally bring us to examine some of current challenges, in a field which, despite sensational achievements, is, remarkably, still far from being mature in its developments and applications.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"69 2","pages":"Article 100603"},"PeriodicalIF":5.1,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92043242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation, growth mechanism, and application of Mg2B2O5 whiskers: A review Mg2B2O5晶须的制备、生长机理及应用综述
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2023-09-20 DOI: 10.1016/j.pcrysgrow.2023.100602
Zhaoyang Liu , Shuxing Wang , Songyang Pan , Kexin Cheng , Ruinan Zhang , Xiangnan Wang , Tianpeng Wen , Lei Yuan , Jingkun Yu

Magnesium borate (Mg2B2O5) whiskers are highly regarded as a promising inorganic reinforcing material due to their availability, ease of preparation, and remarkable reinforcing effect. The main objective of this article is to examine the properties of Mg2B2O5 whiskers and to encourage researchers to utilize them, thereby enhancing the characteristics of various composites in a cost–effective manner. Six production methods of Mg2B2O5 whiskers are addressed, and based on these methods, different growth mechanisms of Mg2B2O5 whiskers, including liquid–solid, solid–liquid–solid, vapor–solid, and vapor–liquid–solid mechanisms, are analyzed and summarized. As reinforcing materials, Mg2B2O5 whiskers are widely employed in alloys and polymers, effectively enhancing the physical and chemical properties of the resulting whisker–reinforced composites, including mechanical, friction and wear resistance, and flame retardancy properties. Furthermore, the impact of surface modification of Mg2B2O5 whiskers on the properties of composites was explored. The cost–effectiveness, favorable properties, and wide availability of Mg2B2O5 whiskers make them excellent potential materials for numerous applications, and the article provides an analysis and forecasts the future development direction and prospects of Mg2B2O5 whiskers.

硼酸镁(Mg2B2O5)晶须由于其易获得、制备方便、增强效果显著等优点,被认为是一种很有前途的无机增强材料。本文的主要目的是研究Mg2B2O5晶须的性能,并鼓励研究人员利用它们,从而以经济有效的方式提高各种复合材料的特性。介绍了Mg2B2O5晶须的六种制备方法,并在此基础上分析总结了Mg2B2O5晶须的不同生长机理,包括液-固、固-液-固、气-固和气-液-固。作为增强材料,Mg2B2O5晶须被广泛应用于合金和聚合物中,有效地提高了晶须增强复合材料的物理和化学性能,包括机械性能、摩擦磨损性能和阻燃性能。进一步探讨了Mg2B2O5晶须表面改性对复合材料性能的影响。Mg2B2O5晶须的成本效益、良好的性能和广泛的可用性使其成为具有众多应用潜力的优秀材料,文章对Mg2B2O5晶须的未来发展方向和前景进行了分析和预测。
{"title":"Preparation, growth mechanism, and application of Mg2B2O5 whiskers: A review","authors":"Zhaoyang Liu ,&nbsp;Shuxing Wang ,&nbsp;Songyang Pan ,&nbsp;Kexin Cheng ,&nbsp;Ruinan Zhang ,&nbsp;Xiangnan Wang ,&nbsp;Tianpeng Wen ,&nbsp;Lei Yuan ,&nbsp;Jingkun Yu","doi":"10.1016/j.pcrysgrow.2023.100602","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2023.100602","url":null,"abstract":"<div><p>Magnesium borate (Mg<sub>2</sub>B<sub>2</sub>O<sub>5</sub>) whiskers are highly regarded as a promising inorganic reinforcing material due to their availability, ease of preparation, and remarkable reinforcing effect. The main objective of this article is to examine the properties of Mg<sub>2</sub>B<sub>2</sub>O<sub>5</sub> whiskers and to encourage researchers to utilize them, thereby enhancing the characteristics of various composites in a cost–effective manner. Six production methods of Mg<sub>2</sub>B<sub>2</sub>O<sub>5</sub> whiskers are addressed, and based on these methods, different growth mechanisms of Mg<sub>2</sub>B<sub>2</sub>O<sub>5</sub> whiskers, including liquid–solid, solid–liquid–solid, vapor–solid, and vapor–liquid–solid mechanisms, are analyzed and summarized. As reinforcing materials, Mg<sub>2</sub>B<sub>2</sub>O<sub>5</sub> whiskers are widely employed in alloys and polymers, effectively enhancing the physical and chemical properties of the resulting whisker–reinforced composites, including mechanical, friction and wear resistance, and flame retardancy properties. Furthermore, the impact of surface modification of Mg<sub>2</sub>B<sub>2</sub>O<sub>5</sub> whiskers on the properties of composites was explored. The cost–effectiveness, favorable properties, and wide availability of Mg<sub>2</sub>B<sub>2</sub>O<sub>5</sub> whiskers make them excellent potential materials for numerous applications, and the article provides an analysis and forecasts the future development direction and prospects of Mg<sub>2</sub>B<sub>2</sub>O<sub>5</sub> whiskers.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"69 2","pages":"Article 100602"},"PeriodicalIF":5.1,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960897423000098/pdfft?md5=107639af1a231d19e364f5a1162ffbfd&pid=1-s2.0-S0960897423000098-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91957800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronological evaluation of the synthesis techniques of nanocrystalline Fe73.5Cu1Nb3Si13.5B9 soft magnetic alloy 纳米晶Fe73.5Cu1Nb3Si13.5B9软磁合金合成技术的时间顺序评价
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2023-09-20 DOI: 10.1016/j.pcrysgrow.2023.100601
Mohammad Nur-E-Alam , Arvil Bhattacharjee , Deba Prasad Paul , M.A. Hakim , Mohammad Aminul Islam , Tiong S. Kiong , Nowshad Amin , Mohammad Rashed Iqbal Faruque , Mayeen Uddin Khandaker

In this review article, we focus on the synthesis process and properties of Fe-Si-B-based soft magnetic alloys that exhibit superior magnetic properties. The process parameters related to the synthesis and characterization of these types of alloys are studied widely and investigated the properties observed in nanocrystalline Cu and Nb-dopped Fe-Si-B-based magnetic alloys. The properties of these materials are an exceptional combination of high permeability, high Curie temperature, low core losses and anisotropy energy, and near zero effective magnetostriction suitable for various applications such as magnetic field sensors, sensors for non-destructive evaluation of materials, motors, transformer cores, electric vehicles, etc. A significant number of research works have been conducted so far and more research is continued to improve their properties in various ways including engineering of materials composition, optimization of synthesis processes, and parameters for easy integration into modern devices. This review article aims to demonstrate a comparison study of the properties of Fe-Si-B- based soft magnetic alloys and to provide the latest updates on their developments toward tailoring the extrinsic (coercivity, and permeability) and intrinsic (Curie temperature and saturation magnetization) properties for conquering the subsequent area of applications.

本文综述了具有优异磁性能的fe - si -b基软磁合金的合成方法和性能。对这些合金的合成和表征的相关工艺参数进行了广泛的研究,并对纳米晶Cu和nb掺杂fe - si -b基磁性合金的性能进行了研究。这些材料的特性是高磁导率,高居里温度,低铁芯损耗和各向异性能量的特殊组合,以及接近零的有效磁致伸缩,适用于各种应用,如磁场传感器,材料无损评估传感器,电机,变压器铁芯,电动汽车等。到目前为止,已经进行了大量的研究工作,并且还在继续进行更多的研究,以各种方式改善其性能,包括材料组成的工程,合成工艺的优化以及易于集成到现代设备中的参数。本文旨在对Fe-Si-B基软磁合金的性能进行比较研究,并提供其在定制外在(矫顽力和磁导率)和内在(居里温度和饱和磁化)性能方面的最新进展,以征服随后的应用领域。
{"title":"Chronological evaluation of the synthesis techniques of nanocrystalline Fe73.5Cu1Nb3Si13.5B9 soft magnetic alloy","authors":"Mohammad Nur-E-Alam ,&nbsp;Arvil Bhattacharjee ,&nbsp;Deba Prasad Paul ,&nbsp;M.A. Hakim ,&nbsp;Mohammad Aminul Islam ,&nbsp;Tiong S. Kiong ,&nbsp;Nowshad Amin ,&nbsp;Mohammad Rashed Iqbal Faruque ,&nbsp;Mayeen Uddin Khandaker","doi":"10.1016/j.pcrysgrow.2023.100601","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2023.100601","url":null,"abstract":"<div><p>In this review article, we focus on the synthesis process and properties of Fe-Si-B-based soft magnetic alloys<span><span><span> that exhibit superior magnetic properties. The process parameters related to the synthesis and characterization of these types of alloys are studied widely and investigated the properties observed in </span>nanocrystalline Cu and Nb-dopped Fe-Si-B-based magnetic alloys. The properties of these materials are an exceptional combination of high permeability, high </span>Curie temperature<span>, low core losses and anisotropy energy, and near zero effective magnetostriction suitable for various applications such as magnetic field sensors, sensors for non-destructive evaluation of materials, motors, transformer cores, electric vehicles, etc. A significant number of research works have been conducted so far and more research is continued to improve their properties in various ways including engineering of materials composition, optimization of synthesis processes, and parameters for easy integration into modern devices. This review article aims to demonstrate a comparison study of the properties of Fe-Si-B- based soft magnetic alloys and to provide the latest updates on their developments toward tailoring the extrinsic (coercivity, and permeability) and intrinsic (Curie temperature and saturation magnetization) properties for conquering the subsequent area of applications.</span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"69 2","pages":"Article 100601"},"PeriodicalIF":5.1,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24849393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silica-carbonate biomorphs of alkaline earth metals: Relationship with minerals since the Precambrian era 碱土金属的硅碳酸盐生物形态:与前寒武纪以来矿物的关系
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2023-02-01 DOI: 10.1016/j.pcrysgrow.2023.100594
Marcelino Antonio Zúñiga-Estrada, Erick Alfredo Zúñiga-Estrada, Mayra Cuéllar-Cruz

Under alkaline conditions, silica forms self-assembled mineral compounds which are similar in morphology, nanostructure, and texture to the hybrid biomineral structures that, millions of years ago gave to life. In this review we propose that, during the earliest history of this planet, there was a geochemical scenario that led to large-scale production of both simple and complex organic compounds, many of which were important for prebiotic chemistry. The production was based on a high concentration of silica and high pH. Two main factors affected this process: a) a source of simple carbon molecules that were either synthesized abiotically from reactions associated with serpentinization, or carried by meteorites and produced by their impact on Earth, and b) the formation of self-organized silica-metal mineral compounds that catalyzed the condensation of single molecules in a reduced methane-rich atmosphere. We discuss the plausibility of this geochemical scenario and its catalytic properties and the transition towards a slightly alkaline to Neutral Ocean.

在碱性条件下,二氧化硅形成自组装的矿物化合物,其形态、纳米结构和质地与数百万年前赋予生命的混合生物矿物结构相似。在这篇综述中,我们提出,在这个星球的早期历史中,存在一个地球化学情景,导致大规模生产简单和复杂的有机化合物,其中许多对益生元化学很重要。生产是基于高浓度的二氧化硅和高ph值。影响这一过程的两个主要因素:a)简单碳分子的来源,这些碳分子要么是与蛇形岩化相关的非生物反应合成的,要么是由陨石携带并由它们对地球的影响产生的;b)自组织硅金属矿物化合物的形成,催化了单分子在还原的富含甲烷的大气中的缩合。我们讨论了这种地球化学情景的合理性及其催化性质以及向微碱性到中性海洋的转变。
{"title":"Silica-carbonate biomorphs of alkaline earth metals: Relationship with minerals since the Precambrian era","authors":"Marcelino Antonio Zúñiga-Estrada,&nbsp;Erick Alfredo Zúñiga-Estrada,&nbsp;Mayra Cuéllar-Cruz","doi":"10.1016/j.pcrysgrow.2023.100594","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2023.100594","url":null,"abstract":"<div><p>Under alkaline conditions, silica forms self-assembled mineral compounds which are similar in morphology, nanostructure, and texture to the hybrid biomineral structures that, millions of years ago gave to life. In this review we propose that, during the earliest history of this planet, there was a geochemical scenario that led to large-scale production of both simple and complex organic compounds, many of which were important for prebiotic chemistry. The production was based on a high concentration of silica and high pH. Two main factors affected this process: a) a source of simple carbon molecules that were either synthesized abiotically from reactions associated with serpentinization, or carried by meteorites and produced by their impact on Earth, and b) the formation of self-organized silica-metal mineral compounds that catalyzed the condensation of single molecules in a reduced methane-rich atmosphere. We discuss the plausibility of this geochemical scenario and its catalytic properties and the transition towards a slightly alkaline to Neutral Ocean.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"69 1","pages":"Article 100594"},"PeriodicalIF":5.1,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1559677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macrosteps dynamics and the growth of crystals and epitaxial layers 宏观台阶动力学与晶体和外延层的生长
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2022-11-01 DOI: 10.1016/j.pcrysgrow.2022.100581
Stanislaw Krukowski, Konrad Sakowski, Paweł Strak, Paweł Kempisty, Jacek Piechota, Izabella Grzegory

Step pattern stability of the vicinal surfaces during growth was analyzed using various surface kinetics models. It was shown that standard analysis of the vicinal surfaces provides no indication on the possible step coalescence and therefore could not be used to elucidate macrostep creation during growth. A scenario of the instability, leading go macrostep creation, was based on the dynamics of the step train, i.e. the step structure consisting of the high (train) and low (inter-train) density of the steps. The critical is step motion at the rear of the train which potentially leads to the step coalescence i.e. creation of the double and multiple step. The result of the analysis shows that the decisive factor for the step coalescence is the step density ratio in and out of the train. The ratio lower than 2 prevents double step formation irrespective of the kinetics. For higher ratio the coalesce depends on step kinetics: fast incorporation from lower terrace stabilizes the single steps, fast incorporation from upper leads to step coalescence. The double step is slower than the single steps, so the single steps behind catch up creating multistep and finally macrostep structure. The final surface structure consists of the macrosteps and superterraces, i.e. relatively flat vicinal segments. The macrostep alimentation from lower superterrace leads to emission of the single steps which move forward. Thus the single step motion is dominant crystal growth mode in the presence of the macrosteps. These steps finally are absorbed by the next macrostep. The absorption and emission of single steps sustain the macrostep existence, i.e. the macrostep fate is determined the single step dynamics. The condition for single step emission was derived. In addition, the macrosteps are prone to creation of the overhangs which results from surface dynamics coupling to impingement from the mother phase. The angular preferential access of the bulk material to the macrostep edge, leads to the overhang instability and creation of inclusions and dislocations.

采用不同的表面动力学模型分析了相邻表面在生长过程中的阶梯模式稳定性。结果表明,对相邻表面的标准分析不能说明可能的台阶合并,因此不能用于阐明生长过程中产生的大台阶。导致宏观台阶产生的不稳定场景是基于台阶列车的动力学,即由高(列车)密度和低(列车间)密度组成的台阶结构。关键是列车尾部的步进运动,这可能导致步进合并,即产生双步和多步。分析结果表明,台阶聚结的决定性因素是列车内外台阶密度比。无论动力学如何,低于2的比率都可以防止双步形成。对于较高的比例,合并取决于台阶动力学:从较低的阶地快速合并稳定单个台阶,从较高的阶地快速合并导致台阶合并。双步比单步慢,所以后面的单步赶上创建多步和最后的宏步结构。最终的地表结构由大台阶和超阶地组成,即相对平坦的相邻段。来自下超阶地的大台阶营养导致向前移动的单台阶的排放。因此,在宏观步长存在的情况下,单步运动是主要的晶体生长方式。这些步骤最终被下一个宏步骤所吸收。单步的吸收和发射维持着大步的存在,即大步的命运由单步动力学决定。推导了单步发射的条件。此外,由于表面动力学耦合与母相的冲击,宏观台阶容易产生悬挑。大块材料在角度上优先进入宏观台阶边缘,导致悬垂不稳定和夹杂和位错的产生。
{"title":"Macrosteps dynamics and the growth of crystals and epitaxial layers","authors":"Stanislaw Krukowski,&nbsp;Konrad Sakowski,&nbsp;Paweł Strak,&nbsp;Paweł Kempisty,&nbsp;Jacek Piechota,&nbsp;Izabella Grzegory","doi":"10.1016/j.pcrysgrow.2022.100581","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2022.100581","url":null,"abstract":"<div><p>Step pattern stability of the vicinal surfaces during growth was analyzed using various surface kinetics models. It was shown that standard analysis of the vicinal surfaces provides no indication on the possible step coalescence and therefore could not be used to elucidate macrostep creation during growth. A scenario of the instability, leading go macrostep creation, was based on the dynamics of the step train, i.e. the step structure consisting of the high (train) and low (inter-train) density of the steps. The critical is step motion at the rear of the train which potentially leads to the step coalescence i.e. creation of the double and multiple step. The result of the analysis shows that the decisive factor for the step coalescence is the step density ratio in and out of the train. The ratio lower than 2 prevents double step formation irrespective of the kinetics. For higher ratio the coalesce depends on step kinetics: fast incorporation from lower terrace stabilizes the single steps, fast incorporation from upper leads to step coalescence. The double step is slower than the single steps, so the single steps behind catch up creating multistep and finally macrostep structure. The final surface structure consists of the macrosteps and superterraces, i.e. relatively flat vicinal segments. The macrostep alimentation from lower superterrace leads to emission of the single steps which move forward. Thus the single step motion is dominant crystal growth mode in the presence of the macrosteps. These steps finally are absorbed by the next macrostep. The absorption and emission of single steps sustain the macrostep existence, i.e. the macrostep fate is determined the single step dynamics. The condition for single step emission was derived. In addition, the macrosteps are prone to creation of the overhangs which results from surface dynamics coupling to impingement from the mother phase. The angular preferential access of the bulk material to the macrostep edge, leads to the overhang instability and creation of inclusions and dislocations.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"68 4","pages":"Article 100581"},"PeriodicalIF":5.1,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2578950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances on potential-driven growth of metal crystals from ionic liquids 离子液体中金属晶体电位驱动生长的研究进展
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2022-11-01 DOI: 10.1016/j.pcrysgrow.2022.100580
Md. Mominul Islam, Saika Ahmed, Muhammed Shah Miran, Md. Abu Bin Hasan Susan

This article highlights the electrodeposition of metals, in crystalline or amorphous form, that are monentous in the present era of science and technology. Available literature related to nucleation and growth of metal crystals has been reviewed to gain insight into the mechanism and kinetics. The progress made in the electrodeposition technique, using an ionic liquid (IL) medium, has been detailed for selected metals using different ILs for achieving the controlled growth mechanism driven by electrochemical potential. Theoretical models for nucleation and growth of crystals by electrodeposition have been explained and the effect of crystallization overpotential on the growth of crystal growth has been discussed. Finally, the factors affecting the growth process and the mechanism have been identified and critically analyzed based on the available literature, fundamental knowledge-base, chemistry of ILs, and electrodeposition.

本文重点介绍了电沉积金属,在晶体或非晶态,这是在当今时代的科学和技术的巨大。本文对金属晶体成核和生长的相关文献进行了综述,以进一步了解金属晶体成核和生长的机理和动力学。本文详细介绍了离子液体电沉积技术的进展,并介绍了采用不同离子液体的金属实现由电化学电位驱动的受控生长机制。本文解释了电沉积晶体成核和生长的理论模型,并讨论了结晶过电位对晶体生长的影响。最后,基于现有文献、基础知识、il化学和电沉积,对影响生长过程的因素和机制进行了鉴定和批判性分析。
{"title":"Advances on potential-driven growth of metal crystals from ionic liquids","authors":"Md. Mominul Islam,&nbsp;Saika Ahmed,&nbsp;Muhammed Shah Miran,&nbsp;Md. Abu Bin Hasan Susan","doi":"10.1016/j.pcrysgrow.2022.100580","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2022.100580","url":null,"abstract":"<div><p><span>This article highlights the electrodeposition of metals, in crystalline or </span>amorphous<span><span> form, that are monentous in the present era of science and technology. Available literature related to nucleation and growth of metal crystals has been reviewed to gain insight into the mechanism and kinetics. The progress made in the </span>electrodeposition<span><span> technique, using an ionic liquid (IL) medium, has been detailed for selected metals using different ILs for achieving the controlled growth mechanism driven by </span>electrochemical potential. Theoretical models for nucleation and growth of crystals by electrodeposition have been explained and the effect of crystallization overpotential on the growth of crystal growth has been discussed. Finally, the factors affecting the growth process and the mechanism have been identified and critically analyzed based on the available literature, fundamental knowledge-base, chemistry of ILs, and electrodeposition.</span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"68 4","pages":"Article 100580"},"PeriodicalIF":5.1,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3081422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Thermal stress relaxation phenomenon through forming the interstitial region in CZ silicon pulled with rapid and slow cooling heat shields 热应力松弛现象通过形成间隙区域的CZ硅拉的快速和缓慢冷却隔热
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2022-08-01 DOI: 10.1016/j.pcrysgrow.2022.100579
Takao Abe

This review article aims to clarify a mechanism of point defects formation in a CZ Si crystal through an experimental arrangement using the two kinds of heat shields with different slow-pulling periods. Point defects in a melt grown silicon crystal have been studied for a long time. The author and his co-researchers have reported about “Mechanism for generating interstitial atoms by thermal stress during silicon crystal growth” [in Progress in Crystal Growth and Characterization of Materials, 66 (2019) 36-46]. The experimental arrangement includes constant growing, changing pulling rate and finally detaching crystals from the melt. The two types of heat shields were used to change the cooling history of the grown crystals, for changing a temperature gradient at a bulk part in the grown crystal, Gb. In order to prove that the formation of an interstitial region or a boundary of vacancies (Vs)/interstitials (Is) in a silicon crystal is a phenomenon of relaxing thermal stress, the author explains that a Gb in a crystal forms thermal stress and causes some silicon atoms at lattice positions to move to the closest interstitial sites to relax the stress. The author defines a new term of metastable interstitial atom, I’, or I's as the plural of I’. The I’ coexists with the metastable vacancy V’ from where the I’ is displaced. The plural of V’ is defined to be V's. The author defines the above state to be a complex (I’+ V’), or (I ’+ V’)s as the plural of (I’+ V’), and explains that the (I’+ V’) s convert to Is and form the Is region. The (I’+ V’) is considered as the Frenkel pair-like complex.

The crystals were firstly pulled with a high pulling rate, and the pulling rate was consequently decreased to a slow one. Then the crystals were pulled with the slow constant pulling rate for different periods making different cooling processes. Finally, the grown crystals were detached from the melt and cooled rapidly. Characterization of defects, such as Vs, Is, and defect-free (D-F) regions were identified in X-ray topographs (XAOP(s)). Wafer lifetime mapping (WLTM(s)) allows confirming dislocation loop (DL) regions. The results show that the Is are generated depending on the pulling period of the slow pulling and the shapes of the heat shields. The Is and DL regions are formed in a region at temperatures near the melting point. The Is form an Is region through a defect-free (D-F) region, forming the Vs/Is boundary. When the thermal stress weakens, the DL region changes to the Is region; the Is region changes to the D-F region; and the D-F region changes to the Vs region. Temperature gradient distribution is induced toward various directions at different parts of the growing crystal depending on the different slow-pulling periods. The temperature gradient, Gb, includes a temperature gradient from the cooled region shaded

本文旨在通过两种不同慢拉周期的隔热层的实验布置,阐明czsi晶体中点缺陷的形成机制。熔体生长硅晶体中的点缺陷已经被研究了很长时间。作者和他的合作研究人员报道了“硅晶体生长过程中热应力产生间隙原子的机制”[在晶体生长和材料表征中的进展,66(2019)36-46]。实验安排包括恒定生长,改变拉速,最后从熔体中分离晶体。利用这两种类型的热屏蔽来改变生长晶体的冷却历史,从而改变生长晶体中块体部分的温度梯度。为了证明硅晶体中空位区或空位边界(Vs)/空位边界(Is)的形成是一种热应力松弛现象,作者解释了晶体中的一个Gb形成热应力,使晶格位置的一些硅原子移动到最近的空位位置以松弛应力。作者定义了一个亚稳态间隙原子的新名词I',或I's作为I'的复数形式。I '与亚稳空位V '共存,I '从那里被移开。V'的复数形式被定义为V's。作者将上述状态定义为复合体(I ' + V '),或者(I ' + V ')的复数形式(I ' + V '),并解释了(I ' + V ')转化为Is,形成Is区域。(I ' + V ')被认为是Frenkel对样复合体。首先以较高的拉拔速率对晶体进行拉拔,随后拉拔速率逐渐降低到较慢的拉拔速率。然后以缓慢恒定的拉拔速率对晶体进行不同周期的拉拔,形成不同的冷却过程。最后,生长的晶体从熔体中分离出来并迅速冷却。缺陷的表征,如v、i和无缺陷(D-F)区域在x射线地形图中被识别(XAOP(s))。晶圆寿命映射(WLTM(s))允许确认位错环(DL)区域。结果表明,慢拉过程的拉拔周期和隔热板的形状决定了热阻的产生。i区和DL区是在接近熔点的温度下形成的。通过无缺陷区(D-F)形成一个Is区,形成Vs/Is边界。当热应力减弱时,DL区变为Is区;Is区变为D-F区;D-F区变为v区。随着慢拉周期的不同,生长晶体不同部位的温度梯度分布也不同。温度梯度Gb包括从隔热罩遮蔽的冷却区域到生长界面的温度梯度和从长时间生长过程中冷却的上表面到生长界面的温度梯度。在熔点附近超过一定阈值的Gb形成热应力,产生Is使应力松弛。
{"title":"Thermal stress relaxation phenomenon through forming the interstitial region in CZ silicon pulled with rapid and slow cooling heat shields","authors":"Takao Abe","doi":"10.1016/j.pcrysgrow.2022.100579","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2022.100579","url":null,"abstract":"<div><p><span><span>This review article aims to clarify a mechanism of point defects formation in a CZ Si crystal through an experimental arrangement using the two kinds of heat shields with different slow-pulling periods. Point defects in a melt grown </span>silicon<span> crystal have been studied for a long time. The author and his co-researchers have reported about “Mechanism for generating interstitial atoms by thermal stress during silicon crystal growth” [in Progress in Crystal Growth and Characterization of Materials, </span></span><strong>66</strong><span> (2019) 36-46]. The experimental arrangement includes constant growing, changing pulling rate and finally detaching crystals from the melt. The two types of heat shields were used to change the cooling history of the grown crystals, for changing a temperature gradient at a bulk part in the grown crystal, </span><em>G</em><sub>b</sub>. In order to prove that the formation of an interstitial region or a boundary of vacancies (Vs)/interstitials (Is) in a silicon crystal is a phenomenon of relaxing thermal stress, the author explains that a <em>G</em><sub>b</sub> in a crystal forms thermal stress and causes some silicon atoms at lattice positions to move to the closest interstitial sites to relax the stress. The author defines a new term of metastable interstitial atom, I’, or I's as the plural of I’. The I’ coexists with the metastable vacancy V’ from where the I’ is displaced. The plural of V’ is defined to be V's. The author defines the above state to be a complex (I’+ V’), or (I ’+ V’)s as the plural of (I’+ V’), and explains that the (I’+ V’) s convert to Is and form the Is region. The (I’+ V’) is considered as the Frenkel pair-like complex.</p><p>The crystals were firstly pulled with a high pulling rate, and the pulling rate was consequently decreased to a slow one. Then the crystals were pulled with the slow constant pulling rate for different periods making different cooling processes. Finally, the grown crystals were detached from the melt and cooled rapidly. Characterization of defects, such as Vs, Is, and defect-free (D-F) regions were identified in X-ray topographs (XAOP(s)). Wafer lifetime mapping (WLTM(s)) allows confirming dislocation loop (DL) regions. The results show that the Is are generated depending on the pulling period of the slow pulling and the shapes of the heat shields. The Is and DL regions are formed in a region at temperatures near the melting point. The Is form an Is region through a defect-free (D-F) region, forming the Vs/Is boundary. When the thermal stress weakens, the DL region changes to the Is region; the Is region changes to the D-F region; and the D-F region changes to the Vs region. Temperature gradient distribution is induced toward various directions at different parts of the growing crystal depending on the different slow-pulling periods. The temperature gradient, <em>G</em><sub>b</sub>, includes a temperature gradient from the cooled region shaded","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"68 3","pages":"Article 100579"},"PeriodicalIF":5.1,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3398756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical and Practical Studies on Effects of External Electrostatic Electric Field on Nucleation and Growth Kinetics of Protein Crystals 外加静电场对蛋白质晶体成核和生长动力学影响的理论与实践研究
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2022-08-01 DOI: 10.1016/j.pcrysgrow.2022.100568
Haruhiko Koizumi , Satoshi Uda

The crystallization technique where an electric field is applied is an extremely powerful tool to control the crystallization processes of various materials. In particular, the method with application of an external electrostatic electric field can have a significant effect on the phase equilibrium of the liquid and solid phases. This review demonstrates that the crystallization processes of proteins are significantly impacted by the application of an external electrostatic electric field: (1) Control of both the increase and decrease in the nucleation rate can be achieved by changing the applied frequency of the external electrostatic electric field. (2) The effect of the external electrostatic electric field on the nucleation rate can be controlled by regulating the thickness of the electric double layer (EDL) formed at the interface. (3) The quality of the grown crystals can be improved by an increase in the step free energy under application of an external electrostatic electric field at 1 MHz. The effect of the external electrostatic electric field on nucleation and growth kinetics during crystal growth of proteins is also discussed based on a thermodynamic perspective.

施加电场的结晶技术是控制各种材料结晶过程的一种极为有力的工具。特别是外加静电场的方法对液固两相的相平衡有显著的影响。本文的研究表明,外加静电场对蛋白质的结晶过程有显著的影响:(1)通过改变外加静电场的施加频率可以控制成核速率的增加和减少。(2)外部静电场对成核速率的影响可以通过调节界面处形成的双电层(EDL)的厚度来控制。(3)在1 MHz的外加静电场下,增加阶跃自由能可以提高生长晶体的质量。本文还从热力学角度讨论了外加静电场对蛋白质晶体生长过程中成核和生长动力学的影响。
{"title":"Theoretical and Practical Studies on Effects of External Electrostatic Electric Field on Nucleation and Growth Kinetics of Protein Crystals","authors":"Haruhiko Koizumi ,&nbsp;Satoshi Uda","doi":"10.1016/j.pcrysgrow.2022.100568","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2022.100568","url":null,"abstract":"<div><p>The crystallization technique where an electric field is applied is an extremely powerful tool to control the crystallization processes of various materials. In particular, the method with application of an external electrostatic electric field can have a significant effect on the phase equilibrium of the liquid and solid phases. This review demonstrates that the crystallization processes of proteins are significantly impacted by the application of an external electrostatic electric field: (1) Control of both the increase and decrease in the nucleation rate can be achieved by changing the applied frequency of the external electrostatic electric field. (2) The effect of the external electrostatic electric field on the nucleation rate can be controlled by regulating the thickness of the electric double layer (EDL) formed at the interface. (3) The quality of the grown crystals can be improved by an increase in the step free energy under application of an external electrostatic electric field at 1 MHz. The effect of the external electrostatic electric field on nucleation and growth kinetics during crystal growth of proteins is also discussed based on a thermodynamic perspective.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"68 3","pages":"Article 100568"},"PeriodicalIF":5.1,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1559678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Growth, structure, electrical and optical properties of transition metal chalcogenide crystals synthesized by improved chemical vapor transport technique for semiconductor technologies 利用改进的半导体化学气相输运技术合成的过渡金属硫族化物晶体的生长、结构、电学和光学性质
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2022-08-01 DOI: 10.1016/j.pcrysgrow.2022.100578
Abhay Dasadia , Vidhi Bhavsar

Low dimensional structures, including bulk crystals, thin films, nanowires and nanotubes, have received remarkable attention due to their novel functionality and potential applications in various areas of optics, electronics, photonics, and sensing devices and photovoltaic field. Recently, remarkable progress and modification have been achieved in the synthesis process of crystalline material by vapor transport technique. In this review, we introduce an improved concept of the closed tube Chemical Vapor Transport (CVT) technique for the single crystal growth of ZrSTe, TiSTe and TiSeTe. A modified reverse temperature profile has reported the growth of ZrSTe, TiSTe and TiSeTe results show the good crystalline quality of synthesized materials. The single-crystal X-ray diffraction data reveals all three samples have trigonal unit cell structure with a space group of P31. The Semiconducting behavior of grown crystals of ZrSTe, TiSTe and TiSeTe was verified by two probe resistivity measurements, Hall Effect measurements and optical absorption at room temperature in the spectral range of 200 nm - 2200 nm. In this review, we highlight the recent progress in the transition of metal chalcogenides for their advanced application in solar energy conversion, thin-film electronics, optoelectronic devices and quantum communication devices. Moreover, different experimental challenges within the described growth technique are probed. Additionally, a survey was done for the possible enhancement of Transition Metal Chalcogenide (TMC) crystalline materials grown by the Chemical Vapor Transport technique based on various growth parameters.

低维结构,包括体晶体、薄膜、纳米线和纳米管,由于其新颖的功能和在光学、电子、光子学、传感器件和光伏领域的潜在应用而受到人们的广泛关注。近年来,利用气相输运技术合成结晶材料的工艺取得了显著的进展和改进。本文介绍了一种改进的封闭管化学气相传输(CVT)技术,用于ZrSTe、TiSTe和TiSeTe的单晶生长。修正后的反向温度谱报告了ZrSTe、TiSTe和TiSeTe的生长,结果表明合成材料具有良好的结晶质量。单晶x射线衍射数据显示,三种样品均具有三角形单晶结构,空间群为P31。在200 nm ~ 2200 nm的光谱范围内,通过两次探针电阻率测量、霍尔效应测量和室温光吸收,验证了ZrSTe、TiSTe和TiSeTe生长晶体的半导体行为。本文综述了近年来金属硫族化合物在太阳能转换、薄膜电子、光电子器件和量子通信器件等方面的应用进展。此外,本文还探讨了所述生长技术中的不同实验挑战。此外,基于不同的生长参数,探讨了化学气相输运技术生长过渡金属硫族化物(TMC)晶体材料的增强可能性。
{"title":"Growth, structure, electrical and optical properties of transition metal chalcogenide crystals synthesized by improved chemical vapor transport technique for semiconductor technologies","authors":"Abhay Dasadia ,&nbsp;Vidhi Bhavsar","doi":"10.1016/j.pcrysgrow.2022.100578","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2022.100578","url":null,"abstract":"<div><p><span><span>Low dimensional structures, including bulk crystals, thin films<span>, nanowires and nanotubes<span>, have received remarkable attention due to their novel functionality and potential applications in various areas of optics<span>, electronics, photonics, and sensing devices and </span></span></span></span>photovoltaic<span> field. Recently, remarkable progress and modification have been achieved in the synthesis process of crystalline material by vapor transport technique. In this review, we introduce an improved concept of the closed tube Chemical Vapor Transport (CVT) technique for the single crystal growth of ZrSTe, TiSTe and TiSeTe. A modified reverse temperature profile has reported the growth of ZrSTe, TiSTe and TiSeTe results show the good crystalline quality of synthesized materials. The single-crystal X-ray diffraction data reveals all three samples have trigonal unit cell structure with a space group of P31. The Semiconducting behavior of grown crystals of ZrSTe, TiSTe and TiSeTe was verified by two probe resistivity measurements, </span></span>Hall Effect<span><span> measurements and optical absorption at room temperature in the spectral range of 200 nm - 2200 nm. In this review, we highlight the recent progress in the transition of metal </span>chalcogenides<span><span> for their advanced application in solar energy conversion<span>, thin-film electronics, optoelectronic devices and </span></span>quantum communication devices. Moreover, different experimental challenges within the described growth technique are probed. Additionally, a survey was done for the possible enhancement of Transition Metal Chalcogenide (TMC) crystalline materials grown by the Chemical Vapor Transport technique based on various growth parameters.</span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"68 3","pages":"Article 100578"},"PeriodicalIF":5.1,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1741704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
Progress in Crystal Growth and Characterization of Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1