首页 > 最新文献

Progress in Crystal Growth and Characterization of Materials最新文献

英文 中文
Metamorphic InAs(Sb)/InGaAs/InAlAs nanoheterostructures grown on GaAs for efficient mid-IR emitters 砷化镓上生长的InAs(Sb)/InGaAs/InAlAs纳米异质结构
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2019-02-01 DOI: 10.1016/j.pcrysgrow.2018.12.001
S.V. Ivanov , M.Yu. Chernov , V.A. Solov'ev , P.N. Brunkov , D.D. Firsov , O.S. Komkov

High-efficiency semiconductor lasers and light-emitting diodes operating in the 3–5 μm mid-infrared (mid-IR) spectral range are currently of great demand for a wide variety of applications, in particular, gas sensing, noninvasive medical tests, IR spectroscopy etc. III-V compounds with a lattice constant of about 6.1 Å are traditionally used for this spectral range. The attractive idea to fabricate such emitters on GaAs substrates by using In(Ga,Al)As compounds is restricted by either the minimum operating wavelength of ∼8 μm in case of pseudomorphic AlGaAs-based quantum cascade lasers or requires utilization of thick metamorphic InxAl1-xAs buffer layers (MBLs) playing a key role in reducing the density of threading dislocations (TDs) in an active region, which otherwise result in a strong decay of the quantum efficiency of such mid-IR emitters. In this review we present the results of careful investigations of employing the convex-graded InxAl1-xAs MBLs for fabrication by molecular beam epitaxy on GaAs (001) substrates of In(Ga,Al)As heterostructures with a combined type-II/type-I InSb/InAs/InGaAs quantum well (QW) for efficient mid-IR emitters (3–3.6 μm). The issues of strain relaxation, elastic stress balance, efficiency of radiative and non-radiative recombination at T = 10–300 K are discussed in relation to molecular beam epitaxy (MBE) growth conditions and designs of the structures. A wide complex of techniques including in-situ reflection high-energy electron diffraction, atomic force microscopy (AFM), scanning and transmission electron microscopies, X-ray diffractometry, reciprocal space mapping, selective area electron diffraction, as well as photoluminescence (PL) and Fourier-transformed infrared spectroscopy was used to study in detail structural and optical properties of the metamorphic QW structures. Optimization of the growth conditions (the substrate temperature, the As4/III ratio) and elastic strain profiles governed by variation of an inverse step in the In content profile between the MBL and the InAlAs virtual substrate results in decrease in the TD density (down to 3 × 107 cm−2), increase of the thickness of the low-TD-density near-surface MBL region to 250–300 nm, the extremely low surface roughness with the RMS value of 1.6–2.4 nm, measured by AFM, as well as rather high 3.5 μm-PL intensity at temperatures up to 300 K in such structures. The obtained results indicate that the metamorphic InSb/In(Ga,Al)As QW heterostructures of proper design, grown under the optimum MBE conditions, are very promising for fabricating the efficient mid-IR emitters on a GaAs platform.

在3-5 μm中红外(mid-IR)光谱范围内工作的高效半导体激光器和发光二极管目前在各种应用中都有很大的需求,特别是在气体传感,非侵入性医疗测试,红外光谱等方面。晶格常数约为6.1 Å的III-V化合物通常用于该光谱范围。利用In(Ga,Al)As化合物在GaAs衬底上制造这种发射器的想法很有兴趣,但是对于伪晶algaas基量子级联激光器来说,其最小工作波长为~ 8 μm,或者需要使用厚的变质InxAl1-xAs缓冲层(MBLs),这在降低有源区域的线位错(td)密度方面起着关键作用,否则会导致这种中红外发射器的量子效率的强烈衰减。本文介绍了利用In(Ga,Al)As异质结构的GaAs(001)衬底,结合ii型/ i型InSb/InAs/InGaAs量子阱(QW),利用分子束外延制备凸梯度InxAl1-xAs MBLs的研究结果,用于高效中红外发射体(3-3.6 μm)。讨论了在T = 10-300 K处的应变松弛、弹性应力平衡、辐射和非辐射复合效率等与分子束外延(MBE)生长条件和结构设计有关的问题。利用原位反射高能电子衍射、原子力显微镜(AFM)、扫描和透射电子显微镜、x射线衍射、互反空间映射、选择性区域电子衍射以及光致发光(PL)和傅里叶变换红外光谱等技术,对变质量子阱结构的详细结构和光学性质进行了研究。优化生长条件(衬底温度、As4/III比)和弹性应变曲线(由InAlAs虚拟衬底之间in含量曲线的反阶变化决定),导致TD密度降低(降至3 × 107 cm−2),低TD密度MBL近表面区域的厚度增加到250 ~ 300 nm,表面粗糙度极低,通过AFM测量的RMS值为1.6 ~ 2.4 nm。在高达300 K的温度下,这种结构的强度高达3.5 μm-PL。结果表明,在最佳MBE条件下生长的设计合理的InSb/In(Ga,Al)As变质QW异质结构非常适合在GaAs平台上制作高效的中红外发射体。
{"title":"Metamorphic InAs(Sb)/InGaAs/InAlAs nanoheterostructures grown on GaAs for efficient mid-IR emitters","authors":"S.V. Ivanov ,&nbsp;M.Yu. Chernov ,&nbsp;V.A. Solov'ev ,&nbsp;P.N. Brunkov ,&nbsp;D.D. Firsov ,&nbsp;O.S. Komkov","doi":"10.1016/j.pcrysgrow.2018.12.001","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2018.12.001","url":null,"abstract":"<div><p><span><span>High-efficiency semiconductor lasers and light-emitting diodes operating in the 3–5 μm mid-infrared (mid-IR) spectral range are currently of great demand for a wide variety of applications, in particular, gas sensing, noninvasive medical tests, </span>IR spectroscopy </span><em>etc.</em><span><span> III-V compounds with a lattice constant of about 6.1 Å are traditionally used for this spectral range. The attractive idea to fabricate such emitters on GaAs substrates by using In(Ga,Al)As compounds is restricted by either the minimum operating wavelength of ∼8 μm in case of pseudomorphic AlGaAs-based </span>quantum cascade lasers or requires utilization of thick metamorphic In</span><em><sub>x</sub></em>Al<sub>1</sub><em><sub>-x</sub></em><span>As buffer layers (MBLs) playing a key role in reducing the density of threading dislocations (TDs) in an active region, which otherwise result in a strong decay of the quantum efficiency of such mid-IR emitters. In this review we present the results of careful investigations of employing the convex-graded In</span><em><sub>x</sub></em>Al<sub>1</sub><em><sub>-x</sub></em><span><span>As MBLs for fabrication by molecular beam epitaxy on GaAs (001) substrates of In(Ga,Al)As </span>heterostructures<span> with a combined type-II/type-I InSb/InAs/InGaAs quantum well (QW) for efficient mid-IR emitters (3–3.6 μm). The issues of strain relaxation, elastic stress balance, efficiency of radiative and non-radiative recombination at </span></span><em>T</em> = 10–300 K are discussed in relation to molecular beam epitaxy (MBE) growth conditions and designs of the structures. A wide complex of techniques including <em>in-situ</em><span><span><span> reflection high-energy electron diffraction, </span>atomic force microscopy (AFM), scanning and </span>transmission electron microscopies<span>, X-ray diffractometry, reciprocal space mapping, selective area electron diffraction, as well as photoluminescence<span> (PL) and Fourier-transformed infrared spectroscopy was used to study in detail structural and optical properties of the metamorphic QW structures. Optimization of the growth conditions (the substrate temperature, the As</span></span></span><sub>4</sub>/III ratio) and elastic strain profiles governed by variation of an inverse step in the In content profile between the MBL and the InAlAs virtual substrate results in decrease in the TD density (down to 3 × 10<sup>7</sup> cm<sup>−2</sup><span>), increase of the thickness of the low-TD-density near-surface MBL region to 250–300 nm, the extremely low surface roughness with the RMS value of 1.6–2.4 nm, measured by AFM, as well as rather high 3.5 μm-PL intensity at temperatures up to 300 K in such structures. The obtained results indicate that the metamorphic InSb/In(Ga,Al)As QW heterostructures of proper design, grown under the optimum MBE conditions, are very promising for fabricating the efficient mid-IR emitters on a GaAs platform.</span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"65 1","pages":"Pages 20-35"},"PeriodicalIF":5.1,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2018.12.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2392415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
FIBSIMS: A review of secondary ion mass spectrometry for analytical dual beam focussed ion beam instruments fifisims:用于分析双束聚焦离子束仪器的二次离子质谱分析综述
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2019-02-01 DOI: 10.1016/j.pcrysgrow.2018.10.001
Lex Pillatsch , Fredrik Östlund , Johann Michler

Secondary ion mass spectrometry (SIMS) is a well-known technique for 3D chemical mapping at the nanoscale, with detection sensitivity in the range of ppm or even ppb. Energy dispersive X-ray spectroscopy (EDS) is the standard chemical analysis and imaging technique in modern scanning electron microscopes (SEM), and related dual-beam focussed ion beam (FIBSEM) instruments. Contrary to the use of an electron beam, in the past the ion beam in FIBSEMs has predominantly been used for local milling or deposition of material. Here, we review the emerging FIBSIMS technique which exploits the focused ion beam as an analytical probe, providing the capability to perform secondary ion mass spectrometry measurements on FIBSEM instruments: secondary ions, sputtered by the FIB, are collected and selected according to their mass by a mass spectrometer. In this way a complete 3D chemical analysis with high lateral resolution < 50 nm and a depth resolution < 10 nm is attainable.

We first report on the historical developments of both SIMS and FIB techniques and review recent developments in both instruments. We then review the physics of interaction for incident particles using Monte Carlo simulations. Next, the components of modern FIBSIMS instruments, from the primary ion generation in the liquid metal source in the FIB column, the focussing optics, the sputtered ion extraction optics, to the different mass spectrometer types are all detailed. The advantages and disadvantages of parallel and serial mass selection in terms of data acquisition and interpretation are highlighted, while the effects of pressure in the FIBSEM, acceleration voltage, ion take-off angles and charge compensation techniques on the analysis results are then discussed. The capabilities of FIBSIMS in terms of sensitivity, lateral and depth resolution and mass resolution are reviewed. Different data acquisition strategies related to dwell time, binning and beam control strategies as well as roughness and edge effects are discussed. Data analysis routines for mass identification based on isotope ratios and molecular fragments are outlined. Application examples are then presented for the fields of thin films, polycrystalline metals, batteries, cultural heritage materials, isotope labelling, and geological materials. Finally, FIBSIMS is compared to EDS, and the potential of the technique for correlative microscopy with other FIBSEM based imaging techniques is discussed.

次级离子质谱(SIMS)是一种众所周知的纳米级三维化学制图技术,其检测灵敏度在ppm甚至ppb范围内。能量色散x射线光谱学(EDS)是现代扫描电子显微镜(SEM)及其相关的双束聚焦离子束(FIBSEM)仪器中标准的化学分析和成像技术。与电子束的使用相反,过去离子束在fibsem中主要用于局部铣削或沉积材料。在这里,我们回顾了新兴的fifisims技术,它利用聚焦离子束作为分析探针,提供了在fifisem仪器上进行二次离子质谱测量的能力:由FIB溅射的二次离子被收集并根据它们的质量由质谱仪选择。通过这种方式,可以实现高横向分辨率< 50 nm和深度分辨率< 10 nm的完整3D化学分析。我们首先报告了SIMS和FIB技术的历史发展,并回顾了这两种仪器的最新发展。然后,我们用蒙特卡罗模拟回顾了入射粒子相互作用的物理学。其次,详细介绍了现代fifisims仪器的组成,从FIB柱中液态金属源的一次离子产生,聚焦光学,溅射离子提取光学,到不同类型的质谱仪。重点讨论了并联和串联质量选择在数据采集和解释方面的优缺点,并讨论了FIBSEM中的压力、加速电压、离子起飞角和电荷补偿技术对分析结果的影响。综述了fifisims在灵敏度、横向分辨率、深度分辨率和质量分辨率方面的能力。讨论了与停留时间、分束和光束控制策略以及粗糙度和边缘效应相关的不同数据采集策略。概述了基于同位素比和分子片段的质量鉴定数据分析程序。然后介绍了薄膜、多晶金属、电池、文化遗产材料、同位素标记和地质材料等领域的应用实例。最后,将fifisims与EDS进行了比较,并讨论了该技术与其他基于fifisem的成像技术的相关显微镜技术的潜力。
{"title":"FIBSIMS: A review of secondary ion mass spectrometry for analytical dual beam focussed ion beam instruments","authors":"Lex Pillatsch ,&nbsp;Fredrik Östlund ,&nbsp;Johann Michler","doi":"10.1016/j.pcrysgrow.2018.10.001","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2018.10.001","url":null,"abstract":"<div><p><span>Secondary ion mass spectrometry (SIMS) is a well-known technique for 3D chemical mapping at the </span>nanoscale<span><span><span>, with detection sensitivity in the range of ppm or even ppb. Energy dispersive X-ray spectroscopy (EDS) is the standard chemical analysis and imaging technique in modern scanning electron microscopes (SEM), and related dual-beam focussed ion beam (FIBSEM) instruments. Contrary to the use of an </span>electron beam, in the past the ion beam in FIBSEMs has predominantly been used for local milling or deposition of material. Here, we review the emerging FIBSIMS technique which exploits the </span>focused ion beam<span> as an analytical probe, providing the capability to perform secondary ion mass spectrometry measurements on FIBSEM instruments: secondary ions, sputtered by the FIB, are collected and selected according to their mass by a mass spectrometer. In this way a complete 3D chemical analysis with high lateral resolution &lt; 50 nm and a depth resolution &lt; 10 nm is attainable.</span></span></p><p><span><span>We first report on the historical developments of both SIMS and FIB techniques and review recent developments in both instruments. We then review the physics of interaction for incident particles using Monte Carlo simulations. Next, the components of modern FIBSIMS instruments, from the primary ion generation in the </span>liquid metal source in the FIB column, the focussing </span>optics<span><span>, the sputtered ion extraction optics, to the different mass spectrometer types are all detailed. The advantages and disadvantages of parallel and serial mass selection in terms of data acquisition and interpretation are highlighted, while the effects of pressure in the FIBSEM, acceleration voltage, ion take-off angles and charge compensation techniques on the analysis results are then discussed. The capabilities of FIBSIMS in terms of sensitivity, lateral and depth resolution and mass resolution are reviewed. Different data acquisition strategies related to dwell time, binning and beam control strategies as well as roughness and edge effects are discussed. Data analysis routines for mass identification based on isotope ratios and molecular fragments are outlined. Application examples are then presented for the fields of thin films, </span>polycrystalline metals, batteries, cultural heritage materials, isotope labelling, and geological materials. Finally, FIBSIMS is compared to EDS, and the potential of the technique for correlative microscopy with other FIBSEM based imaging techniques is discussed.</span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"65 1","pages":"Pages 1-19"},"PeriodicalIF":5.1,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2018.10.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2601098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 34
Mechanism for generating interstitial atoms by thermal stress during silicon crystal growth 硅晶体生长过程中热应力产生间隙原子的机理
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2019-02-01 DOI: 10.1016/j.pcrysgrow.2019.01.001
Takao Abe , Toru Takahashi , Koun Shirai
<div><p><span>It has been known that, in growing silicon<span><span> from melts, vacancies (Vs) predominantly exist in crystals obtained by high-rate growth, while interstitial atoms (Is) predominantly exist in crystals obtained by low-rate growth. To reveal the cause, the </span>temperature distributions<span><span> in growing crystal surfaces<span> were measured. From this result, it was presumed that the high-rate growth causes a small temperature gradient between the growth interface and the interior of the crystal; in contrast, the low-rate growth causes a large temperature gradient between the growth interface and the interior of the crystal. However, this presumption is opposite to the commonly-accepted notion in melt growth. In order to experimentally demonstrate that the low-rate growth increases the temperature gradient and consequently generates Is, crystals were filled with vacancies by the high-rate growth, and then the pulling was stopped as the extreme condition of the low-rate growth. Nevertheless, the crystals continued to grow spontaneously after the pulling was stopped. Hence, simultaneously with the pulling-stop, the temperature of the melts was increased to melt the spontaneously grown portions, so that the diameters were restored to sizes at the moment of pulling-stop. Then, the crystals were cooled as the cooling time elapsed, and the temperature gradient in the crystals was increased. By using X-ray topographs before and after oxygen precipitation in combination with a </span></span>minority carrier lifetime distribution, a time-dependent change in the defect type distribution was successfully observed in a three-dimensional manner from the growth interface to the low-temperature portion where the cooling progressed. This result revealed that Vs are uniformly introduced in a grown crystal regardless of the pulling rate as long as the growth continues, and the Vs agglomerate as a void and remain in the crystal, unless recombined with Is. On the other hand, Is are generated only in a region where the temperature gradient is large by low-rate growth. In particular, the generation starts near the peripheral portion in the vicinity of the solid–liquid interface. First, the generated Is are recombined with Vs introduced into the growth interface, so that a recombination region is always formed which is regarded as substantially defect free. Excessively generated Is after the recombination agglomerate and form a dislocation loop region. Unlike conventional Voronkov's </span></span></span>diffusion model, Is hardly diffuse over a long distance. Is are generated by re-heating after growth.</p><p>[In a steady state, the crystal growth rate is synonymous with the pulling rate. Meanwhile, when an atypical operation is performed, the pulling rate is specifically used.]</p><p>This review on point defects formation intends to contribute further silicon crystals development, because electronic devices are aimed to have finer structures, a
众所周知,在熔体生长硅时,空位(v)主要存在于高速生长得到的晶体中,而间隙原子(Is)主要存在于低速生长得到的晶体中。为了揭示原因,测量了生长晶体表面的温度分布。从这一结果可以推测,高速生长导致生长界面和晶体内部之间的温度梯度较小;相反,低速率生长导致生长界面和晶体内部之间的温度梯度很大。然而,这一假设与熔体生长中普遍接受的概念相反。为了实验证明低速率生长增加了温度梯度从而产生Is,晶体在高速率生长时被空位填充,然后作为低速率生长的极端条件停止拉动。然而,在停止拉扯后,晶体继续自发生长。因此,在拉停的同时,熔体的温度升高以熔化自发生长的部分,从而使直径恢复到拉停时刻的大小。然后,随着冷却时间的延长,晶体冷却,晶体中的温度梯度增大。利用氧沉淀前后的x射线地貌图,结合少数载流子寿命分布,成功地以三维方式观察到缺陷类型分布随时间的变化,从生长界面到冷却进行的低温部分。结果表明,在生长过程中,无论拉伸速率如何,v都均匀地引入晶体中,除非与Is重新结合,否则v会以空洞形式聚集并留在晶体中。另一方面,只有在低速率生长的温度梯度较大的区域才会产生Is。特别是,在固液界面附近的外围部分附近开始产生。首先,将生成的i与引入生长界面的v进行重组,这样就形成了一个基本上没有缺陷的重组区。过度生成的是复合后凝聚而形成位错环区。与传统的沃龙科夫扩散模型不同,它很难在长距离上扩散。它是由生长后再加热产生的。[在稳定状态下,晶体生长速率等同于拉动速率。同时,当进行非典型操作时,具体使用拉拔速率。这篇关于点缺陷形成的综述旨在为硅晶体的进一步发展做出贡献,因为电子器件的目标是具有更精细的结构,并且需要更完美的具有控制点缺陷的晶体。
{"title":"Mechanism for generating interstitial atoms by thermal stress during silicon crystal growth","authors":"Takao Abe ,&nbsp;Toru Takahashi ,&nbsp;Koun Shirai","doi":"10.1016/j.pcrysgrow.2019.01.001","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2019.01.001","url":null,"abstract":"&lt;div&gt;&lt;p&gt;&lt;span&gt;It has been known that, in growing silicon&lt;span&gt;&lt;span&gt; from melts, vacancies (Vs) predominantly exist in crystals obtained by high-rate growth, while interstitial atoms (Is) predominantly exist in crystals obtained by low-rate growth. To reveal the cause, the &lt;/span&gt;temperature distributions&lt;span&gt;&lt;span&gt; in growing crystal surfaces&lt;span&gt; were measured. From this result, it was presumed that the high-rate growth causes a small temperature gradient between the growth interface and the interior of the crystal; in contrast, the low-rate growth causes a large temperature gradient between the growth interface and the interior of the crystal. However, this presumption is opposite to the commonly-accepted notion in melt growth. In order to experimentally demonstrate that the low-rate growth increases the temperature gradient and consequently generates Is, crystals were filled with vacancies by the high-rate growth, and then the pulling was stopped as the extreme condition of the low-rate growth. Nevertheless, the crystals continued to grow spontaneously after the pulling was stopped. Hence, simultaneously with the pulling-stop, the temperature of the melts was increased to melt the spontaneously grown portions, so that the diameters were restored to sizes at the moment of pulling-stop. Then, the crystals were cooled as the cooling time elapsed, and the temperature gradient in the crystals was increased. By using X-ray topographs before and after oxygen precipitation in combination with a &lt;/span&gt;&lt;/span&gt;minority carrier lifetime distribution, a time-dependent change in the defect type distribution was successfully observed in a three-dimensional manner from the growth interface to the low-temperature portion where the cooling progressed. This result revealed that Vs are uniformly introduced in a grown crystal regardless of the pulling rate as long as the growth continues, and the Vs agglomerate as a void and remain in the crystal, unless recombined with Is. On the other hand, Is are generated only in a region where the temperature gradient is large by low-rate growth. In particular, the generation starts near the peripheral portion in the vicinity of the solid–liquid interface. First, the generated Is are recombined with Vs introduced into the growth interface, so that a recombination region is always formed which is regarded as substantially defect free. Excessively generated Is after the recombination agglomerate and form a dislocation loop region. Unlike conventional Voronkov's &lt;/span&gt;&lt;/span&gt;&lt;/span&gt;diffusion model, Is hardly diffuse over a long distance. Is are generated by re-heating after growth.&lt;/p&gt;&lt;p&gt;[In a steady state, the crystal growth rate is synonymous with the pulling rate. Meanwhile, when an atypical operation is performed, the pulling rate is specifically used.]&lt;/p&gt;&lt;p&gt;This review on point defects formation intends to contribute further silicon crystals development, because electronic devices are aimed to have finer structures, a","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"65 1","pages":"Pages 36-46"},"PeriodicalIF":5.1,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2019.01.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2005504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Metalorganic vapor phase epitaxy of III–V-on-silicon: Experiment and theory iii - v -硅金属有机气相外延:实验与理论
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2018-12-01 DOI: 10.1016/j.pcrysgrow.2018.07.002
Oliver Supplie , Oleksandr Romanyuk , Christian Koppka , Matthias Steidl , Andreas Nägelein , Agnieszka Paszuk , Lars Winterfeld , Anja Dobrich , Peter Kleinschmidt , Erich Runge , Thomas Hannappel

The integration of III–V semiconductors with Si has been pursued for more than 25 years since it is strongly desired in various high-efficiency applications ranging from microelectronics to energy conversion. In the last decade, there have been tremendous advances in Si preparation in hydrogen-based metalorganic vapor phase epitaxy (MOVPE) environment, III–V nucleation and subsequent heteroepitaxial layer growth. Simultaneously, MOVPE itself took off in its triumphal course in solid state lighting production demonstrating its power as industrially relevant growth technique. Here, we review the recent progress in MOVPE growth of III–V-on-silicon heterostructures, preparation of the involved interfaces and fabrication of devices structures. We focus on a broad range of in situ, in system and ex situ characterization techniques. We highlight important contributions of density functional theory and kinetic growth simulations to a deeper understanding of growth phenomena and support of the experimental analysis. Besides new device concepts for planar heterostructures and the specific challenges of (001) interfaces, we also cover nano-dimensioned III–V structures, which are preferentially prepared on (111) surfaces and which emerged as veritable candidates for future optoelectronic devices.

III-V半导体与Si的集成已经追求了超过25年,因为它在从微电子到能量转换的各种高效应用中都是非常需要的。近十年来,在氢基金属有机气相外延(MOVPE)环境下制备Si, III-V形核和随后的异质外延层生长方面取得了巨大进展。同时,MOVPE本身在固态照明生产的胜利历程中起飞,展示了其作为工业相关增长技术的力量。本文综述了近年来在III-V-on-silicon异质结构的MOVPE生长、相关界面的制备和器件结构的制备等方面的研究进展。我们专注于广泛的原位,系统和非原位表征技术。我们强调密度泛函理论和动力学生长模拟对更深入地理解生长现象和支持实验分析的重要贡献。除了平面异质结构的新器件概念和(001)界面的具体挑战外,我们还介绍了纳米尺寸的III-V结构,这些结构优先在(111)表面上制备,并成为未来光电器件的名副其实的候选者。
{"title":"Metalorganic vapor phase epitaxy of III–V-on-silicon: Experiment and theory","authors":"Oliver Supplie ,&nbsp;Oleksandr Romanyuk ,&nbsp;Christian Koppka ,&nbsp;Matthias Steidl ,&nbsp;Andreas Nägelein ,&nbsp;Agnieszka Paszuk ,&nbsp;Lars Winterfeld ,&nbsp;Anja Dobrich ,&nbsp;Peter Kleinschmidt ,&nbsp;Erich Runge ,&nbsp;Thomas Hannappel","doi":"10.1016/j.pcrysgrow.2018.07.002","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2018.07.002","url":null,"abstract":"<div><p><span><span>The integration of III–V semiconductors with Si has been pursued for more than 25 years since it is strongly desired in various high-efficiency applications ranging from microelectronics to energy conversion. In the last decade, there have been tremendous advances in Si preparation in hydrogen-based metalorganic vapor phase epitaxy (MOVPE) environment, III–V nucleation and subsequent heteroepitaxial layer growth. Simultaneously, MOVPE itself took off in its triumphal course in solid state lighting production demonstrating its power as industrially relevant growth technique. Here, we review the recent progress in MOVPE growth of III–V-on-silicon </span>heterostructures, preparation of the involved interfaces and fabrication of devices structures. We focus on a broad range of </span><em>in situ, in system</em> and <em>ex situ</em><span> characterization techniques. We highlight important contributions of density functional theory<span> and kinetic growth simulations to a deeper understanding of growth phenomena and support of the experimental analysis. Besides new device concepts for planar heterostructures and the specific challenges of (001) interfaces, we also cover nano-dimensioned III–V structures, which are preferentially prepared on (111) surfaces and which emerged as veritable candidates for future optoelectronic devices.</span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"64 4","pages":"Pages 103-132"},"PeriodicalIF":5.1,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2018.07.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2164409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 41
Sapphire shaped crystals for waveguiding, sensing and exposure applications 用于波导,传感和曝光应用的蓝宝石形晶体
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2018-12-01 DOI: 10.1016/j.pcrysgrow.2018.10.002
G.M. Katyba , K.I. Zaytsev , I.N. Dolganova , I.A. Shikunova , N.V. Chernomyrdin , S.O. Yurchenko , G.A. Komandin , I.V. Reshetov , V.V. Nesvizhevsky , V.N. Kurlov

Second half of the XX century was marked by a rapid development of sapphire shaped crystal growth technologies, driven by the demands for fast, low-cost, and technologically reliable methods of producing sapphire crystals of complex shape. Numerous techniques of shaped crystal growth from a melt have been proposed relying on the Stepanov concept of crystal shaping. In this review, we briefly describe the development of growth techniques, with a strong emphasize on those that yield sapphire crystals featuring high volumetric and surface quality. A favorable combination of physical properties of sapphire (superior hardness and tensile strength, impressive thermal conductivity and chemical inertness, high melting point and thermal shock resistance, transparency to electromagnetic waves in a wide spectral range) with advantages of shaped crystal growth techniques (primarily, an ability to produce sapphire crystals with a complex geometry of cross-section, along with high volumetric and surface quality) allows fabricating various instruments for waveguiding, sensing, and exposure technologies. We discuss recent developments of high-tech instruments, which are based on sapphire shaped crystals and vigorously employed in biomedical and material sciences, optics and photonics, nuclear physics and plasma sciences.

20世纪下半叶,由于需要快速、低成本和技术可靠的方法来生产复杂形状的蓝宝石晶体,蓝宝石形状晶体的生长技术得到了快速发展。根据斯捷潘诺夫晶体成形的概念,已经提出了许多从熔体中生长异形晶体的技术。在这篇综述中,我们简要地描述了生长技术的发展,重点介绍了那些生产具有高体积和表面质量的蓝宝石晶体的技术。蓝宝石的物理特性(优异的硬度和抗拉强度,令人印象深刻的导热性和化学惰性,高熔点和抗热震性,在宽光谱范围内对电磁波透明)与形状晶体生长技术的优势(主要是能够生产具有复杂几何截面的蓝宝石晶体)的良好组合。随着高体积和表面质量)允许制造各种仪器的波导,传感和曝光技术。我们讨论了基于蓝宝石晶体的高科技仪器的最新发展,这些仪器在生物医学和材料科学、光学和光子学、核物理学和等离子体科学中得到了广泛的应用。
{"title":"Sapphire shaped crystals for waveguiding, sensing and exposure applications","authors":"G.M. Katyba ,&nbsp;K.I. Zaytsev ,&nbsp;I.N. Dolganova ,&nbsp;I.A. Shikunova ,&nbsp;N.V. Chernomyrdin ,&nbsp;S.O. Yurchenko ,&nbsp;G.A. Komandin ,&nbsp;I.V. Reshetov ,&nbsp;V.V. Nesvizhevsky ,&nbsp;V.N. Kurlov","doi":"10.1016/j.pcrysgrow.2018.10.002","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2018.10.002","url":null,"abstract":"<div><p><span>Second half of the XX century was marked by a rapid development of sapphire shaped crystal growth technologies, driven by the demands for fast, low-cost, and technologically reliable methods of producing sapphire crystals of complex shape. Numerous techniques of shaped crystal growth from a melt have been proposed relying on the Stepanov concept of crystal shaping. In this review, we briefly describe the development of growth techniques, with a strong emphasize on those that yield sapphire crystals featuring high volumetric and surface quality. A favorable combination of physical properties of sapphire (superior hardness and tensile strength<span><span>, impressive thermal conductivity and chemical inertness, high melting point and </span>thermal shock resistance<span>, transparency to electromagnetic waves in a wide spectral range) with advantages of shaped crystal growth techniques (primarily, an ability to produce sapphire crystals with a complex geometry of cross-section, along with high volumetric and surface quality) allows fabricating various instruments for waveguiding, sensing, and exposure technologies. We discuss recent developments of high-tech instruments, which are based on sapphire shaped crystals and vigorously employed in biomedical and material sciences, </span></span></span>optics<span> and photonics, nuclear physics and plasma sciences.</span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"64 4","pages":"Pages 133-151"},"PeriodicalIF":5.1,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2018.10.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2164410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 63
Basic ammonothermal growth of Gallium Nitride – State of the art, challenges, perspectives 氮化镓的碱性氨热生长-现状,挑战,展望
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2018-09-01 DOI: 10.1016/j.pcrysgrow.2018.05.001
M. Zajac , R. Kucharski , K. Grabianska , A. Gwardys-Bak , A. Puchalski , D. Wasik , E. Litwin-Staszewska , R. Piotrzkowski , J. Z Domagala , M. Bockowski

Recent progress in ammonothermal technology of bulk GaN growth in basic environment is presented and discussed in this paper. This method enables growth of two-inch in diameter crystals of outstanding structural properties, with radius of curvature above tens of meters and low threading dislocation density of the order of 5 × 104 cm−2. Crystals with different types of conductivity, n-type with free electron concentration up to 1019 cm−3, p-type with free hole concentration of 1016 cm−3, and semi-insulating with resistivity exceeding 1011 Ω cm, can be obtained. Ammonothermal GaN of various electrical properties is described in terms of point defects present in the material. Potential applications of high-quality GaN substrates are also briefly shown.

本文介绍了近年来碱性环境下氮化镓体生长氨热技术的研究进展。这种方法可以生长出两英寸直径的晶体,具有优异的结构性能,曲率半径在几十米以上,螺纹位错密度低,约为5 × 104 cm−2。可以得到不同电导率类型的晶体,自由电子浓度可达1019 cm−3的n型晶体,自由空穴浓度可达1016 cm−3的p型晶体,电阻率超过1011 Ω cm的半绝缘晶体。根据材料中存在的点缺陷描述了各种电性能的氨热氮化镓。本文还简要介绍了高质量氮化镓衬底的潜在应用。
{"title":"Basic ammonothermal growth of Gallium Nitride – State of the art, challenges, perspectives","authors":"M. Zajac ,&nbsp;R. Kucharski ,&nbsp;K. Grabianska ,&nbsp;A. Gwardys-Bak ,&nbsp;A. Puchalski ,&nbsp;D. Wasik ,&nbsp;E. Litwin-Staszewska ,&nbsp;R. Piotrzkowski ,&nbsp;J. Z Domagala ,&nbsp;M. Bockowski","doi":"10.1016/j.pcrysgrow.2018.05.001","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2018.05.001","url":null,"abstract":"<div><p><span>Recent progress in ammonothermal technology of bulk GaN growth in basic environment is presented and discussed in this paper. This method enables growth of two-inch in diameter crystals of outstanding structural properties, with radius of curvature above tens of meters and low threading dislocation density of the order of 5 × 10</span><sup>4</sup> cm<sup>−2</sup><span>. Crystals with different types of conductivity<span>, n-type with free electron concentration up to 10</span></span><sup>19</sup> cm<sup>−3</sup>, p-type with free hole concentration of 10<sup>16</sup> cm<sup>−3</sup>, and semi-insulating with resistivity exceeding 10<sup>11</sup><span> Ω cm, can be obtained. Ammonothermal GaN of various electrical properties is described in terms of point defects present in the material. Potential applications of high-quality GaN substrates are also briefly shown.</span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"64 3","pages":"Pages 63-74"},"PeriodicalIF":5.1,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2018.05.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2601096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 71
Surface modification and grafting of carbon fibers: A route to better interface 碳纤维表面改性和接枝:获得更好界面的途径
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2018-09-01 DOI: 10.1016/j.pcrysgrow.2018.07.001
Nischith Raphael , K. Namratha , B.N. Chandrashekar , Kishor Kumar Sadasivuni , Deepalekshmi Ponnamma , A.S. Smitha , S. Krishnaveni , Chun Cheng , K. Byrappa

This review is an audit of various Carbon fibers (CF) surface modification techniques that have been attempted and which produced results with an enhancement in the interfacial characteristics of CFRP systems. An introduction to the CF surface morphology, various techniques of modifications, their results and challenges are discussed here. CFs are emerging as the most promising materials for designing many technologically significant materials for current and future generations. In order to extract all the physic-mechanical properties of CF, it is essential to modulate a suitable environment through which good interfacial relation is achieved between the CF and the matrix. The interface has the utmost significance in composites and hybrid materials since tension at the interface can result in a deterioration of the fundamental properties. This review is aimed to provide a detailed understanding of the CF structure, its possible ways of modification, and the influence of interfacial compatibility in physic-mechanical and tribological properties. Both physical and chemical modifications are illustrated with specific examples, in addition to the characterization methods. Overall, this article provides key information about the CF based composite fabrication and their many applications in aerospace and electronics- where light weight and excellent mechanical strength are required.

这篇综述是对各种碳纤维(CF)表面改性技术的审计,这些技术已经尝试过,并产生了增强CFRP系统界面特性的结果。介绍了CF表面形貌,各种技术的修改,他们的结果和挑战进行了讨论。碳纤维正在成为最有前途的材料,为当前和未来的几代人设计许多技术上重要的材料。为了提取CF的所有物理力学性能,必须调节一个合适的环境,使CF与基体之间形成良好的界面关系。界面在复合材料和杂化材料中具有重要意义,因为界面处的张力会导致基本性能的恶化。本文旨在详细介绍碳纤维的结构、可能的改性方法以及界面相容性对其物理力学和摩擦学性能的影响。除了表征方法外,还用具体的例子说明了物理和化学修饰。总体而言,本文提供了有关CF基复合材料制造及其在航空航天和电子领域的许多应用的关键信息-这些领域需要轻质和优异的机械强度。
{"title":"Surface modification and grafting of carbon fibers: A route to better interface","authors":"Nischith Raphael ,&nbsp;K. Namratha ,&nbsp;B.N. Chandrashekar ,&nbsp;Kishor Kumar Sadasivuni ,&nbsp;Deepalekshmi Ponnamma ,&nbsp;A.S. Smitha ,&nbsp;S. Krishnaveni ,&nbsp;Chun Cheng ,&nbsp;K. Byrappa","doi":"10.1016/j.pcrysgrow.2018.07.001","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2018.07.001","url":null,"abstract":"<div><p><span>This review is an audit of various Carbon fibers (CF) surface modification techniques that have been attempted and which produced results with an enhancement in the interfacial characteristics of CFRP systems. An introduction to the CF </span>surface morphology<span>, various techniques of modifications, their results and challenges are discussed here. CFs are emerging as the most promising materials for designing many technologically significant materials for current and future generations. In order to extract all the physic-mechanical properties of CF, it is essential to modulate a suitable environment through which good interfacial relation is achieved between the CF and the matrix. The interface has the utmost significance in composites and hybrid materials<span> since tension at the interface can result in a deterioration of the fundamental properties. This review is aimed to provide a detailed understanding of the CF structure, its possible ways of modification, and the influence of interfacial compatibility in physic-mechanical and tribological properties. Both physical and chemical modifications are illustrated with specific examples, in addition to the characterization methods. Overall, this article provides key information about the CF based composite fabrication and their many applications in aerospace and electronics- where light weight and excellent mechanical strength are required.</span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"64 3","pages":"Pages 75-101"},"PeriodicalIF":5.1,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2018.07.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2600867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 52
Solution combustion synthesis, energy and environment: Best parameters for better materials 溶液燃烧合成,能源和环境:最佳参数为更好的材料
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2018-06-01 DOI: 10.1016/j.pcrysgrow.2018.03.001
Francesca Deganello , Avesh Kumar Tyagi

Solution combustion synthesis (SCS) is a worldwide used methodology for the preparation of inorganic ceramic and composite materials with controlled properties for a wide number of applications, from catalysis to photocatalysis and electrocatalysis, from heavy metal removal to sensoristics and electronics. The high versatility and efficiency of this technique have led to the introduction of many variants, which allowed important optimization to the prepared materials. Moreover, its ecofriendly nature encouraged further studies about the use of sustainable precursors for the preparation of nanomaterials for energy and environment, according to the concept of circular economy. On the other hand, the large variety of expressions to define SCS and the often-contradictory definitions of the SCS parameters witnessed a scarce consciousness of the potentiality of this methodology. In this review article, the most important findings about SCS and the selection criteria for its main parameters are critically reviewed, in order to give useful guidelines to those scientists who want to use this methodology for preparing materials with improved or new functional properties. This review aims as well (i) to bring more clarity in the SCS terminology (ii) to increase the awareness of the SCS as a convenient tool for the synthesis of materials and (iii) to propose a new perspective in the SCS, with special attention to the use of ecofriendly procedures. Part of the review is also dedicated to precautions and limitations of this powerful methodology.

溶液燃烧合成(SCS)是一种世界范围内使用的方法,用于制备具有控制性能的无机陶瓷和复合材料,其应用范围广泛,从催化到光催化和电催化,从重金属去除到传感和电子学。该技术的高通用性和效率导致了许多变体的引入,这使得所制备的材料得到了重要的优化。此外,它的生态友好性鼓励根据循环经济的概念,进一步研究使用可持续前体制备用于能源和环境的纳米材料。另一方面,定义SCS的表达方式多种多样,对SCS参数的定义常常相互矛盾,这表明人们对该方法的潜力缺乏认识。在本文中,本文对SCS的重要研究成果及其主要参数的选择标准进行了综述,旨在为那些希望利用该方法制备具有改进或新的功能特性的材料的科学家提供有用的指导。本综述旨在(i)使SCS术语更加清晰;(ii)提高对SCS作为材料合成方便工具的认识;(iii)提出SCS的新视角,特别关注生态友好程序的使用。部分评论还专门讨论了这种强大方法的预防措施和局限性。
{"title":"Solution combustion synthesis, energy and environment: Best parameters for better materials","authors":"Francesca Deganello ,&nbsp;Avesh Kumar Tyagi","doi":"10.1016/j.pcrysgrow.2018.03.001","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2018.03.001","url":null,"abstract":"<div><p><span><span><span>Solution combustion synthesis<span> (SCS) is a worldwide used methodology for the preparation of inorganic ceramic and composite materials with controlled properties for a wide number of applications, from catalysis to photocatalysis and </span></span>electrocatalysis<span>, from heavy metal removal to sensoristics and electronics. The high versatility and efficiency of this technique have led to the introduction of many variants, which allowed important optimization to the prepared materials. Moreover, its ecofriendly nature encouraged further studies about the use of sustainable precursors for the preparation of </span></span>nanomaterials for energy and environment, according to the concept of </span><em>circular economy</em>. On the other hand, the large variety of expressions to define SCS and the often-contradictory definitions of the SCS parameters witnessed a scarce consciousness of the potentiality of this methodology. In this review article, the most important findings about SCS and the selection criteria for its main parameters are critically reviewed, in order to give useful guidelines to those scientists who want to use this methodology for preparing materials with improved or new functional properties. This review aims as well (i) to bring more clarity in the SCS terminology (ii) to increase the awareness of the SCS as a convenient tool for the synthesis of materials and (iii) to propose a new perspective in the SCS, with special attention to the use of ecofriendly procedures. Part of the review is also dedicated to precautions and limitations of this powerful methodology.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"64 2","pages":"Pages 23-61"},"PeriodicalIF":5.1,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2018.03.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2600868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 187
Synthesis and characterization of electrical features of bismuth manganite and bismuth ferrite: effects of doping in cationic and anionic sublattice: Materials for applications 锰酸铋和铁酸铋电特性的合成和表征:掺杂对正离子和阴离子亚晶格的影响:应用材料
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2018-02-01 DOI: 10.1016/j.pcrysgrow.2018.02.001
A. Molak , D.K. Mahato , A.Z. Szeremeta

The electrical, magnetic, and structural features of bismuth manganite (BM), e.g., BiMnO3, and bismuth ferrite (BF), e.g., BiFeO3, are reviewed. Induced multiferroicity and enhanced magnetoelectric coupling are required for various modern device applications. BM and BF were synthesized using standard high-temperature sintering and processes such as sol–gel, hydrothermal, or wet chemical methods combined with annealing. The size and morphology of the nanoscale particles were controlled, although they were usually inhomogeneous. BF exhibits structurally stable antiferromagnetic (AFM) and ferroelectric (FE) phases in wide temperature ranges. Ferromagnetic (FM) order was induced in a thick shell around the AFM core of the nanoscale BF particles, which was attributed to a size effect related to surface strains and disorder. BM exhibited both structurally stable and unstable phases. The BiMnO3, Bi12MnO20, and BiMn2O5 structures are nonferroelectric. The perovskite BiMnO3 form was synthesized under high hydrostatic pressure. FM order occurs in BM at low temperatures. Bi(MnFe)O3 solid solution samples exhibited competition between AFM and FM ordering. Doping can decrease the content of unavoidable secondary phases. Doping in the Bi ion sublattice can stabilize the crystal lattice owing to local strains caused by the difference in ionic radius between Bi and the dopant. Doping in the Fe and Mn sublattices affects the electrical features. The main achievement of substitution with tetra- and pentavalent ions is compensation of the oxygen vacancies. In turn, leakage current suppression enables switching of FE domains and polarization of the samples. A significant enhancement of magnetoelectric coupling was observed in composites formed from BF and other FE materials. The leakage currents can be diminished when an insulator polymer matrix blocks percolation. The potential applicability is related to enhanced magnetoelectric coupling. The constructed devices meet the size effect limitations for FE and FM ordering. Resistive switching suggests possible use in nonvolatile memories and gaseous sensors. The sensors can be used for hydrophones and for photovoltaic and photoluminescence applications, and they can be constructed from multiphase materials. Bulk multiferroic solid solutions, composites, and nanoheterostructures have already been tested for use in sensors, transducers, and read/write devices for technical purposes.

综述了铋锰酸盐(BM)(如BiMnO3)和铋铁氧体(BF)(如BiFeO3)的电、磁和结构特征。感应多铁性和增强磁电耦合是各种现代器件应用所必需的。BM和BF采用标准的高温烧结和溶胶-凝胶、水热或湿化学方法结合退火等工艺合成。纳米级颗粒的大小和形态是可控的,尽管它们通常是不均匀的。高炉在较宽的温度范围内表现出结构稳定的反铁磁相和铁电相。纳米级BF颗粒在AFM核心周围的厚壳层中产生了铁磁有序,这归因于与表面应变和无序相关的尺寸效应。BM既有结构稳定相,也有结构不稳定相。BiMnO3、Bi12MnO20和BiMn2O5为非铁电结构。在高静水压力下合成了钙钛矿型BiMnO3。在低温下BM中出现FM顺序。Bi(MnFe)O3固溶体样品表现出AFM和FM排序的竞争。掺杂可以降低不可避免的二次相的含量。在铋离子亚晶格中掺杂铋离子与掺杂物之间离子半径的差异会引起局部应变,从而使晶格稳定。Fe和Mn亚晶格的掺杂会影响其电学特性。四价和五价离子取代的主要成果是补偿氧空位。反过来,泄漏电流抑制使样品的FE域和极化开关成为可能。由BF和其他FE材料组成的复合材料的磁电耦合显著增强。当绝缘体聚合物基体阻止渗透时,泄漏电流可以减少。潜在的适用性与增强的磁电耦合有关。所构建的器件满足有限元和调频排序的尺寸效应限制。电阻开关可能用于非易失性存储器和气体传感器。该传感器可用于水听器、光伏和光致发光应用,并且可以由多相材料构建。块状多铁固溶体、复合材料和纳米异质结构已经在传感器、传感器和读写设备中进行了技术测试。
{"title":"Synthesis and characterization of electrical features of bismuth manganite and bismuth ferrite: effects of doping in cationic and anionic sublattice: Materials for applications","authors":"A. Molak ,&nbsp;D.K. Mahato ,&nbsp;A.Z. Szeremeta","doi":"10.1016/j.pcrysgrow.2018.02.001","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2018.02.001","url":null,"abstract":"<div><p><span>The electrical, magnetic, and structural features of bismuth manganite (BM), e.g., BiMnO</span><sub>3</sub><span>, and bismuth ferrite (BF), e.g., BiFeO</span><sub>3</sub><span><span>, are reviewed. Induced multiferroicity and enhanced magnetoelectric coupling are required for various modern device applications. BM and BF were synthesized using standard high-temperature sintering and processes such as sol–gel, hydrothermal, or wet chemical methods combined with annealing. The size and morphology of the </span>nanoscale particles<span> were controlled, although they were usually inhomogeneous. BF exhibits structurally stable antiferromagnetic (AFM) and ferroelectric (FE) phases in wide temperature ranges</span></span><em>.</em><span> Ferromagnetic (FM) order was induced in a thick shell around the AFM core of the nanoscale BF particles, which was attributed to a size effect related to surface strains and disorder. BM exhibited both structurally stable and unstable phases. The BiMnO</span><sub>3</sub>, Bi<sub>12</sub>MnO<sub>20</sub>, and BiMn<sub>2</sub>O<sub>5</sub><span> structures are nonferroelectric. The perovskite BiMnO</span><sub>3</sub> form was synthesized under high hydrostatic pressure. FM order occurs in BM at low temperatures. Bi(MnFe)O<sub>3</sub><span><span><span><span> solid solution samples exhibited competition between AFM and FM ordering. Doping can decrease the content of unavoidable secondary phases. Doping in the Bi ion sublattice can stabilize the </span>crystal lattice owing to local strains caused by the difference in ionic radius between Bi and the </span>dopant. Doping in the Fe and Mn sublattices affects the electrical features. The main achievement of substitution with tetra- and pentavalent ions is compensation of the </span>oxygen vacancies<span><span><span><span>. In turn, leakage current suppression enables switching of FE domains and polarization of the samples. A significant enhancement of magnetoelectric coupling was observed in composites formed from BF and other FE materials. The leakage currents can be diminished when an insulator </span>polymer matrix blocks </span>percolation<span>. The potential applicability is related to enhanced magnetoelectric coupling. The constructed devices meet the size effect limitations for FE and FM ordering. Resistive switching suggests possible use in nonvolatile memories and gaseous sensors. The sensors can be used for hydrophones and for </span></span>photovoltaic<span> and photoluminescence<span> applications, and they can be constructed from multiphase materials. Bulk multiferroic solid solutions, composites, and nanoheterostructures have already been tested for use in sensors, transducers, and read/write devices for technical purposes.</span></span></span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"64 1","pages":"Pages 1-22"},"PeriodicalIF":5.1,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2018.02.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2600869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics 电子与光电子用(001)硅上高度不匹配III-V材料的外延生长
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2017-12-01 DOI: 10.1016/j.pcrysgrow.2017.10.001
Qiang Li , Kei May Lau

Monolithic integration of III-V on silicon has been a scientifically appealing concept for decades. Notable progress has recently been made in this research area, fueled by significant interests of the electronics industry in high-mobility channel transistors and the booming development of silicon photonics technology. In this review article, we outline the fundamental roadblocks for the epitaxial growth of highly mismatched III-V materials, including arsenides, phosphides, and antimonides, on (001) oriented silicon substrates. Advances in hetero-epitaxy and selective-area hetero-epitaxy from micro to nano length scales are discussed. Opportunities in emerging electronics and integrated photonics are also presented.

几十年来,硅上III-V的单片集成一直是一个具有科学吸引力的概念。近年来,由于电子工业对高迁移率通道晶体管的极大兴趣和硅光子学技术的蓬勃发展,这一研究领域取得了显著进展。在这篇综述文章中,我们概述了高度不匹配的III-V材料(包括砷化物、磷化物和锑化物)在(001)取向硅衬底上外延生长的基本障碍。讨论了从微到纳米尺度上异质外延和选择性面积异质外延的研究进展。新兴电子和集成光子学领域的机会也将出现。
{"title":"Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics","authors":"Qiang Li ,&nbsp;Kei May Lau","doi":"10.1016/j.pcrysgrow.2017.10.001","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2017.10.001","url":null,"abstract":"<div><p>Monolithic integration of III-V on silicon<span><span> has been a scientifically appealing concept for decades. Notable progress has recently been made in this research area, fueled by significant interests of the electronics industry in high-mobility channel transistors and the booming development of silicon photonics technology. In this review article, we outline the fundamental roadblocks for the </span>epitaxial growth of highly mismatched III-V materials, including arsenides, phosphides, and antimonides, on (001) oriented silicon substrates. Advances in hetero-epitaxy and selective-area hetero-epitaxy from micro to nano length scales are discussed. Opportunities in emerging electronics and integrated photonics are also presented.</span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"63 4","pages":"Pages 105-120"},"PeriodicalIF":5.1,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2017.10.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3385824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 80
期刊
Progress in Crystal Growth and Characterization of Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1