首页 > 最新文献

Progress in Crystal Growth and Characterization of Materials最新文献

英文 中文
Bulk single crystals of β-Ga2O3 and Ga-based spinels as ultra-wide bandgap transparent semiconducting oxides β-Ga2O3和ga基尖晶石体单晶作为超宽带隙透明半导体氧化物
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2021-02-01 DOI: 10.1016/j.pcrysgrow.2020.100511
Zbigniew Galazka , Steffen Ganschow , Klaus Irmscher , Detlef Klimm , Martin Albrecht , Robert Schewski , Mike Pietsch , Tobias Schulz , Andrea Dittmar , Albert Kwasniewski , Raimund Grueneberg , Saud Bin Anooz , Andreas Popp , Uta Juda , Isabelle M. Hanke , Thomas Schroeder , Matthias Bickermann

In the course of development of transparent semiconducting oxides (TSOs) we compare the growth and basic physical properties bulk single crystals of ultra-wide bandgap (UWBG) TSOs, namely β-Ga2O3 and Ga-based spinels MgGa2O4, ZnGa2O4, and Zn1-xMgxGa2O4. High melting points of the materials of about 1800 -1930 °C and their thermal instability, including incongruent decomposition of Ga-based spinels, require additional tools to obtain large crystal volume of high structural quality that can be used for electronic and optoelectronic devices. Bulk β-Ga2O3 single crystals were grown by the Czochralski method with a diameter up to 2 inch, while the Ga-based spinel single crystals either by the Czochralski, Kyropoulos-like, or vertical gradient freeze / Bridgman methods with a volume of several to over a dozen cm3. The UWBG TSOs discussed here have optical bandgaps of about 4.6 - 5 eV and great transparency in the UV / visible spectrum. The materials can be obtained as electrical insulators, n-type semiconductors, or n-type degenerate semiconductors. The free electron concentration (ne) of bulk β-Ga2O3 crystals can be tuned within three orders of magnitude 1016 - 1019 cm−3 with a maximum Hall electron mobility (μ) of 160 cm2V−1s−1, that gradually decreases with ne. In the case of the bulk Ga-based spinel crystals with no intentional doping, the maximum of ne and μ increase with decreasing the Mg content in the compound and reach values of about 1020 cm−3 and about 100 cm2V−1s−1 (at ne > 1019 cm−3), respectively, for pure ZnGa2O4.

在开发透明半导体氧化物(TSOs)的过程中,我们比较了超宽带隙(UWBG) TSOs,即β-Ga2O3和ga基尖晶石MgGa2O4、ZnGa2O4和Zn1-xMgxGa2O4的生长和基本物理性质。材料的高熔点约为1800 -1930°C,其热不稳定性,包括ga基尖晶石的不一致分解,需要额外的工具来获得可用于电子和光电子器件的高结构质量的大晶体体积。大块β-Ga2O3单晶可以通过Czochralski法生长,直径可达2英寸,而基于ga的尖晶石单晶可以通过Czochralski法、kyropoulos法或垂直梯度冷冻/ Bridgman法生长,体积可达几至十几cm3。本文讨论的UWBG tso具有约4.6 - 5ev的光学带隙,并且在紫外/可见光谱中具有很高的透明度。所述材料可制成电绝缘体、n型半导体或n型简并半导体。体体β-Ga2O3晶体的自由电子浓度(ne)可在1016 ~ 1019 cm−3三个数量级范围内调节,霍尔电子迁移率最大值为160 cm2V−1s−1,随ne的变化而逐渐减小。在未掺杂的体晶尖晶石晶体中,ne和μ的最大值随着化合物中Mg含量的降低而增加,分别达到1020 cm−3和100 cm2V−1s−1(在ne >纯ZnGa2O4为1019 cm−3)。
{"title":"Bulk single crystals of β-Ga2O3 and Ga-based spinels as ultra-wide bandgap transparent semiconducting oxides","authors":"Zbigniew Galazka ,&nbsp;Steffen Ganschow ,&nbsp;Klaus Irmscher ,&nbsp;Detlef Klimm ,&nbsp;Martin Albrecht ,&nbsp;Robert Schewski ,&nbsp;Mike Pietsch ,&nbsp;Tobias Schulz ,&nbsp;Andrea Dittmar ,&nbsp;Albert Kwasniewski ,&nbsp;Raimund Grueneberg ,&nbsp;Saud Bin Anooz ,&nbsp;Andreas Popp ,&nbsp;Uta Juda ,&nbsp;Isabelle M. Hanke ,&nbsp;Thomas Schroeder ,&nbsp;Matthias Bickermann","doi":"10.1016/j.pcrysgrow.2020.100511","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2020.100511","url":null,"abstract":"<div><p><span>In the course of development of transparent semiconducting oxides (TSOs) we compare the growth and basic physical properties bulk single crystals of ultra-wide bandgap (UWBG) TSOs, namely β-Ga</span><sub>2</sub>O<sub>3</sub> and Ga-based spinels MgGa<sub>2</sub>O<sub>4</sub>, ZnGa<sub>2</sub>O<sub>4</sub>, and Zn<sub>1-x</sub>Mg<sub>x</sub>Ga<sub>2</sub>O<sub>4</sub><span>. High melting points of the materials of about 1800 -1930 °C and their thermal instability, including incongruent decomposition of Ga-based spinels, require additional tools to obtain large crystal volume of high structural quality that can be used for electronic and optoelectronic devices. Bulk β-Ga</span><sub>2</sub>O<sub>3</sub><span> single crystals were grown by the Czochralski method with a diameter up to 2 inch, while the Ga-based spinel single crystals either by the Czochralski, Kyropoulos-like, or vertical gradient freeze / Bridgman methods with a volume of several to over a dozen cm</span><sup>3</sup><span>. The UWBG TSOs discussed here have optical bandgaps of about 4.6 - 5 eV and great transparency in the UV / visible spectrum<span>. The materials can be obtained as electrical insulators, </span></span><em>n</em>-type semiconductors, or <em>n</em><span>-type degenerate semiconductors. The free electron concentration (</span><em>n<sub>e</sub></em>) of bulk β-Ga<sub>2</sub>O<sub>3</sub> crystals can be tuned within three orders of magnitude 10<sup>16</sup> - 10<sup>19</sup> cm<sup>−3</sup><span> with a maximum Hall electron mobility (</span><em>μ</em>) of 160 cm<sup>2</sup>V<sup>−1</sup>s<sup>−1</sup>, that gradually decreases with <em>n<sub>e</sub></em>. In the case of the bulk Ga-based spinel crystals with no intentional doping, the maximum of <em>n<sub>e</sub></em> and <em>μ</em> increase with decreasing the Mg content in the compound and reach values of about 10<sup>20</sup> cm<sup>−3</sup> and about 100 cm<sup>2</sup>V<sup>−1</sup>s<sup>−1</sup> (at <em>n<sub>e</sub></em> &gt; 10<sup>19</sup> cm<sup>−3</sup>), respectively, for pure ZnGa<sub>2</sub>O<sub>4</sub>.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"67 1","pages":"Article 100511"},"PeriodicalIF":5.1,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2020.100511","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2324713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 39
Disk-driven flows and interface shape in vertical Bridgman growth with a baffle 带挡板的垂向Bridgman生长中的盘状驱动流动和界面形状
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2021-02-01 DOI: 10.1016/j.pcrysgrow.2020.100512
A.G. Ostrogorsky

In vertical Bridgman (VB) systems, the shape of the S-L interface greatly influences the yield and perfection of single crystal, because of the continuous contact with the crucible. The melt flows and the shape of the S-L interface are difficult to modify and control.

Baffles are flow-directing or obstructing devices. In VB melts, the baffles are disk shaped, and positioned horizontally above the solid-liquid (S-L) interface. The role of the baffle is to: i) minimize the thermally-driven convection ii) control/reduce the axial heat transfer to the S-L interface and iii) generate the disk-driven flows. Furthermore, the baffle acts as a partition, splitting the melt into: the growth melt below the baffle and the feeding melt above the baffle.

Forced convection is a practical alternative to the less feasible and reliable option of completely eliminating thermally-driven unsteady flows. In the Czochralski (CZ) process, the flow driven by crystal rotation is a key control parameter which the VB process lacks. Baffle rotation brings the CZ-like flow into the VB process. The disk-driven flows are optimal for various scientific and engineering applications because the laminar boundary layers at the disk surface are steady and have uniform thickness.

In VB melts, the thermal conductivity of the baffle and its rotation rate dominate the interface shape and thus the yield and perfection of single crystals. Under the rotating baffle, the effects of natural convection can be made negligible in production size melts.

在垂直Bridgman (VB)体系中,由于与坩埚的连续接触,S-L界面的形状对单晶的成品率和完美性有很大的影响。熔体流动和S-L界面形状难以改变和控制。挡板是引导或阻碍流动的装置。在VB熔体中,挡板呈圆盘状,水平放置在固液界面上方。挡板的作用是:i)最小化热驱动对流ii)控制/减少向S-L界面的轴向传热iii)产生盘驱动流动。此外,挡板起到隔板的作用,将熔体分成:生长熔体在挡板下方,进料熔体在挡板上方。强制对流是完全消除热驱动非定常流这种不太可行和可靠的选择的一个实际替代方案。在CZ工艺中,晶体旋转驱动的流量是VB工艺所缺乏的关键控制参数。挡板旋转带来了类似于cz的流动进入VB过程。圆盘驱动的流动是各种科学和工程应用的最佳选择,因为圆盘表面的层流边界层稳定且厚度均匀。在VB熔体中,挡板的导热系数及其旋转速率决定了界面形状,从而决定了单晶的良率和完美性。在旋转挡板下,自然对流对生产尺寸熔体的影响可以忽略不计。
{"title":"Disk-driven flows and interface shape in vertical Bridgman growth with a baffle","authors":"A.G. Ostrogorsky","doi":"10.1016/j.pcrysgrow.2020.100512","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2020.100512","url":null,"abstract":"<div><p>In vertical Bridgman (VB) systems, the shape of the S-L interface greatly influences the yield and perfection of single crystal, because of the continuous contact with the crucible. The melt flows and the shape of the S-L interface are difficult to modify and control.</p><p>Baffles are flow-directing or obstructing devices. In VB melts, the baffles are disk shaped, and positioned horizontally above the solid-liquid (S-L) interface. The role of the baffle is to: i) minimize the thermally-driven convection ii) control/reduce the axial heat transfer to the S-L interface and iii) generate the disk-driven flows. Furthermore, the baffle acts as a partition, splitting the melt into: the <em>growth melt</em> below the baffle and the <em>feeding melt</em> above the baffle.</p><p><span>Forced convection is a practical alternative to the less feasible and reliable option of completely eliminating thermally-driven </span>unsteady flows<span>. In the Czochralski (CZ) process, the flow driven by crystal rotation is a key control parameter which the VB process lacks. Baffle rotation brings the CZ-like flow into the VB process. The disk-driven flows are optimal for various scientific and engineering applications because the laminar boundary layers at the disk surface are steady and have uniform thickness.</span></p><p><span>In VB melts, the thermal conductivity of the baffle and its rotation rate dominate the interface shape and thus the yield and perfection of single crystals. Under the rotating baffle, the effects of </span>natural convection can be made negligible in production size melts.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"67 1","pages":"Article 100512"},"PeriodicalIF":5.1,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2020.100512","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2005502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Dilute nitride III-V nanowires for high-efficiency intermediate-band photovoltaic cells: Materials requirements, self-assembly methods and properties 用于高效中间波段光伏电池的稀氮III-V纳米线:材料要求、自组装方法和性能
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2020-11-01 DOI: 10.1016/j.pcrysgrow.2020.100510
Paola Prete , Nico Lovergine

This paper deals with dilute nitride III-V (III-N-V) semiconductor nanowires and their synthesis by bottom-up (so-called self-assembly) methods for application to novel and high efficiency intermediate-band solar cells (IBSCs). Nanowire-IBSCs based on III-N-V compounds promise to overcome many of the limitations encountered so far in quantum-dots or planar-heterostructure IBSCs; indeed, thanks to the combination of IBSC functionality with the unique physical properties associated with nanowires-based devices, photovoltaic cells with unprecedentedly high power conversion efficiency, simpler junction geometry, reduced structural constraints, low materials usage and fabrication costs could be conceived. The fabrication of III-N-V nanowire-IBSCs requires however, careful engineering of the inner nanowire-device structures to comply with both IBSC stringent operational requirements and the peculiar physical properties of III-N-V semiconductor alloys. Herewith, we propose for the first time perspective III-N-V core-multishell nanowire heterostructures as potential candidates to IBSC applications, their fabrication requiring however, precisely controlled self-assembly technologies. The present status of research on the topic is reviewed, focusing in particular on the bottom-up growth of III-N-V nanowires by molecular beam and metalorganic vapor phase epitaxy methods and properties of as-grown nanostructures. Major results achieved in the current literature and open problems are presented and discussed, along with advantages and limitations of employed self-assembly methods for the fabrication of dilute nitride III-V based nanowire-IBSCs.

本文研究了稀氮化物III-V (III-N-V)半导体纳米线及其自下而上(所谓自组装)合成方法,用于新型高效中频太阳能电池(IBSCs)。基于III-N-V化合物的纳米线-IBSCs有望克服迄今在量子点或平面异质结构IBSCs中遇到的许多限制;事实上,由于IBSC功能与基于纳米线器件的独特物理特性的结合,光伏电池具有前所未有的高功率转换效率,更简单的结几何形状,更少的结构限制,更低的材料使用量和制造成本。然而,制造III-N-V纳米线-IBSC需要对内部纳米线器件结构进行仔细的工程设计,以符合IBSC严格的操作要求和III-N-V半导体合金的特殊物理性质。因此,我们首次提出了III-N-V核-多壳纳米线异质结构作为IBSC应用的潜在候选材料,但它们的制造需要精确控制的自组装技术。综述了该主题的研究现状,重点介绍了分子束和金属有机气相外延法自下而上生长III-N-V纳米线以及生长的纳米结构的性质。本文介绍和讨论了目前文献中取得的主要成果和尚未解决的问题,以及用于制备稀氮III-V基纳米线的自组装方法的优点和局限性。
{"title":"Dilute nitride III-V nanowires for high-efficiency intermediate-band photovoltaic cells: Materials requirements, self-assembly methods and properties","authors":"Paola Prete ,&nbsp;Nico Lovergine","doi":"10.1016/j.pcrysgrow.2020.100510","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2020.100510","url":null,"abstract":"<div><p>This paper deals with dilute nitride<span> III-V (III-N-V) semiconductor nanowires and their synthesis by bottom-up (so-called self-assembly) methods for application to novel and high efficiency intermediate-band solar cells (IBSCs). Nanowire-IBSCs based on III-N-V compounds promise to overcome many of the limitations encountered so far in quantum-dots or planar-heterostructure IBSCs; indeed, thanks to the combination of IBSC functionality with the unique physical properties associated with nanowires-based devices, photovoltaic cells<span><span> with unprecedentedly high power conversion efficiency, simpler junction geometry, reduced structural constraints, low materials usage and fabrication costs could be conceived. The fabrication of III-N-V nanowire-IBSCs requires however, careful engineering of the inner nanowire-device structures to comply with both IBSC stringent operational requirements and the peculiar physical properties of III-N-V semiconductor alloys. Herewith, we propose for the first time perspective III-N-V core-multishell nanowire heterostructures as potential candidates to IBSC applications, their fabrication requiring however, precisely controlled self-assembly technologies. The present status of research on the topic is reviewed, focusing in particular on the bottom-up growth of III-N-V nanowires by </span>molecular beam<span><span> and metalorganic vapor phase epitaxy methods and properties of as-grown </span>nanostructures. Major results achieved in the current literature and open problems are presented and discussed, along with advantages and limitations of employed self-assembly methods for the fabrication of dilute nitride III-V based nanowire-IBSCs.</span></span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"66 4","pages":"Article 100510"},"PeriodicalIF":5.1,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2020.100510","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2164407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Atomic-resolution structure imaging of defects and interfaces in compound semiconductors 化合物半导体中缺陷和界面的原子分辨率结构成像
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2020-11-01 DOI: 10.1016/j.pcrysgrow.2020.100498
David J. Smith

This review focuses on the use of atomic-resolution structure imaging in the transmission electron microscope (TEM) to determine atomic arrangements at defects and interfaces in compound semiconductor (CS) thin films and heterostructures. The article begins with a brief overview of relevant sample preparation techniques and a short description of suitable TEM operating modes and some practical requirements for atomic-structure imaging. Atomically-resolved structural defects, including different types of dislocations associated with stacking faults and twin boundaries, are then described. Attention is directed towards isovalent and heterovalent heterostructures with several types of interfacial defects. Critical issues associated with assessing interface abruptness and chemical intermixing, which directly impact proposed CS device applications, are also considered. Finally, ongoing challenges and prospects for future atomic-resolution studies of CS materials are briefly discussed.

本文综述了利用透射电子显微镜(TEM)的原子分辨率结构成像来确定化合物半导体(CS)薄膜和异质结构中缺陷和界面处的原子排列。本文首先简要概述了相关的样品制备技术,并简要描述了合适的TEM工作模式和原子结构成像的一些实际要求。然后描述了原子解决的结构缺陷,包括与层错和孪晶界相关的不同类型的位错。关注的方向是具有几种类型界面缺陷的等价和异价异质结构。还考虑了与评估界面突发性和化学混合相关的关键问题,这些问题直接影响拟议的CS设备应用。最后,简要讨论了当前CS材料原子分辨率研究面临的挑战和前景。
{"title":"Atomic-resolution structure imaging of defects and interfaces in compound semiconductors","authors":"David J. Smith","doi":"10.1016/j.pcrysgrow.2020.100498","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2020.100498","url":null,"abstract":"<div><p>This review focuses on the use of atomic-resolution structure imaging in the transmission electron microscope<span><span> (TEM) to determine atomic arrangements at defects and interfaces in compound semiconductor (CS) thin films and heterostructures. The article begins with a brief overview of relevant sample preparation techniques and a short description of suitable TEM operating modes and some practical requirements for atomic-structure imaging. Atomically-resolved structural defects, including different types of dislocations associated with </span>stacking faults<span> and twin boundaries, are then described. Attention is directed towards isovalent and heterovalent heterostructures with several types of interfacial defects. Critical issues associated with assessing interface abruptness and chemical intermixing, which directly impact proposed CS device applications, are also considered. Finally, ongoing challenges and prospects for future atomic-resolution studies of CS materials are briefly discussed.</span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"66 4","pages":"Article 100498"},"PeriodicalIF":5.1,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2020.100498","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2324710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Progress in Modeling of III-Nitride MOVPE iii -氮化物MOVPE模型研究进展
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2020-08-01 DOI: 10.1016/j.pcrysgrow.2020.100486
Martin Dauelsberg , Roman Talalaev

This review provides an introduction to III-Nitrides MOVPE process modeling and its application to the design and optimization of MOVPE processes. Fundamentals of the MOVPE process with emphasis on transport phenomena are covered. Numerical techniques to obtain solutions for the underlying governing equations are discussed, as well as approaches to describe multi-component diffusion for typical regimes during MOVPE. Properties of common industrial MOVPE reactor types like close spaced showerhead reactors, rotating disk reactors and Planetary Reactors are compared in terms of underlying working principles and generic process parameter dependencies.

The main part of the paper is devoted to reviewing gas phase and surface reaction mechanisms during MOVPE. The process design in particular for MOVPE of III-Nitrides is determined by complex gas phase reaction kinetics. Advances in the modeling and predicting of these processes have contributed to understanding and controlling these phenomena in industrial scale MOVPE reactors. Detailed kinetics and simplified surface kinetic approaches describing the incorporation of constituents into multinary solid alloys are compared and a few application cases are presented. Differences in thermodynamic and kinetic properties of multi-layered structures of different compositions such as InGaN, AlGaN can cause enrichment of the adsorbed layer by certain group III atoms (indium in case of InGaN and gallium in case of AlGaN) that translate into specific features of composition profiles along the growth direction.

An intrinsic feature of III-nitride materials is epitaxial strain that shows up in different forms during growth and affects both deposition kinetics and material quality. In case of InGaN MOVPE there is a strong interplay between indium content and strain that has direct influence on distribution of material composition in the epitaxial layers and multi-layered structures. Epitaxial strain can relax via different routes such as nucleation and evolution of the extended defects (dislocations), layer cracking and roughening of the surface morphology. Simulation approaches that address coupling of growth kinetics with strain and defect dynamics are discussed and exemplified.

本文综述了III-Nitrides移动聚乙烯工艺模型及其在移动聚乙烯工艺设计与优化中的应用。MOVPE过程的基本原理,重点是传输现象。讨论了获得基本控制方程解的数值技术,以及描述MOVPE过程中典型状态的多组分扩散的方法。从基本工作原理和一般工艺参数依赖关系方面,比较了常用工业动聚乙烯反应器类型的性能,如密间隔喷头反应器、旋转盘反应器和行星反应器。论文的主要部分是综述了MOVPE过程中的气相和表面反应机理。特别是iii -氮化物的MOVPE工艺设计是由复杂的气相反应动力学决定的。这些过程的建模和预测的进展有助于理解和控制工业规模MOVPE反应堆中的这些现象。比较了描述组分掺入多元固体合金的详细动力学方法和简化的表面动力学方法,并给出了一些应用实例。不同组成的多层结构,如InGaN、AlGaN等,其热力学和动力学性质的差异会导致某些III族原子(InGaN为铟,AlGaN为镓)在吸附层上富集,并在生长方向上转化为组成谱的特定特征。iii -氮化物材料的一个固有特征是外延应变,外延应变在生长过程中以不同的形式出现,影响沉积动力学和材料质量。在InGaN MOVPE中,铟含量与应变之间存在很强的相互作用,直接影响到外延层和多层结构中材料成分的分布。外延应变可以通过扩展缺陷(位错)的形核和演化、层裂和表面形貌的粗化等不同途径松弛。讨论并举例说明了处理生长动力学与应变和缺陷动力学耦合的模拟方法。
{"title":"Progress in Modeling of III-Nitride MOVPE","authors":"Martin Dauelsberg ,&nbsp;Roman Talalaev","doi":"10.1016/j.pcrysgrow.2020.100486","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2020.100486","url":null,"abstract":"<div><p><span>This review provides an introduction to III-Nitrides MOVPE process modeling and its application to the design and optimization of MOVPE processes. Fundamentals of the MOVPE process with emphasis on transport phenomena are covered. Numerical techniques to obtain solutions for the underlying governing equations are discussed, as well as approaches to describe multi-component </span>diffusion for typical regimes during MOVPE. Properties of common industrial MOVPE reactor types like close spaced showerhead reactors, rotating disk reactors and Planetary Reactors are compared in terms of underlying working principles and generic process parameter dependencies.</p><p><span>The main part of the paper is devoted to reviewing gas phase and surface reaction mechanisms during MOVPE. The process design in particular for MOVPE of III-Nitrides is determined by complex gas phase reaction kinetics. Advances in the modeling and predicting of these processes have contributed to understanding and controlling these phenomena in industrial scale MOVPE reactors. Detailed kinetics and simplified surface kinetic approaches describing the incorporation of constituents into multinary solid alloys are compared and a few application cases are presented. Differences in thermodynamic and kinetic properties of multi-layered structures of different compositions such as InGaN, AlGaN can cause enrichment of the adsorbed layer by certain group III atoms (indium in case of InGaN and </span>gallium in case of AlGaN) that translate into specific features of composition profiles along the growth direction.</p><p>An intrinsic feature of III-nitride materials is epitaxial strain that shows up in different forms during growth and affects both deposition kinetics and material quality. In case of InGaN MOVPE there is a strong interplay between indium<span><span> content and strain that has direct influence on distribution of material composition in the epitaxial layers and multi-layered structures. Epitaxial strain can relax via different routes such as nucleation and evolution of the extended defects (dislocations), layer cracking and roughening of the </span>surface morphology. Simulation approaches that address coupling of growth kinetics with strain and defect dynamics are discussed and exemplified.</span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"66 3","pages":"Article 100486"},"PeriodicalIF":5.1,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2020.100486","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2601092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Arsenides-and related III-V materials-based multilayered structures for terahertz applications: Various designs and growth technology 用于太赫兹应用的砷化物及相关III-V材料多层结构:各种设计和生长技术
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2020-05-01 DOI: 10.1016/j.pcrysgrow.2020.100485
Alexander E. Yachmenev , Sergey S. Pushkarev , Rodion R. Reznik , Rustam A. Khabibullin , Dmitry S. Ponomarev

The fabrication and investigation of single and multilayered structures have become an essential issue in the past decades since these structures directly define valuable properties and efficiency of widely used terahertz (THz) emitters and detectors. Since the development of molecular-beam epitaxy, as well as other crystal growth techniques, a variety of structural designs has appeared and has been proposed. Since that, an enormous progress has been achieved beginning from the pioneering work on photoconductivity in silicon toward different multilayered heterostructures. The last are now commonly utilized as base components in photoconductive THz emitters/detectors, quantum-cascade lasers for pulsed and continuous-wave THz spectroscopic and imaging systems providing critical fundamental and practical applications at the forefront of scientific knowledge (sensors, flexible electronics, security systems, biomedicine, and others). This review summarizes the developments in different approaches and crystal growth techniques, emphasizing the importance of using single and multilayered arsenides-and related III-V materials-based (phosphides, antimonides, bismuthides) structures to accomplish the needs of modern and existing instruments of THz science and technology.

在过去的几十年里,单层和多层结构的制造和研究已经成为一个重要的问题,因为这些结构直接决定了广泛使用的太赫兹(THz)发射器和探测器的宝贵性能和效率。由于分子束外延以及其他晶体生长技术的发展,各种结构设计已经出现并被提出。从那时起,从硅的光电性到不同的多层异质结构的开创性工作已经取得了巨大的进展。后者现在通常用作光导太赫兹发射器/探测器的基础组件,用于脉冲和连续波太赫兹光谱和成像系统的量子级联激光器,为科学知识(传感器,柔性电子,安全系统,生物医学等)的前沿提供关键的基础和实际应用。本文综述了不同方法和晶体生长技术的进展,强调了利用单层和多层砷化物及相关III-V材料(磷化物、锑化物、铋化物)结构来满足现代和现有太赫兹科学技术仪器的需要的重要性。
{"title":"Arsenides-and related III-V materials-based multilayered structures for terahertz applications: Various designs and growth technology","authors":"Alexander E. Yachmenev ,&nbsp;Sergey S. Pushkarev ,&nbsp;Rodion R. Reznik ,&nbsp;Rustam A. Khabibullin ,&nbsp;Dmitry S. Ponomarev","doi":"10.1016/j.pcrysgrow.2020.100485","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2020.100485","url":null,"abstract":"<div><p><span>The fabrication and investigation of single and multilayered structures have become an essential issue in the past decades since these structures directly define valuable properties and efficiency of widely used terahertz (THz) emitters and detectors. Since the development of molecular-beam epitaxy, as well as other crystal growth techniques, a variety of structural designs has appeared and has been proposed. Since that, an enormous progress has been achieved beginning from the pioneering work on photoconductivity in </span>silicon<span> toward different multilayered heterostructures. The last are now commonly utilized as base components in photoconductive THz emitters/detectors, quantum-cascade lasers for pulsed and continuous-wave THz spectroscopic and imaging systems providing critical fundamental and practical applications at the forefront of scientific knowledge (sensors, flexible electronics, security systems, biomedicine, and others). This review summarizes the developments in different approaches and crystal growth techniques, emphasizing the importance of using single and multilayered arsenides-and related III-V materials-based (phosphides, antimonides, bismuthides) structures to accomplish the needs of modern and existing instruments of THz science and technology.</span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"66 2","pages":"Article 100485"},"PeriodicalIF":5.1,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2020.100485","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2164408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 38
Advancements (and challenges) in the study of protein crystal nucleation and growth; thermodynamic and kinetic explanations and comparison with small-molecule crystallization 蛋白质晶体成核与生长研究的进展与挑战热力学和动力学解释以及与小分子结晶的比较
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2020-05-01 DOI: 10.1016/j.pcrysgrow.2020.100484
Christo N. Nanev

This paper reviews advancements and some novel ideas (not yet covered by reviews and monographs) concerning thermodynamics and kinetics of protein crystal nucleation and growth, as well as some outcomes resulting therefrom. By accounting the role of physical and biochemical factors, the paper aims to present a comprehensive (rather than complete) review of recent studies and efforts to elucidate the protein crystallization process. Thermodynamic rules that govern both protein and small-molecule crystallization are considered firstly. The thermodynamically substantiated EBDE method (meaning equilibration between the cohesive energy which maintains the integrity of a crystalline cluster and the destructive energies tending to tear-up it) determines the supersaturation dependent size of stable nuclei (i.e., nuclei that are doomed to grow). The size of the stable nucleus is worth-considering because it is exactly related to the size of the critical crystal nucleus, and permits calculation of the latter. Besides, merely stable nuclei grow to visible crystals, and are detected experimentally. EBDE is applied for considering protein crystal nucleation in pores and hydrophobicity assisted protein crystallization. The logistic functional kinetics of nucleation (expressed as nuclei number density vs. nucleation time) explains quantitatively important aspects of the crystallization process, such as supersaturation dependence of crystal nuclei number density at fixed nucleation time and crystal size distribution (CSD) resulting from batch crystallization. It is shown that the CSD is instigated by the crystal nucleation stage, which produces an ogee-curve shaped CSD vs. crystal birth moments. Experimental results confirm both the logistic functional nucleation kinetics and the calculated CSD. And even though Ostwald ripening modifies the latter (because the smallest crystals dissolve rendering material for the growth of larger crystals), CSD during this terminal crystallization stage retains some traces of the CSD shape inherited from the nucleation stage. Another objective of this paper is to point-out some biochemical aspects of the protein crystallization, such as bond selection mechanism (BSM) of protein crystal nucleation and growth and the effect of electric fields exerted on the process. Finally, an in-silico study on crystal polymorph selection is reviewed.

本文综述了蛋白质晶体成核和生长的热力学和动力学方面的研究进展和一些新思想(尚未被文献和专著涵盖),以及由此产生的一些结果。通过考虑物理和生化因素的作用,本文旨在对最近的研究和阐明蛋白质结晶过程的努力进行全面(而不是完整)的回顾。首先考虑了控制蛋白质和小分子结晶的热力学规律。热力学证实的EBDE方法(意思是维持晶团完整性的内聚能和倾向于撕裂它的破坏能之间的平衡)决定了稳定核(即注定要生长的核)的过饱和依赖大小。稳定核的大小是值得考虑的,因为它与临界晶体核的大小完全相关,并允许计算后者。此外,仅仅稳定的原子核可以生长成可见的晶体,并在实验中被检测到。应用EBDE研究了蛋白质在孔隙中的结晶成核和疏水性辅助下的蛋白质结晶。成核的logistic功能动力学(表示为核数密度与成核时间)定量地解释了结晶过程的重要方面,例如在固定成核时间晶体核数密度的过饱和依赖性和由批结晶引起的晶体尺寸分布(CSD)。结果表明,CSD是由晶体成核阶段引起的,该阶段产生的CSD与晶体诞生力矩呈八字形。实验结果证实了logistic功能成核动力学和计算的CSD。即使奥斯特瓦尔德成熟改变了后者(因为最小的晶体溶解了为大晶体生长提供材料的物质),在这个最终结晶阶段的CSD仍然保留了一些从成核阶段继承的CSD形状的痕迹。本文的另一个目的是指出蛋白质结晶的一些生化方面,如蛋白质结晶成核和生长的键选择机制(BSM)以及电场对这一过程的影响。最后,综述了晶体多晶选择的硅晶研究进展。
{"title":"Advancements (and challenges) in the study of protein crystal nucleation and growth; thermodynamic and kinetic explanations and comparison with small-molecule crystallization","authors":"Christo N. Nanev","doi":"10.1016/j.pcrysgrow.2020.100484","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2020.100484","url":null,"abstract":"<div><p><span><span><span>This paper reviews advancements and some novel ideas (not yet covered by reviews and monographs) concerning thermodynamics and kinetics of protein crystal nucleation and growth, as well as some outcomes resulting therefrom. By accounting the role of physical and biochemical factors, the paper aims to present a comprehensive (rather than complete) review of recent studies and efforts to elucidate the protein crystallization process. Thermodynamic rules that govern both protein and small-molecule crystallization are considered firstly. The thermodynamically substantiated EBDE method (meaning equilibration between the cohesive energy which maintains the integrity of a crystalline cluster and the destructive energies tending to tear-up it) determines the </span>supersaturation<span> dependent size of stable nuclei (i.e., nuclei that are doomed to grow). The size of the stable nucleus is worth-considering because it is exactly related to the size of the critical crystal nucleus, and permits calculation of the latter. Besides, merely stable nuclei grow to visible crystals, and are detected experimentally. EBDE is applied for considering protein crystal nucleation in pores and hydrophobicity assisted protein crystallization. The logistic functional kinetics of nucleation (expressed as nuclei number density vs. nucleation time) explains quantitatively important aspects of the crystallization process, such as supersaturation dependence of crystal nuclei number density at fixed nucleation time and crystal size distribution (CSD) resulting from batch crystallization. It is shown that the CSD is instigated by the crystal nucleation stage, which produces an ogee-curve shaped CSD vs. crystal birth moments. Experimental results confirm both the logistic functional nucleation kinetics and the calculated CSD. And even though </span></span>Ostwald ripening modifies the latter (because the smallest crystals dissolve rendering material for the growth of larger crystals), CSD during this terminal crystallization stage retains some traces of the CSD shape inherited from the nucleation stage. Another objective of this paper is to point-out some biochemical aspects of the protein crystallization, such as bond selection mechanism (BSM) of protein crystal nucleation and growth and the effect of electric fields exerted on the process. Finally, an </span><em>in-silico</em> study on crystal polymorph selection is reviewed.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"66 2","pages":"Article 100484"},"PeriodicalIF":5.1,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2020.100484","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2601093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
The role of silica and alkaline earth metals with biomolecules in the biomineralization processes: the eggshell's formation and the crystallization in vivo for x-ray crystallography 二氧化硅和碱土金属与生物分子在生物矿化过程中的作用:蛋壳的形成和体内的x射线晶体学结晶
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2020-02-01 DOI: 10.1016/j.pcrysgrow.2019.100473
Nerith Rocío Elejalde-Cadena , Mayra Cuéllar-Cruz , Abel Moreno

This contribution is a scientific journey divided into three parts. In the first part, we review the role that silica biomorphs of alkaline earth metals have played in the formation of complex structures as a reminiscence of the chemistry of the primitive life on Earth. These biomorphs, and their variety of forms synthesized by simple chemical reactions, can nowadays be experimentally used to explain some mechanisms of biomineralization in living organisms. In the second part, we review the role of calcium carbonates in the formation of eggshells in avian. The mechanism of the mineral eggshell´s formation of the biogenic calcite deposited on an organic matrix is revised. The competitive crystal growth mechanism of the mineralized part orientates these crystals preserving the semispherical shape of the egg. We are using these eggshell formations as a second model to understand the biomineralization processes in Nature. The third and final part is about the importance that biomineralization concepts have to produce hybrid materials for the future. This has allowed us to obtain tailored size control of complex morphologies by synthetic chemical procedures that give rise to these new materials’ specific forms and ad hoc properties. We conclude this part with the advantage of knowing the biological mechanisms, based on molecular biology concepts, to obtain protein crystals in vivo and in cellulo techniques. Both methods use the cellular machinery of growing biocrystals in specialized cells that have evolved through millions of years. This new way of producing protein crystals has been trending topic for modern crystallography when using the facilities of the X-ray free-electron lasers (four generation of synchrotrons) for megahertz serial crystallography.

这一贡献是一次分为三部分的科学之旅。在第一部分中,我们回顾了碱土金属的硅生物形态在复杂结构的形成中所起的作用,作为对地球上原始生命化学的回忆。这些生物形态,以及它们由简单化学反应合成的各种形式,现在可以用实验来解释生物体中生物矿化的一些机制。第二部分综述了碳酸钙在鸟类蛋壳形成中的作用。修正了沉积在有机基质上的生物方解石矿物蛋壳的形成机制。矿化部分的竞争性晶体生长机制使这些晶体保持卵的半球形形状。我们正在使用这些蛋壳结构作为第二个模型来理解自然界的生物矿化过程。第三部分也是最后一部分是关于生物矿化概念对未来生产混合材料的重要性。这使我们能够通过合成化学程序获得复杂形态的定制尺寸控制,从而产生这些新材料的特定形式和特殊性质。我们总结了这一部分的优势,了解了生物机制,基于分子生物学的概念,在体内和cello技术中获得蛋白质晶体。这两种方法都使用了在经过数百万年进化的特化细胞中生长生物晶体的细胞机制。利用x射线自由电子激光器(第四代同步加速器)进行兆赫序列晶体学时,这种产生蛋白质晶体的新方法已成为现代晶体学的热门话题。
{"title":"The role of silica and alkaline earth metals with biomolecules in the biomineralization processes: the eggshell's formation and the crystallization in vivo for x-ray crystallography","authors":"Nerith Rocío Elejalde-Cadena ,&nbsp;Mayra Cuéllar-Cruz ,&nbsp;Abel Moreno","doi":"10.1016/j.pcrysgrow.2019.100473","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2019.100473","url":null,"abstract":"<div><p><span><span><span>This contribution is a scientific journey divided into three parts. In the first part, we review the role that silica biomorphs of </span>alkaline earth metals<span> have played in the formation of complex structures as a reminiscence of the chemistry of the primitive life on Earth. These biomorphs, and their variety of forms synthesized by simple chemical reactions, can nowadays be experimentally used to explain some mechanisms of biomineralization in living organisms. In the second part, we review the role of calcium carbonates in the formation of eggshells in avian. The mechanism of the mineral eggshell´s formation of the biogenic </span></span>calcite<span> deposited on an organic matrix is revised. The competitive crystal growth mechanism of the mineralized part orientates these crystals preserving the semispherical shape of the egg. We are using these eggshell formations as a second model to understand the biomineralization processes in Nature. The third and final part is about the importance that biomineralization concepts have to produce hybrid materials for the future. This has allowed us to obtain tailored size control of complex morphologies by synthetic chemical procedures that give rise to these new materials’ specific forms and ad hoc properties. We conclude this part with the advantage of knowing the biological mechanisms, based on molecular biology concepts, to obtain protein crystals </span></span><em>in vivo</em> and <em>in cellulo</em><span> techniques. Both methods use the cellular machinery of growing biocrystals in specialized cells that have evolved through millions of years. This new way of producing protein crystals has been trending topic for modern crystallography when using the facilities of the X-ray free-electron lasers (four generation of synchrotrons) for megahertz serial crystallography.</span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"66 1","pages":"Article 100473"},"PeriodicalIF":5.1,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2019.100473","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3389026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Preferred crystallographic orientation of nanocrystals embedded inside nanopores 嵌入纳米孔内的纳米晶体的优选晶体取向
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2019-11-01 DOI: 10.1016/j.pcrysgrow.2019.100464
Hanna Bishara , Shlomo Berger

The preferred crystallographic orientation of nanocrystals plays a significant role in determining their properties. From the wide variety of nanocrystal growth techniques, we focus in this paper on crystal growth by precipitation from liquid solutions inside porous substrates, and discuss the progress that has been made during the last decade concerning the control of crystal growth direction through this method. In this overview, the motivation and principal mechanisms of achieving highly oriented nanocrystals are presented. Moreover, different experimental challenges within the described growth technique are probed. The paper presents the thermodynamic and kinetic considerations for favoring crystal growth inside pores rather than bulk growth. A special focus is made on the origin of obtaining preferred crystallographic orientations in various types of materials, including varying perspectives of thermodynamic and kinetic driving forces. The paper ends with technological application of crystal growth with preferred crystallographic orientation inside nano-pores.

纳米晶体的择优取向对其性能起着重要的决定作用。从各种各样的纳米晶体生长技术中,我们重点介绍了多孔衬底内液体溶液的沉淀生长纳米晶体,并讨论了近十年来通过这种方法控制晶体生长方向的进展。在本综述中,介绍了实现高取向纳米晶体的动机和主要机制。此外,本文还探讨了所述生长技术中的不同实验挑战。本文提出了有利于晶体在孔隙内生长而不是块状生长的热力学和动力学考虑。特别关注的是在各种类型的材料中获得首选晶体取向的起源,包括热力学和动力学驱动力的不同观点。最后介绍了纳米孔内择优取向晶体生长的技术应用。
{"title":"Preferred crystallographic orientation of nanocrystals embedded inside nanopores","authors":"Hanna Bishara ,&nbsp;Shlomo Berger","doi":"10.1016/j.pcrysgrow.2019.100464","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2019.100464","url":null,"abstract":"<div><p>The preferred crystallographic orientation of nanocrystals plays a significant role in determining their properties. From the wide variety of nanocrystal growth techniques, we focus in this paper on crystal growth by precipitation from liquid solutions inside porous substrates, and discuss the progress that has been made during the last decade concerning the control of crystal growth direction through this method. In this overview, the motivation and principal mechanisms of achieving highly oriented nanocrystals are presented. Moreover, different experimental challenges within the described growth technique are probed. The paper presents the thermodynamic and kinetic considerations for favoring crystal growth inside pores rather than bulk growth. A special focus is made on the origin of obtaining preferred crystallographic orientations in various types of materials, including varying perspectives of thermodynamic and kinetic driving forces. The paper ends with technological application of crystal growth with preferred crystallographic orientation inside nano-pores.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"65 4","pages":"Article 100464"},"PeriodicalIF":5.1,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2019.100464","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2601094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Growth and characterization of two-dimensional crystals for communication and energy applications 用于通信和能源应用的二维晶体的生长和表征
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2019-11-01 DOI: 10.1016/j.pcrysgrow.2019.100465
Laxmi Narayan Tripathi, Sourabh Barua

This review article covers the growth and characterization of two-dimensional (2D) crystals of transition metal chalcogenides, h-BN, graphene, etc. The chemical vapor transport method for bulk single crystal growth is discussed in detail. Top-down methods like mechanical and liquid exfoliation and bottom-up methods like chemical vapor deposition and molecular beam epitaxy for mono/few-layer growth are described. The optimal characterization techniques such as optical, atomic force, scanning electron, and Raman spectroscopy for identification of mono/few-layer(s) of the 2D crystals are discussed. In addition, a survey was done for the application of 2D crystals for both creation and deterministic transfer of single-photon sources and photovoltaic systems. Finally, the application of plasmonic nanoantenna was proposed for enhanced solar-to-electrical energy conversion and faster/brighter quantum communication devices.

本文综述了过渡金属硫族化合物、氢氮化硼、石墨烯等二维晶体的生长和表征。详细讨论了块状单晶生长的化学气相输运法。描述了自上而下的方法,如机械和液体剥落,自下而上的方法,如化学气相沉积和分子束外延,用于单/少层生长。讨论了最佳表征技术,如光学,原子力,扫描电子和拉曼光谱识别的单层/多层二维晶体。此外,还对二维晶体在单光子源和光伏系统的创建和确定性转移中的应用进行了调查。最后,提出了等离子体纳米天线在增强太阳能-电能转换和更快/更亮量子通信器件中的应用。
{"title":"Growth and characterization of two-dimensional crystals for communication and energy applications","authors":"Laxmi Narayan Tripathi,&nbsp;Sourabh Barua","doi":"10.1016/j.pcrysgrow.2019.100465","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2019.100465","url":null,"abstract":"<div><p><span>This review article covers the growth and characterization of two-dimensional (2D) crystals of transition metal chalcogenides<span><span>, h-BN, graphene, etc. The chemical vapor transport method for bulk single crystal growth is discussed in detail. Top-down methods like mechanical and liquid exfoliation and bottom-up methods like </span>chemical vapor deposition<span> and molecular beam epitaxy for mono/few-layer growth are described. The optimal characterization techniques such as optical, atomic force, scanning electron, and </span></span></span>Raman spectroscopy<span> for identification of mono/few-layer(s) of the 2D crystals are discussed. In addition, a survey was done for the application of 2D crystals for both creation and deterministic transfer of single-photon sources and photovoltaic<span> systems. Finally, the application of plasmonic nanoantenna was proposed for enhanced solar-to-electrical energy conversion and faster/brighter quantum communication devices.</span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"65 4","pages":"Article 100465"},"PeriodicalIF":5.1,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2019.100465","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2000660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
Progress in Crystal Growth and Characterization of Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1