Pub Date : 2022-08-01DOI: 10.1016/j.pcrysgrow.2022.100578
Abhay Dasadia , Vidhi Bhavsar
Low dimensional structures, including bulk crystals, thin films, nanowires and nanotubes, have received remarkable attention due to their novel functionality and potential applications in various areas of optics, electronics, photonics, and sensing devices and photovoltaic field. Recently, remarkable progress and modification have been achieved in the synthesis process of crystalline material by vapor transport technique. In this review, we introduce an improved concept of the closed tube Chemical Vapor Transport (CVT) technique for the single crystal growth of ZrSTe, TiSTe and TiSeTe. A modified reverse temperature profile has reported the growth of ZrSTe, TiSTe and TiSeTe results show the good crystalline quality of synthesized materials. The single-crystal X-ray diffraction data reveals all three samples have trigonal unit cell structure with a space group of P31. The Semiconducting behavior of grown crystals of ZrSTe, TiSTe and TiSeTe was verified by two probe resistivity measurements, Hall Effect measurements and optical absorption at room temperature in the spectral range of 200 nm - 2200 nm. In this review, we highlight the recent progress in the transition of metal chalcogenides for their advanced application in solar energy conversion, thin-film electronics, optoelectronic devices and quantum communication devices. Moreover, different experimental challenges within the described growth technique are probed. Additionally, a survey was done for the possible enhancement of Transition Metal Chalcogenide (TMC) crystalline materials grown by the Chemical Vapor Transport technique based on various growth parameters.
{"title":"Growth, structure, electrical and optical properties of transition metal chalcogenide crystals synthesized by improved chemical vapor transport technique for semiconductor technologies","authors":"Abhay Dasadia , Vidhi Bhavsar","doi":"10.1016/j.pcrysgrow.2022.100578","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2022.100578","url":null,"abstract":"<div><p><span><span>Low dimensional structures, including bulk crystals, thin films<span>, nanowires and nanotubes<span>, have received remarkable attention due to their novel functionality and potential applications in various areas of optics<span>, electronics, photonics, and sensing devices and </span></span></span></span>photovoltaic<span> field. Recently, remarkable progress and modification have been achieved in the synthesis process of crystalline material by vapor transport technique. In this review, we introduce an improved concept of the closed tube Chemical Vapor Transport (CVT) technique for the single crystal growth of ZrSTe, TiSTe and TiSeTe. A modified reverse temperature profile has reported the growth of ZrSTe, TiSTe and TiSeTe results show the good crystalline quality of synthesized materials. The single-crystal X-ray diffraction data reveals all three samples have trigonal unit cell structure with a space group of P31. The Semiconducting behavior of grown crystals of ZrSTe, TiSTe and TiSeTe was verified by two probe resistivity measurements, </span></span>Hall Effect<span><span> measurements and optical absorption at room temperature in the spectral range of 200 nm - 2200 nm. In this review, we highlight the recent progress in the transition of metal </span>chalcogenides<span><span> for their advanced application in solar energy conversion<span>, thin-film electronics, optoelectronic devices and </span></span>quantum communication devices. Moreover, different experimental challenges within the described growth technique are probed. Additionally, a survey was done for the possible enhancement of Transition Metal Chalcogenide (TMC) crystalline materials grown by the Chemical Vapor Transport technique based on various growth parameters.</span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"68 3","pages":"Article 100578"},"PeriodicalIF":5.1,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1741704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-01DOI: 10.1016/j.pcrysgrow.2022.100567
Christo N. Nanev
The main reason for the longevity of the Classical Nucleation Theory (CNT) is its firm thermodynamic basis; reviewing the discussion about the molecular-scale mechanism of crystal nucleation from solutions, and especially the mechanism of protein crystal nucleation, we note that the diverse nucleation pathways across the metastable phase cannot contradict the thermodynamic conclusions of the CNT. In this review paper, revisiting the basic postulates of CNT, we argue that not only the energy barrier for crystal nucleation but the entire dependence of Gibbs’ thermodynamic potential on the crystal size is worth interpreting. In doing so, two supplementations to CNT have been elaborated. The first one concerns the theoretical method employing Equilibration between the Bond energy (i.e., the intra-crystalline cohesive energy which maintains the integrity of a crystalline cluster), and the surface Destructive Energy (tending to tear-up the crystal) - abbreviated EBDE. Second, we show that the dependence of the Gibbs’ thermodynamic potential on the crystal size determines not only the birth, but also the initial growth (or dissolution during Ostwald ripening) of the just born nuclei of the new phase; this is predicted in the negative branch of the said dependence. Initially, EBDE was used for explaining crystal nucleation from solutions, but most recently, this method was redefined for considering crystal nucleation in melts. The purposively redefined EBDE was applied for considering ice nucleation, which is an important case of spontaneous melt crystallization in nature - the quantitative consideration of the ice crystal nucleation is needed for better understanding of atmospheric processes, such as snowfall, white frost, sleet, hail, and ice fog. By focusing on the action of ice nucleating particles (INPs), which engender heterogeneous nucleation of ice, the snowfall is elucidated in a new way - ice nucleation in the atmosphere is considered as a two-step process, the first one being vapor condensation in liquid droplets, and the second one - water freezing. Also, ice nucleation in frozen foods is re-considered applying EBDE. (It is known that freezing ensures a high-quality product and long shelf life of a wide range of food products, such as fish, meat, vegetables, tropical fruits, coffee, flavor essence, etc.) And because numbers and sizes of ice crystals are decisive for the degree of deterioration of food quality due to freezing, the mean sizes of the ice crystals (which depend on their number) are considered in a quantitative manner. Also, another consideration concerns ice crystal nucleation and growth occurring by freeze concentration of liquid foods. Although aimed at reviewing fundamental aspects of crystal nucleation, it is to be hoped that some results of the considerations in this paper may also be beneficial for practical applications; suggestions in this respect are mentioned throughout the paper. For instance, the
{"title":"On the Vitality of the Classical Theory of Crystal Nucleation; Crystal Nucleation in Pure Own Melt; Atmospheric Ice and Snow; Ice in Frozen Foods","authors":"Christo N. Nanev","doi":"10.1016/j.pcrysgrow.2022.100567","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2022.100567","url":null,"abstract":"<div><p><span>The main reason for the longevity of the Classical Nucleation Theory (CNT) is its firm thermodynamic basis; reviewing the discussion about the molecular-scale mechanism of crystal nucleation from solutions, and especially the mechanism of protein crystal nucleation, we note that the diverse nucleation pathways across the metastable phase cannot contradict the thermodynamic conclusions of the CNT. In this review paper, revisiting the basic postulates of CNT, we argue that not only the energy barrier for crystal nucleation but the entire dependence of Gibbs’ thermodynamic potential on the crystal size is worth interpreting. In doing so, two supplementations to CNT have been elaborated. The first one concerns the theoretical method employing Equilibration between the Bond energy (i.e., the intra-crystalline cohesive energy which maintains the integrity of a crystalline cluster), and the surface Destructive Energy (tending to tear-up the crystal) - abbreviated EBDE. Second, we show that the dependence of the Gibbs’ thermodynamic potential on the crystal size determines not only the birth, but also the initial growth (or dissolution during Ostwald ripening) of the just born nuclei of the new phase; this is predicted in the negative branch of the said dependence. Initially, EBDE was used for explaining crystal nucleation from solutions, but most recently, this method was redefined for considering crystal nucleation in melts. The purposively redefined EBDE was applied for considering ice nucleation, which is an important case of spontaneous melt crystallization in nature - the quantitative consideration of the ice crystal nucleation is needed for better understanding of atmospheric processes, such as snowfall, white frost, sleet, hail, and ice fog. By focusing on the action of ice nucleating particles (INPs), which engender heterogeneous nucleation of ice, the snowfall is elucidated in a new way - ice nucleation in the atmosphere is considered as a two-step process, the first one being vapor </span>condensation in liquid droplets, and the second one - water freezing. Also, ice nucleation in frozen foods is re-considered applying EBDE. (It is known that freezing ensures a high-quality product and long shelf life of a wide range of food products, such as fish, meat, vegetables, tropical fruits, coffee, flavor essence, etc.) And because numbers and sizes of ice crystals are decisive for the degree of deterioration of food quality due to freezing, the mean sizes of the ice crystals (which depend on their number) are considered in a quantitative manner. Also, another consideration concerns ice crystal nucleation and growth occurring by freeze concentration of liquid foods. Although aimed at reviewing fundamental aspects of crystal nucleation, it is to be hoped that some results of the considerations in this paper may also be beneficial for practical applications; suggestions in this respect are mentioned throughout the paper. For instance, the ","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"68 2","pages":"Article 100567"},"PeriodicalIF":5.1,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1559679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-01DOI: 10.1016/j.pcrysgrow.2022.100558
Cesia D. Pérez-Aguilar, Mayra Cuéllar-Cruz
As known currently, in the formation of the Earth, minerals have played a pivotal role going from the formation of the hydrosphere, the lithosphere, and all Earth components until the origin, evolution, and maintenance of life. The first signs of magnetism are found in komatiites. In the origin of life, minerals were responsible for concentrating, aligning, and acting as templates and catalyzers, allowing for the formation of bonds among the first biomolecules to form polymers, which eventually became assembled to give rise to the pioneer organism in the Precambrian. Besides, minerals allowed the DNA to be the information storing molecule, even though it was not the first biomolecule. Another function of minerals was to protect the organic complexes against ultraviolet radiation and hydrolysis, a fundamental action to preserve life in the Precambrian where high UV radiation prevailed. Minerals not only favored the origin of life but also became part of the organisms that inhabit the Earth, including species of the five kingdoms, comprising from microorganisms to higher organisms. How minerals participated in the origin of life still has unresolved questions, for which to understand the minerals’ participation since the formation of the Earth until becoming part of the structure of organisms from the five kingdoms, we reviewed the following topics, which will contribute to the understanding of the implication of minerals in the origin of our planet and life on it: i) the synthesis of the chemical elements from which the first mineral were obtained in the Earth, ii) the factor that favored the formation of minerals in the Earth, iii) the implication of minerals as the basis for the synthesis of the first biomolecule and, eventually, the pioneer organism, as well as the biomineralization mechanism that has been proposed to account for the mineral part contained in the structure of the organisms from the different kingdoms, and iv) the models that allow emulating the mechanisms by which minerals participated in the synthesis of the first biomolecule; in this way, for example, the Precambrian microfossils are so simple morphologically (spheres, subspheres, and hemispheres) that they can easily be imitated by hollow mineral growths, known as biomorphs. Although these can interfere with the study of actual microfossils, they remain as key points for the study of the origin of life.
{"title":"The formation of crystalline minerals and their role in the origin of life on Earth","authors":"Cesia D. Pérez-Aguilar, Mayra Cuéllar-Cruz","doi":"10.1016/j.pcrysgrow.2022.100558","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2022.100558","url":null,"abstract":"<div><p><span>As known currently, in the formation of the Earth, minerals have played a pivotal role going from the formation of the hydrosphere<span>, the lithosphere, and all Earth components until the origin, evolution, and maintenance of life. The first signs of </span></span>magnetism<span><span> are found in komatiites. In the origin of life, minerals were responsible for concentrating, aligning, and acting as templates and catalyzers, allowing for the formation of bonds among the first biomolecules to form polymers, which eventually became assembled to give rise to the pioneer organism in the Precambrian. Besides, minerals allowed the DNA to be the information storing molecule, even though it was not the first biomolecule. Another function of minerals was to protect the organic complexes against </span>ultraviolet radiation<span><span> and hydrolysis, a fundamental action to preserve life in the Precambrian where high UV radiation prevailed. Minerals not only favored the origin of life but also became part of the organisms that inhabit the Earth, including species of the five kingdoms, comprising from microorganisms to higher organisms. How minerals participated in the origin of life still has unresolved questions, for which to understand the minerals’ participation since the formation of the Earth until becoming part of the structure of organisms from the five kingdoms, we reviewed the following topics, which will contribute to the understanding of the implication of minerals in the origin of our planet and life on it: i) the synthesis of the chemical elements from which the first mineral were obtained in the Earth, ii) the factor that favored the formation of minerals in the Earth, iii) the implication of minerals as the basis for the synthesis of the first biomolecule and, eventually, the pioneer organism, as well as the </span>biomineralization mechanism that has been proposed to account for the mineral part contained in the structure of the organisms from the different kingdoms, and iv) the models that allow emulating the mechanisms by which minerals participated in the synthesis of the first biomolecule; in this way, for example, the Precambrian microfossils are so simple morphologically (spheres, subspheres, and hemispheres) that they can easily be imitated by hollow mineral growths, known as biomorphs. Although these can interfere with the study of actual microfossils, they remain as key points for the study of the origin of life.</span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"68 1","pages":"Article 100558"},"PeriodicalIF":5.1,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1743839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-01DOI: 10.1016/j.pcrysgrow.2022.100559
Camila Campos-Escamilla , Luis A. Gonzalez-Rámirez , Fermín Otálora , José Antonio Gavira , Abel Moreno
This contribution deals with a practical overview of some popular and sophisticated crystallization methods that help increase the success rate of a crystallization project and introduces a newly developed method involving low intensity electromagnetic fields. Aiming to suggest a methodology to follow, the present contribution is divided into two main parts in a logical order to get the best crystals for high resolution X-ray crystallographic analysis. The first part starts with a short review of the chemical and physical fundamentals of each crystallization method through different strategies based on physicochemical approaches. Then, practical non-conventional techniques for protein crystallization are presented, not only for growing protein crystals, but also for controlling the size and number of crystals. These include crystal growth in gels, counter-diffusion, seeding, and macromolecular imprinted polymers (MIPs). The second part shows the effects of coupling low intensity electric fields (in the scale of units of μAmperes) with weak magnetic fields (in the scale of milli Tesla) applied to protein crystallization. This approach consists of a novel experimental set up, which was used to study the influence of the coupled fields on the crystallization of lysozyme in solution and in gel media. This new approach is based on the classical theories of transport phenomena and offers a more accessible strategy to obtain suitable crystals for X-ray characterization or Neutron diffraction investigations.
{"title":"A short overview on practical techniques for protein crystallization and a new approach using low intensity electromagnetic fields","authors":"Camila Campos-Escamilla , Luis A. Gonzalez-Rámirez , Fermín Otálora , José Antonio Gavira , Abel Moreno","doi":"10.1016/j.pcrysgrow.2022.100559","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2022.100559","url":null,"abstract":"<div><p>This contribution deals with a practical overview of some popular and sophisticated crystallization methods that help increase the success rate of a crystallization project and introduces a newly developed method involving low intensity electromagnetic fields<span>. Aiming to suggest a methodology to follow, the present contribution is divided into two main parts in a logical order to get the best crystals for high resolution X-ray crystallographic analysis. The first part starts with a short review of the chemical and physical fundamentals of each crystallization method through different strategies based on physicochemical approaches. Then, practical non-conventional techniques for protein crystallization are presented, not only for growing protein crystals, but also for controlling the size and number of crystals. These include crystal growth in gels, counter-diffusion, seeding, and macromolecular imprinted polymers (MIPs). The second part shows the effects of coupling low intensity electric fields (in the scale of units of μAmperes) with weak magnetic fields (in the scale of milli Tesla) applied to protein crystallization. This approach consists of a novel experimental set up, which was used to study the influence of the coupled fields on the crystallization of lysozyme<span> in solution and in gel media. This new approach is based on the classical theories of transport phenomena and offers a more accessible strategy to obtain suitable crystals for X-ray characterization or Neutron diffraction investigations.</span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"68 1","pages":"Article 100559"},"PeriodicalIF":5.1,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2287240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ice is one of the most abundant materials on the earth's surface, and its growth governs various natural phenomena. Hence, the molecular-level understanding of ice crystal surfaces is crucially important. However, it is generally acknowledged that the molecular-level observation of ice crystal surfaces by ordinary microscopy techniques, such as atomic force microscopy and scanning electron microscopy, is very difficult at temperatures near the melting point (0 °C). To overcome such difficulties, we have developed laser confocal microscopy combined with differential interference contrast microscopy (LCM-DIM). We proved that LCM-DIM can visualize individual elementary steps (0.37 nm in thickness) on a basal face by observing two-dimensional nucleation growth. Then we found by LCM-DIM that spiral steps on a basal face exhibit a double-spiral pattern, which can be expected from ice's crystallographic structure. In addition, we revealed that temperature dependence of growth kinetics of elementary spiral steps on a basal face exhibits complicated behaviors, which show the presence of unknown phenomena in the growth kinetics. Furthermore, we proved that surface diffusion of water admolecules on a basal face plays a crucially important role in the lateral growth of elementary steps when the distance between adjacent spiral steps is smaller than 15 µm. These findings will provide a clue for unlocking growth kinetics of ice crystals. In addition, through the use of LCM-DIM much progress has been made in studies on the surface melting of ice and the interaction between ice and atmospheric gasses.
{"title":"In-situ optical microscopy observation of elementary steps on ice crystals grown in vapor and their growth kinetics","authors":"Gen Sazaki , Masahiro Inomata , Harutoshi Asakawa , Etsuro Yokoyama , Shunichi Nakatsubo , Ken-ichiro Murata , Ken Nagashima , Yoshinori Furukawa","doi":"10.1016/j.pcrysgrow.2021.100550","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2021.100550","url":null,"abstract":"<div><p>Ice is one of the most abundant materials on the earth's surface, and its growth governs various natural phenomena. Hence, the molecular-level understanding of ice crystal surfaces<span><span> is crucially important. However, it is generally acknowledged that the molecular-level observation of ice crystal surfaces by ordinary microscopy techniques, such as atomic force microscopy<span> and scanning electron microscopy, is very difficult at temperatures near the melting point (0 °C). To overcome such difficulties, we have developed laser confocal microscopy combined with differential interference contrast microscopy (LCM-DIM). We proved that LCM-DIM can visualize individual elementary steps (0.37 nm in thickness) on a basal face by observing two-dimensional nucleation growth. Then we found by LCM-DIM that spiral steps on a basal face exhibit a double-spiral pattern, which can be expected from ice's crystallographic structure. In addition, we revealed that temperature dependence of growth kinetics of elementary spiral steps on a basal face exhibits complicated behaviors, which show the presence of unknown phenomena in the growth kinetics. Furthermore, we proved that </span></span>surface diffusion of water admolecules on a basal face plays a crucially important role in the lateral growth of elementary steps when the distance between adjacent spiral steps is smaller than 15 µm. These findings will provide a clue for unlocking growth kinetics of ice crystals. In addition, through the use of LCM-DIM much progress has been made in studies on the surface melting of ice and the interaction between ice and atmospheric gasses.</span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"67 4","pages":"Article 100550"},"PeriodicalIF":5.1,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2080630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-01DOI: 10.1016/j.pcrysgrow.2021.100543
Andrzej Mycielski , Aneta Wardak , Dominika Kochanowska , Marta Witkowska-Baran , Michał Szot , Rafał Jakieła , Jarosław Z. Domagała , Leszek Kowalczyk , Michał Kochański , Gabriela Janusz , Marcin Dopierała , Adam Marciniak , Barbara Witkowska , Bartłomiej S. Witkowski , Anna Reszka , Andrei Avdonin , Elżbieta Łusakowska , Witold Chromiński , Małgorzata Lewandowska , Małgorzata Górska
In recent years, a series of investigations has been devoted to a possibility of using crystals based on CdTe with addition of magnesium (Mg), selenium (Se), or manganese (Mn) for X and gamma radiation detectors. In the literature there are contradictory data with respect to the segregation of Mg in (Cd,Mg)Te and Se in Cd(Te,Se) and to the possibility of obtaining materials with a homogeneous composition without grains and twins.
We have wide technological possibilities of preparing crystals and investigating some of their properties. Thus, we performed crystallizations of (Cd,Mg)Te, Cd(Te,Se), (Cd,Mn)(Te,Se), and (Cd,Mn)Te compounds. The aim of our studies was to check whether any of the investigated materials may be easily obtained by the Low Pressure Bridgman (LPB) method in the form of large, homogeneous, high resistivity single crystals with as few as possible twins, subgrains, and tellurium inclusions.
The crystallization processes were performed by using the LPB method. The elements used: Cd, Te, Mn, Mg, and Se were of the highest purity available at that time. In order to obtain reliable conclusions the crystallization processes were carried out under identical technological conditions. The details of our technological method and the results of the investigation of physical properties of the samples are presented below.
{"title":"CdTe-based crystals with Mg, Se, or Mn as materials for X and gamma ray detectors: Selected physical properties","authors":"Andrzej Mycielski , Aneta Wardak , Dominika Kochanowska , Marta Witkowska-Baran , Michał Szot , Rafał Jakieła , Jarosław Z. Domagała , Leszek Kowalczyk , Michał Kochański , Gabriela Janusz , Marcin Dopierała , Adam Marciniak , Barbara Witkowska , Bartłomiej S. Witkowski , Anna Reszka , Andrei Avdonin , Elżbieta Łusakowska , Witold Chromiński , Małgorzata Lewandowska , Małgorzata Górska","doi":"10.1016/j.pcrysgrow.2021.100543","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2021.100543","url":null,"abstract":"<div><p><span>In recent years, a series of investigations has been devoted to a possibility of using crystals based on CdTe with addition of magnesium (Mg), selenium (Se), or manganese (Mn) for X and </span>gamma radiation detectors. In the literature there are contradictory data with respect to the segregation of Mg in (Cd,Mg)Te and Se in Cd(Te,Se) and to the possibility of obtaining materials with a homogeneous composition without grains and twins.</p><p>We have wide technological possibilities of preparing crystals and investigating some of their properties. Thus, we performed crystallizations of (Cd,Mg)Te, Cd(Te,Se), (Cd,Mn)(Te,Se), and (Cd,Mn)Te compounds. The aim of our studies was to check whether any of the investigated materials may be easily obtained by the Low Pressure Bridgman (LPB) method in the form of large, homogeneous, high resistivity single crystals with as few as possible twins, subgrains, and tellurium inclusions.</p><p>The crystallization processes were performed by using the LPB method. The elements used: Cd, Te, Mn, Mg, and Se were of the highest purity available at that time. In order to obtain reliable conclusions the crystallization processes were carried out under identical technological conditions. The details of our technological method and the results of the investigation of physical properties of the samples are presented below.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"67 4","pages":"Article 100543"},"PeriodicalIF":5.1,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2021.100543","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1804611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-01DOI: 10.1016/j.pcrysgrow.2021.100542
Laxman Singh , Ravikant Sharma , Narayan Singh , Atendra Kumar , Dev K Mahato , Youngil Lee , Mikhael Bechelany , KD Mandal
This review paper covers the low temperature wet growth of nano-engineered particles of ZnO-based mixed metal oxides, their growth mechanism, and characterization using X-ray diffraction, SEM, TEM and IR, UV–visible, and XPS spectral techniques. Main focus of this article is centered on low temperature semi-wet methods of synthesis that are suitable for large scale production of zinc oxide-based systems mixed with iron oxide, copper oxide, nickel oxide and cobalt oxide. These mixed metal oxides have broad industrial applications as catalyst, semiconductors, adsorbents, superconductors, electro-ceramics, and antifungal agents in addition to extensive applications in medicines. This paper discusses the low-cost and environment friendly synthesis of these mixed metal oxides, measurement of properties and applicability of these materials systems.
{"title":"Semi-wet growth and characterization of multi-functional nano-engineered mixed metal oxides for industrial application","authors":"Laxman Singh , Ravikant Sharma , Narayan Singh , Atendra Kumar , Dev K Mahato , Youngil Lee , Mikhael Bechelany , KD Mandal","doi":"10.1016/j.pcrysgrow.2021.100542","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2021.100542","url":null,"abstract":"<div><p><span>This review paper covers the low temperature wet growth of nano-engineered particles of ZnO-based mixed metal oxides, their growth mechanism, and characterization using X-ray diffraction, SEM, TEM and IR, UV–visible, and XPS spectral techniques. Main focus of this article is centered on low temperature semi-wet methods of synthesis that are suitable for large scale production of zinc oxide-based systems mixed with </span>iron oxide<span><span>, copper oxide, nickel oxide and cobalt oxide. These mixed metal oxides have broad industrial applications as catalyst, semiconductors, adsorbents, </span>superconductors, electro-ceramics, and antifungal agents in addition to extensive applications in medicines. This paper discusses the low-cost and environment friendly synthesis of these mixed metal oxides, measurement of properties and applicability of these materials systems.</span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"67 4","pages":"Article 100542"},"PeriodicalIF":5.1,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2021.100542","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2287242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-01DOI: 10.1016/j.pcrysgrow.2021.100533
C.V. Ramana , A. Mauger , C.M. Julien
Molybdenum oxides (MoOy) exhibit quite interesting structural, chemical, electrical, optical and electrochemical properties, which are often dependent on the synthetic procedures and fabrication conditions. The MoOy materiails are promising in numerous current and emerging technological applications, which include nanoelectronics, optoelectronics, energy storage and micromechanics. However, fundamental understanding of the crystal structure and engineering the phase and microstructure is the key to achieving the desired properties and performance in all of these applications. Therefore, in this review, an attempt made to provide a comprehensive review by considering the illustrative examples to highlight the fundamental scientific issues, challenges, and opportunities as related to various Mo-oxides applicable to electrochemical energy applications. In the course of development of lithium batteries delivering high-power and high-energy density for powering electric vehicles, here in this paper, we examine the performances of Mo-oxides, which are candidates as electrodes materials primarily for lithium-ion batteries (LIBs), while some aspects considered in sodium-ion batteries (SIBs) or electrochemical supercapacitors (ECs). Due to the wide range of oxidation states (from +6 to +2) they are promising as both positive (cathode) and negative (anode) electrodes of electrochemical cells. Based on their specific structural, chemical, electrical, and optical properties, which are dependent on the growth conditions and the fabrication technique, this review highlights the progress made in improving and understanding the electrochemical performance of MoOy compounds. Various materials (2.0 ≤ y ≤ 3.0) including anhydrous, hydrates, nanorods, nanobelts, composites and thin films of MoOy are considered. Due to their higher oxidation states, MoOy compounds undergo reversible topotactic lithium intercalation reactions; however, electrochemical features appear strongly dependent on the crystal quality and structural arrangement in the host lattice. Using in-situ and ex-situ X-ray diffraction and Raman spectroscopic data, structural characteristics of various MoOy are discussed. While the reasons for first-cycle irreversible capacity losses identified and discussed elaborately, the approaches adopted for enhanced performance and/or improvements also summarized. Several sub-stoichiometric MoOy positive electrodes exhibit excellent cycle life (up to 300 cycles) with high initial coulombic efficiency (80–90%) and large reversible capacity (>300 mAh g−1). Molybdenum oxides also categorized as one of the conversion-type transition-metal oxides and applied as negative electrodes for LIBs and SIBs with a specific capacity approaching 1000 mAh g−1. In addition to the discussion of the key aspects of crystal growth, characterization, an
钼氧化物(moy)表现出非常有趣的结构、化学、电学、光学和电化学性质,这些性质往往取决于合成方法和制造条件。MoOy材料在包括纳米电子学、光电子学、能量存储和微观力学在内的许多当前和新兴技术应用中都有前景。然而,对晶体结构的基本理解以及对相和微观结构的工程设计是在所有这些应用中实现所需性能和性能的关键。因此,在这篇综述中,试图通过举例来提供一个全面的综述,以突出与各种氧化钼应用于电化学能源相关的基本科学问题、挑战和机遇。在为电动汽车提供高功率和高能量密度的锂电池的开发过程中,在本文中,我们研究了mo -氧化物的性能,它主要是锂离子电池(lib)的候选电极材料,而钠离子电池(sib)或电化学超级电容器(ECs)则考虑了一些方面。由于氧化态范围广(从+6到+2),它们有希望作为电化学电池的正(阴极)和负(阳极)电极。基于其特定的结构,化学,电学和光学性质,这些性质取决于生长条件和制造技术,本文综述了在改善和理解MoOy化合物电化学性能方面取得的进展。考虑了各种材料(2.0≤y≤3.0),包括无水、水合物、纳米棒、纳米带、复合材料和moy薄膜。由于其较高的氧化态,MoOy化合物发生可逆的拓扑锂嵌入反应;然而,电化学特性似乎强烈依赖于晶体质量和主晶格中的结构排列。利用原位和非原位x射线衍射和拉曼光谱数据,讨论了各种moy的结构特征。在详细确定和讨论了第一周期不可逆容量损失的原因的同时,还总结了为提高性能和/或改进所采取的方法。几种亚化学计量moy正极具有优异的循环寿命(高达300次循环),具有高初始库仑效率(80-90%)和大可逆容量(>300 mAh g - 1)。钼氧化物也被归类为转换型过渡金属氧化物之一,应用于lib和sib的负极,比容量接近1000 mAh g−1。除了讨论晶体生长、表征和结构-性能关系的关键方面外,还提出并讨论了设计氧化钼材料以提高结构稳定性和电化学性能的未来前景。
{"title":"Growth, characterization and performance of bulk and nanoengineered molybdenum oxides for electrochemical energy storage and conversion","authors":"C.V. Ramana , A. Mauger , C.M. Julien","doi":"10.1016/j.pcrysgrow.2021.100533","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2021.100533","url":null,"abstract":"<div><p>Molybdenum oxides (MoO<sub>y</sub>) exhibit quite interesting structural, chemical, electrical, optical and electrochemical properties, which are often dependent on the synthetic procedures and fabrication conditions. The MoO<sub>y</sub> materiails are promising in numerous current and emerging technological applications, which include nanoelectronics, optoelectronics, energy storage and micromechanics. However, fundamental understanding of the crystal structure and engineering the phase and microstructure is the key to achieving the desired properties and performance in all of these applications. Therefore, in this review, an attempt made to provide a comprehensive review by considering the illustrative examples to highlight the fundamental scientific issues, challenges, and opportunities as related to various Mo-oxides applicable to electrochemical energy applications. In the course of development of lithium batteries delivering high-power and high-energy density for powering electric vehicles, here in this paper, we examine the performances of Mo-oxides, which are candidates as electrodes materials primarily for lithium-ion batteries (LIBs), while some aspects considered in sodium-ion batteries (SIBs) or electrochemical supercapacitors (ECs). Due to the wide range of oxidation states (from +6 to +2) they are promising as both positive (cathode) and negative (anode) electrodes of electrochemical cells. Based on their specific structural, chemical, electrical, and optical properties, which are dependent on the growth conditions and the fabrication technique, this review highlights the progress made in improving and understanding the electrochemical performance of MoO<sub>y</sub> compounds. Various materials (2.0 ≤ <em>y</em> ≤ 3.0) including anhydrous, hydrates, nanorods, nanobelts, composites and thin films of MoO<sub>y</sub> are considered. Due to their higher oxidation states, MoO<sub>y</sub> compounds undergo reversible topotactic lithium intercalation reactions; however, electrochemical features appear strongly dependent on the crystal quality and structural arrangement in the host lattice. Using <em>in-situ</em> and <em>ex-situ</em> X-ray diffraction and Raman spectroscopic data, structural characteristics of various MoO<sub>y</sub> are discussed. While the reasons for first-cycle irreversible capacity losses identified and discussed elaborately, the approaches adopted for enhanced performance and/or improvements also summarized. Several sub-stoichiometric MoO<sub>y</sub> positive electrodes exhibit excellent cycle life (up to 300 cycles) with high initial coulombic efficiency (80–90%) and large reversible capacity (>300 mAh g<sup>−1</sup>). Molybdenum oxides also categorized as one of the conversion-type transition-metal oxides and applied as negative electrodes for LIBs and SIBs with a specific capacity approaching 1000 mAh g<sup>−1</sup>. In addition to the discussion of the key aspects of crystal growth, characterization, an","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"67 3","pages":"Article 100533"},"PeriodicalIF":5.1,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2021.100533","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3389023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sapphire shaped crystals are considered as a favorable material platform of the terahertz (THz) waveguide and fiber optics. Unique physical properties of sapphire, along with advantages of the Edge-defined Film-fed Growth (EFG) technique, yield fabrication of the THz waveguides and fibers with a complex cross-section geometry directly from the Al2O3-melt, where no labour-intensive mechanical processing is required. Wide variability of the as-grown sapphire shaped crystal geometries yields different physical mechanisms of electromagnetic waveguidance. In this review, recent advantages in the THz waveguides and fibers based on the EFG-grown sapphire shaped crystals are discussed. While possessing moderate THz-wave absorbtion and quite high dispersion, flexible sapphire fibers with a simple step-index cross-section geometry yield strong confinement of guided modes in a fiber core due to a high refractive index of sapphire in the THz range. This effect opens novel opportunities of sapphire fibers in high-resolution THz imaging, using the principles of either scanning-probe near-field optical microscopy or optical fiber bundles. In turn, antiresonant and photonic crystal hard hollow-core waveguides demonstrate advanced optical performance, along with wide capabilities in THz endoscopy and sensing in harsh environments. This review highlights that the EFG-grown sapphire shaped crystals hold strong potential in different branches of THz optics.
{"title":"Sapphire waveguides and fibers for terahertz applications","authors":"G.M. Katyba , K.I. Zaytsev , I.N. Dolganova , N.V. Chernomyrdin , V.E. Ulitko , S.N. Rossolenko , I.A. Shikunova , V.N. Kurlov","doi":"10.1016/j.pcrysgrow.2021.100523","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2021.100523","url":null,"abstract":"<div><p><span>Sapphire shaped crystals are considered as a favorable material platform of the terahertz (THz) waveguide<span> and fiber optics. Unique physical properties of sapphire, along with advantages of the Edge-defined Film-fed Growth (EFG) technique, yield fabrication of the THz waveguides and fibers with a complex cross-section geometry directly from the Al</span></span><sub>2</sub>O<sub>3</sub><span><span>-melt, where no labour-intensive mechanical processing is required. Wide variability of the as-grown sapphire shaped crystal geometries yields different physical mechanisms of electromagnetic waveguidance. In this review, recent advantages in the THz waveguides and fibers based on the EFG-grown sapphire shaped crystals are discussed. While possessing moderate THz-wave absorbtion and quite high dispersion, flexible sapphire fibers with a simple step-index cross-section geometry yield strong confinement of guided modes in a fiber core due to a high </span>refractive index<span> of sapphire in the THz range. This effect opens novel opportunities of sapphire fibers in high-resolution THz imaging, using the principles of either scanning-probe near-field optical microscopy or optical fiber bundles. In turn, antiresonant and photonic crystal hard hollow-core waveguides demonstrate advanced optical performance, along with wide capabilities in THz endoscopy and sensing in harsh environments. This review highlights that the EFG-grown sapphire shaped crystals hold strong potential in different branches of THz optics.</span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"67 3","pages":"Article 100523"},"PeriodicalIF":5.1,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2021.100523","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2601090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-01DOI: 10.1016/j.pcrysgrow.2021.100534
Abdul Wasy Zia , Martin Birkett , Mohsin Ali Badshah , Munawar Iqbal
Graphitic carbon nanoparticles are in high demand for sensing, health care, and manufacturing industries. Physical vapour deposition (PVD) methods are advantageous for in-situ synthesis of graphitic carbon particles due to their ability to produce large area distributions. However, the carbon particles can agglomerate, irrespective of the PVD method, and form coagulated structures while growing inside the vacuum chamber. The random shapes and sizes of these particles lead to non-uniform properties and characteristics, hence making them less attractive for numerous industrial applications, such as energy storage batteries and structural health monitoring. Therefore, the in-situ synthesis of isolated carbon particles produced in a single-step PVD process having control over size, shape, and large area distributions has remained inspiring for the past 30 years. This article gives an overview of characteristics, applications, industrial impact, and global revenue of graphite particles. A critical review on in-situ growth of graphitic carbon particles with different PVD methods is described with selected examples. A comprehensive summary compares the capability of different PVD techniques and corresponding carbon resources to produce graphitic particles with numerous sizes and shapes. Analysing the outputs of various PVD methods, a generalised four-stage model is explained to understand the in-situ growth of graphitic carbon particles, which start from seedings and grow as particles, clusters, and granular structures. It is concluded that the isolated carbon particles can be produced with specific size, shape, and distributions irrespective of the PVD method employed, by maintaining precise control over combinations of deposition system properties and process parameters.
{"title":"Progress in-situ synthesis of graphitic carbon nanoparticles with physical vapour deposition","authors":"Abdul Wasy Zia , Martin Birkett , Mohsin Ali Badshah , Munawar Iqbal","doi":"10.1016/j.pcrysgrow.2021.100534","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2021.100534","url":null,"abstract":"<div><p><span>Graphitic carbon nanoparticles<span> are in high demand for sensing, health care, and manufacturing industries. Physical vapour deposition (PVD) methods are advantageous for </span></span><em>in-situ</em><span><span> synthesis of graphitic carbon particles<span> due to their ability to produce large area distributions. However, the carbon particles can agglomerate, irrespective of the PVD method, and form coagulated structures while growing inside the vacuum chamber. The random shapes and sizes of these particles lead to non-uniform properties and characteristics, hence making them less attractive for numerous industrial applications, such as energy storage batteries and </span></span>structural health monitoring. Therefore, the </span><em>in-situ</em> synthesis of isolated carbon particles produced in a single-step PVD process having control over size, shape, and large area distributions has remained inspiring for the past 30 years. This article gives an overview of characteristics, applications, industrial impact, and global revenue of graphite particles. A critical review on <em>in-situ</em> growth of graphitic carbon particles with different PVD methods is described with selected examples. A comprehensive summary compares the capability of different PVD techniques and corresponding carbon resources to produce graphitic particles with numerous sizes and shapes. Analysing the outputs of various PVD methods, a generalised four-stage model is explained to understand the <em>in-situ</em> growth of graphitic carbon particles, which start from seedings and grow as particles, clusters, and granular structures. It is concluded that the isolated carbon particles can be produced with specific size, shape, and distributions irrespective of the PVD method employed, by maintaining precise control over combinations of deposition system properties and process parameters.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"67 3","pages":"Article 100534"},"PeriodicalIF":5.1,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2021.100534","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2164405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}