The explosion shock wave pressure distribution law is significantly affected by the altitude. It is very important to clarify the altitude impact on the explosion shock wave pressure propagation law for guiding the shock wave pressure test and accurately evaluating the ammunition damage power. The paper reviews the finite element numerical simulation and actual testing results of researchers at home and abroad regarding the propagation of explosive shock wave pressure through different air and water mediums, and clarifies the impact of altitude on characterization parameters of shock wave pressure such as peak pressure, impulse, and positive pressure duration. Based on the current research status both domestically and internationally, we have pointed out the main problems that still exist in the current research process and proposed research directions that need to be focused on in subsequent studies.
{"title":"Altitude influence on the explosion shock wave pressure distribution","authors":"Liangquan Wang, D. Kong, Chundong Xu","doi":"10.21595/jme.2023.23299","DOIUrl":"https://doi.org/10.21595/jme.2023.23299","url":null,"abstract":"The explosion shock wave pressure distribution law is significantly affected by the altitude. It is very important to clarify the altitude impact on the explosion shock wave pressure propagation law for guiding the shock wave pressure test and accurately evaluating the ammunition damage power. The paper reviews the finite element numerical simulation and actual testing results of researchers at home and abroad regarding the propagation of explosive shock wave pressure through different air and water mediums, and clarifies the impact of altitude on characterization parameters of shock wave pressure such as peak pressure, impulse, and positive pressure duration. Based on the current research status both domestically and internationally, we have pointed out the main problems that still exist in the current research process and proposed research directions that need to be focused on in subsequent studies.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47820728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laser surfacing repair technology for sealing welds is widely used in metal repair. Due to welding technology and usage scenarios, process defects on the metal surface are inevitable. Therefore, ultrasonic surface wave technology is used to analyze the surface defects of metal materials. Principal Component Analysis (PCA) is used to extract the main defect signals on the metal surface, and synthetic aperture focusing technology is used to reduce imaging errors. Considering the lack of PCA in imaging defects, wavelet domain hidden Markov models (WHMM) are combined to optimize the signal, thereby improving the inspection effect of metal defects. In the test results of the relationship between the propagation distance of 316 L steel and the defect echo signal, the echo signal gradually fitted as the propagation distance increased. When the propagation distance was greater than 10 mm, the image acquisition defect signal had significant noise points. Various techniques were used to process the original echo signals of metal surface defects. The improved PCA-WHMM algorithm had significant advantages with the SNR value of the defect image increased by 13.65 % compared to PCA-WHMM. At the same time, the surface repair effects of laser surfacing 316 L metal before and after optimization were compared. The hardness, toughness, and corrosion resistance of the optimized metal were significantly improved. The proposed technological innovation combines traditional laser surfacing repair with deep learning fault diagnosis, which not only greatly improves the efficiency of fault diagnosis, but also proves that this research can effectively avoid common focus issues of laser surfacing repair technology, providing important technical reference for the application of ultrasonic technology in metal defect detection.
{"title":"Surface defects detection in metal materials repaired by laser surfacing of seal welds","authors":"Weiyong Wang","doi":"10.21595/jme.2023.23316","DOIUrl":"https://doi.org/10.21595/jme.2023.23316","url":null,"abstract":"Laser surfacing repair technology for sealing welds is widely used in metal repair. Due to welding technology and usage scenarios, process defects on the metal surface are inevitable. Therefore, ultrasonic surface wave technology is used to analyze the surface defects of metal materials. Principal Component Analysis (PCA) is used to extract the main defect signals on the metal surface, and synthetic aperture focusing technology is used to reduce imaging errors. Considering the lack of PCA in imaging defects, wavelet domain hidden Markov models (WHMM) are combined to optimize the signal, thereby improving the inspection effect of metal defects. In the test results of the relationship between the propagation distance of 316 L steel and the defect echo signal, the echo signal gradually fitted as the propagation distance increased. When the propagation distance was greater than 10 mm, the image acquisition defect signal had significant noise points. Various techniques were used to process the original echo signals of metal surface defects. The improved PCA-WHMM algorithm had significant advantages with the SNR value of the defect image increased by 13.65 % compared to PCA-WHMM. At the same time, the surface repair effects of laser surfacing 316 L metal before and after optimization were compared. The hardness, toughness, and corrosion resistance of the optimized metal were significantly improved. The proposed technological innovation combines traditional laser surfacing repair with deep learning fault diagnosis, which not only greatly improves the efficiency of fault diagnosis, but also proves that this research can effectively avoid common focus issues of laser surfacing repair technology, providing important technical reference for the application of ultrasonic technology in metal defect detection.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49600687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to improve the regional planning ability of land acquisition for water conservancy and hydropower construction, a technology of land acquisition area mapping for water conservancy and hydropower construction based on UAV aerial survey is proposed. This technology uses UAV aerial survey remote sensing detection technology to realize remote sensing image monitoring of land acquisition planning for water conservancy and hydropower construction, so as to improve the accuracy and efficiency of regional planning. This technology mainly extracts information such as edge contours, key feature points, and texture pixels from remote sensing images for land acquisition mapping in water conservancy and hydropower construction. The line element feature distribution points monitored by drones scatter remote sensing images as the data source, and linear object segmentation detection processing method is used for analysis. Based on the clustering characteristics of geometric attributes such as dams, water body characteristics, fence facilities, and power generation equipment in water conservancy and hydropower construction, a regional clustering analysis model for land acquisition mapping in water conservancy and hydropower construction is established using the diversity clustering method of different terrain and geomorphic feature distribution patterns. By utilizing the regional distribution fusion of concave and convex terrain, detecting and quantitatively estimating the spatial resolution and complexity of land acquisition for water conservancy and hydropower construction, optimizing the mapping of land acquisition areas for water conservancy and hydropower construction, and providing data basis for land acquisition protection management in water conservancy and hydropower construction planning. The experiment shows that this method has good output resolution, land planning ability, and classification performance for different types of land acquisition for water conservancy and hydropower construction, and has broad prospects for promotion and application in practical applications.
{"title":"Regional mapping method of land acquisition for water conservancy and hydropower construction based on UAV aerial survey","authors":"Cheng-cai Luo","doi":"10.21595/jme.2023.23239","DOIUrl":"https://doi.org/10.21595/jme.2023.23239","url":null,"abstract":"In order to improve the regional planning ability of land acquisition for water conservancy and hydropower construction, a technology of land acquisition area mapping for water conservancy and hydropower construction based on UAV aerial survey is proposed. This technology uses UAV aerial survey remote sensing detection technology to realize remote sensing image monitoring of land acquisition planning for water conservancy and hydropower construction, so as to improve the accuracy and efficiency of regional planning. This technology mainly extracts information such as edge contours, key feature points, and texture pixels from remote sensing images for land acquisition mapping in water conservancy and hydropower construction. The line element feature distribution points monitored by drones scatter remote sensing images as the data source, and linear object segmentation detection processing method is used for analysis. Based on the clustering characteristics of geometric attributes such as dams, water body characteristics, fence facilities, and power generation equipment in water conservancy and hydropower construction, a regional clustering analysis model for land acquisition mapping in water conservancy and hydropower construction is established using the diversity clustering method of different terrain and geomorphic feature distribution patterns. By utilizing the regional distribution fusion of concave and convex terrain, detecting and quantitatively estimating the spatial resolution and complexity of land acquisition for water conservancy and hydropower construction, optimizing the mapping of land acquisition areas for water conservancy and hydropower construction, and providing data basis for land acquisition protection management in water conservancy and hydropower construction planning. The experiment shows that this method has good output resolution, land planning ability, and classification performance for different types of land acquisition for water conservancy and hydropower construction, and has broad prospects for promotion and application in practical applications.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44404627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Power cable is a piece of major transmission equipment, and its operating temperature as a major factor determines whether the cable system can operate safely and reliably and the current-carrying capacity. Therefore, it is of great significance to master the real-time temperature and the distribution of the power cable core. During the aging of cable insulation, temperature, as a major factor, directly determines the aging rate. One of the basic parameters on the power cable is the ampacity. If the ampacity is high, the cable will be overloaded. In this paper, the thermal circuit method is used to construct and calculate the cable, and the whale algorithm is used to estimate the temperature of the cable conductor. The conductor is estimated accurately within the allowable error range. The results are compared with the results of finite element simulation to verify the effectiveness of the finite element method. Through the experimental analysis, the model is established according to the cable trench on the spot. The steady-state temperature field is calculated through parameter setting. The average packet loss rate is 0.066 %, and the relative error is 0.32 %, which proves that this study can optimize the communication mode of the network and achieve a better monitoring effect. The method realizes the real-time temperature rise prediction of the cable core conductor by using the temperature rise of the outer skin. It can provide a certain theoretical basis for the online monitoring and engineering practical application of the cable core temperature and has practical significance.
{"title":"Temperature and humidity sensor monitoring of directly buried cable based on temperature field distribution simulation of power cable","authors":"Menghao Lin, Qian Shi, Tianle Wang","doi":"10.21595/jme.2023.23178","DOIUrl":"https://doi.org/10.21595/jme.2023.23178","url":null,"abstract":"Power cable is a piece of major transmission equipment, and its operating temperature as a major factor determines whether the cable system can operate safely and reliably and the current-carrying capacity. Therefore, it is of great significance to master the real-time temperature and the distribution of the power cable core. During the aging of cable insulation, temperature, as a major factor, directly determines the aging rate. One of the basic parameters on the power cable is the ampacity. If the ampacity is high, the cable will be overloaded. In this paper, the thermal circuit method is used to construct and calculate the cable, and the whale algorithm is used to estimate the temperature of the cable conductor. The conductor is estimated accurately within the allowable error range. The results are compared with the results of finite element simulation to verify the effectiveness of the finite element method. Through the experimental analysis, the model is established according to the cable trench on the spot. The steady-state temperature field is calculated through parameter setting. The average packet loss rate is 0.066 %, and the relative error is 0.32 %, which proves that this study can optimize the communication mode of the network and achieve a better monitoring effect. The method realizes the real-time temperature rise prediction of the cable core conductor by using the temperature rise of the outer skin. It can provide a certain theoretical basis for the online monitoring and engineering practical application of the cable core temperature and has practical significance.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43122945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Geotextile layers are arranged on and below the geomembrane to prevent the geomembrane from being punctured and damaged. The geotextile not only plays a role in physical protection, like anti-puncture but also makes a great difference to the mechanical properties of the geomembrane’s air expansion deformation. In this paper, the bulging deformation of geotextile is simplified as spherical bulging deformation under ring-restrained conditions. Using the special bulging deformation test equipment, the bulging deformation experiment of geotextile is realized, the main factors affecting the bulging deformation are analyzed, the law of bulging deformation and failure of geotextile is summarized, the failure mechanism of geotextile and the Influence of geotextile on the properties of geomembrane are discussed, and the following conclusions are drawn. The failure of bulging deformation of geotextiles belongs to tensile failure, which is characterized by fast speed and high strength. The typical failure mode is spindle-shaped cracks distributed along the crown, whose failure mechanism belongs to tensile failure produced in weak areas. The bulging deformation of the geotextile shows nonuniformity, with the largest deformation at the crown top and the smallest deformation at the ring constraint. When the geotextile is covered on the geomembrane, bulging pressure is shared by both the geomembrane and the geotextile. At the initial deformation stage, the geomembrane replaces it, and then the geotextile bears more internal pressure and plays a decisive role till destruction.
{"title":"Experimental study on bulge deformation of geotextile under ring-restrained conditions","authors":"Zhe Yang, Xia Xue, Wanglin Li, Chen Li","doi":"10.21595/jme.2023.23042","DOIUrl":"https://doi.org/10.21595/jme.2023.23042","url":null,"abstract":"Geotextile layers are arranged on and below the geomembrane to prevent the geomembrane from being punctured and damaged. The geotextile not only plays a role in physical protection, like anti-puncture but also makes a great difference to the mechanical properties of the geomembrane’s air expansion deformation. In this paper, the bulging deformation of geotextile is simplified as spherical bulging deformation under ring-restrained conditions. Using the special bulging deformation test equipment, the bulging deformation experiment of geotextile is realized, the main factors affecting the bulging deformation are analyzed, the law of bulging deformation and failure of geotextile is summarized, the failure mechanism of geotextile and the Influence of geotextile on the properties of geomembrane are discussed, and the following conclusions are drawn. The failure of bulging deformation of geotextiles belongs to tensile failure, which is characterized by fast speed and high strength. The typical failure mode is spindle-shaped cracks distributed along the crown, whose failure mechanism belongs to tensile failure produced in weak areas. The bulging deformation of the geotextile shows nonuniformity, with the largest deformation at the crown top and the smallest deformation at the ring constraint. When the geotextile is covered on the geomembrane, bulging pressure is shared by both the geomembrane and the geotextile. At the initial deformation stage, the geomembrane replaces it, and then the geotextile bears more internal pressure and plays a decisive role till destruction.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45853710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Can Wang, Dayang Li, Panida Kaewniam, Jie Wang, Tareq Al Hababi
Cracks and other damages generated during the service of bridges can reduce the load bearing capacity and threaten operational safety.Finite Element Model Updating (FEMU), as one of the important means of structural health diagnosis, identifies structural damage through changes in model parameters. The three key factors of FEMU are updating variables, objective functions, and optimization algorithms. The poor selection of the above three factors in existing research leads to high calculation errors in model updating, and inevitably lead to the inability of the finite element model to carry out structural health monitoring, affecting the normal operation of the structure. In order to solve the above problems, this paper combines previous research and establishes a model updating algorithm based on the combination of eigenvector difference approach and particle swarm optimization (ED-PSO). The validity and accuracy of this method are verified by finite element analysis of a simply supported beam. Compared with the existing model updating algorithms based on the combination of static and dynamic methods and particle swarm optimization (CSD-PSO), the results show that the proposed ED-PSO model updating algorithm has higher accuracy and is expected to be better applied to bridge finite element model updating research.
{"title":"An ED-PSO model updating algorithm for structure health monitoring of beam-like structures","authors":"Can Wang, Dayang Li, Panida Kaewniam, Jie Wang, Tareq Al Hababi","doi":"10.21595/jme.2023.23417","DOIUrl":"https://doi.org/10.21595/jme.2023.23417","url":null,"abstract":"Cracks and other damages generated during the service of bridges can reduce the load bearing capacity and threaten operational safety.Finite Element Model Updating (FEMU), as one of the important means of structural health diagnosis, identifies structural damage through changes in model parameters. The three key factors of FEMU are updating variables, objective functions, and optimization algorithms. The poor selection of the above three factors in existing research leads to high calculation errors in model updating, and inevitably lead to the inability of the finite element model to carry out structural health monitoring, affecting the normal operation of the structure. In order to solve the above problems, this paper combines previous research and establishes a model updating algorithm based on the combination of eigenvector difference approach and particle swarm optimization (ED-PSO). The validity and accuracy of this method are verified by finite element analysis of a simply supported beam. Compared with the existing model updating algorithms based on the combination of static and dynamic methods and particle swarm optimization (CSD-PSO), the results show that the proposed ED-PSO model updating algorithm has higher accuracy and is expected to be better applied to bridge finite element model updating research.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45192764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vortex electromagnetic waves have superior performance over electromagnetic waves. In order to improve the radar super-resolution lateralization technique in its missing modes, this study proposes to start from the perspective of mode missing. The missing modes are reconstructed using the Adaptive Step Size Gradient Descent (ASSGD) method by exploiting the features of the missing modes. The linear minimum mean square error (LMMSE) estimation method is also used to solve the problem of poor reconstruction accuracy due to the Missing Modes. The Missing Modes Iterative Adaptive Approach (MMIAA) algorithm and Missing Modes Sparse Learning via Iterative Minimization (MMSLIM) algorithm are then used. Minimization (MMSLIM) algorithm to recover missing modes. The results showed that the RMSEs of the recovery errors of MMSLIM, MMIAA and ASSGD were 0.16, 0.31 and 0.82 respectively at a modal missing ratio of 0.7, while ASSGD fails to recover the missing modal data at a modal missing ratio of 0.9. The overall data quality of the azimuthally estimated RMSE was average when the signal-to-noise ratio was at [–5, 10] dB. And the curve becomes flatter when it reaches 15 dB or more, indicating that MMSLIM, MMIAA has important theoretical and practical value.
{"title":"Super resolution direction finding technique of vortex electromagnetic wave radar in missing mode","authors":"Huping Guo","doi":"10.21595/jme.2023.23297","DOIUrl":"https://doi.org/10.21595/jme.2023.23297","url":null,"abstract":"Vortex electromagnetic waves have superior performance over electromagnetic waves. In order to improve the radar super-resolution lateralization technique in its missing modes, this study proposes to start from the perspective of mode missing. The missing modes are reconstructed using the Adaptive Step Size Gradient Descent (ASSGD) method by exploiting the features of the missing modes. The linear minimum mean square error (LMMSE) estimation method is also used to solve the problem of poor reconstruction accuracy due to the Missing Modes. The Missing Modes Iterative Adaptive Approach (MMIAA) algorithm and Missing Modes Sparse Learning via Iterative Minimization (MMSLIM) algorithm are then used. Minimization (MMSLIM) algorithm to recover missing modes. The results showed that the RMSEs of the recovery errors of MMSLIM, MMIAA and ASSGD were 0.16, 0.31 and 0.82 respectively at a modal missing ratio of 0.7, while ASSGD fails to recover the missing modal data at a modal missing ratio of 0.9. The overall data quality of the azimuthally estimated RMSE was average when the signal-to-noise ratio was at [–5, 10] dB. And the curve becomes flatter when it reaches 15 dB or more, indicating that MMSLIM, MMIAA has important theoretical and practical value.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":"1 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42705290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wireless sensor networks are widely used in communication, medical treatment, radar and detection. With the vigorous development of computer science and intelligent technology, wireless sensor networks are also constantly improving in the development. Sensor networks are prone to noise interference when input signals, which will affect the estimation accuracy of the network. In order to enhance the signal of sensor network and improve its accuracy, a distributed filtering algorithm based on fusion adaptive weighting is proposed. Before building the model, the experiment first studied the three traditional adaptive filtering algorithms, LMS, RLS and AP, as the basis for building the experimental model. Then, combined with the distributed characteristics of the sensor network, the attributes of the nodes and their influence in the network were considered in the experiment, and the importance and support of the nodes were linearly weighted to obtain the estimated certainty of each sensor node to the target. Finally, a fusion adaptive weighted distributed filtering algorithm is constructed in the experiment. The simulation experiment verifies that the constructed model can reduce the noise interference to a certain extent, which is conducive to the enhancement of its network signal, and its error estimation accuracy is also improved.
{"title":"Signal enhancement in wireless sensor networks based on adaptive filters","authors":"Jun Tang","doi":"10.21595/jme.2023.23148","DOIUrl":"https://doi.org/10.21595/jme.2023.23148","url":null,"abstract":"Wireless sensor networks are widely used in communication, medical treatment, radar and detection. With the vigorous development of computer science and intelligent technology, wireless sensor networks are also constantly improving in the development. Sensor networks are prone to noise interference when input signals, which will affect the estimation accuracy of the network. In order to enhance the signal of sensor network and improve its accuracy, a distributed filtering algorithm based on fusion adaptive weighting is proposed. Before building the model, the experiment first studied the three traditional adaptive filtering algorithms, LMS, RLS and AP, as the basis for building the experimental model. Then, combined with the distributed characteristics of the sensor network, the attributes of the nodes and their influence in the network were considered in the experiment, and the importance and support of the nodes were linearly weighted to obtain the estimated certainty of each sensor node to the target. Finally, a fusion adaptive weighted distributed filtering algorithm is constructed in the experiment. The simulation experiment verifies that the constructed model can reduce the noise interference to a certain extent, which is conducive to the enhancement of its network signal, and its error estimation accuracy is also improved.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45914231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to the harsh working environment and various types of faults in mine hoists, the implementation of conventional detection is relatively difficult. In order to improve the maintenance and fault detection efficiency of mine hoist, a portable vibration detection system is designed and applied in this paper, which can judge the type and characteristics of mechanical faults according to the different responses of vibration signals. According to the test conditions of the vibration system, the overall structure and functional composition of the hardware system are established. The key functional modules are designed, including signal conditioning module, main control module, vibration sensor and power management module. The main reasons that affect and produce the hoist fault and mechanical vibration are analyzed. The wavelet packet analysis method is proposed to realize the decomposition of low frequency and high frequency signals to improve the signal resolution of the whole frequency band in the frequency domain. The vibration test system has the function of real-time data transmission and control. The realization methods include WiFi and reserved RS485 communication interface, which can match the communication rate with the data sampling rate. The amplifying circuit of the electric signal is designed to effectively ensure that the output voltage of the charge amplifier is within the input range of the amplified ADC value. In order to verify the working effect of the system, the most common gearbox and bearing failures are taken as examples. The response signals of vibration test and diagnosis can be effectively obtained, and the fault types and characteristics can be accurately judged. Through confusion matrix analysis, the reliability of the system detection index is effectively verified. The research results show that the data of the vibration detection system is stable and reliable, and can achieve good troubleshooting effect. It also can be known that different fault types can excite different vibration responses, especially at resonance frequencies. According to the verification, the data of the vibration detection system is stable and reliable, and can achieve good troubleshooting effect.
{"title":"Application of vibration signal detection in mine hoist fault monitoring system","authors":"Yonghong Fan, Jinyan Zhang, Da-wei Han","doi":"10.21595/jme.2023.23135","DOIUrl":"https://doi.org/10.21595/jme.2023.23135","url":null,"abstract":"Due to the harsh working environment and various types of faults in mine hoists, the implementation of conventional detection is relatively difficult. In order to improve the maintenance and fault detection efficiency of mine hoist, a portable vibration detection system is designed and applied in this paper, which can judge the type and characteristics of mechanical faults according to the different responses of vibration signals. According to the test conditions of the vibration system, the overall structure and functional composition of the hardware system are established. The key functional modules are designed, including signal conditioning module, main control module, vibration sensor and power management module. The main reasons that affect and produce the hoist fault and mechanical vibration are analyzed. The wavelet packet analysis method is proposed to realize the decomposition of low frequency and high frequency signals to improve the signal resolution of the whole frequency band in the frequency domain. The vibration test system has the function of real-time data transmission and control. The realization methods include WiFi and reserved RS485 communication interface, which can match the communication rate with the data sampling rate. The amplifying circuit of the electric signal is designed to effectively ensure that the output voltage of the charge amplifier is within the input range of the amplified ADC value. In order to verify the working effect of the system, the most common gearbox and bearing failures are taken as examples. The response signals of vibration test and diagnosis can be effectively obtained, and the fault types and characteristics can be accurately judged. Through confusion matrix analysis, the reliability of the system detection index is effectively verified. The research results show that the data of the vibration detection system is stable and reliable, and can achieve good troubleshooting effect. It also can be known that different fault types can excite different vibration responses, especially at resonance frequencies. According to the verification, the data of the vibration detection system is stable and reliable, and can achieve good troubleshooting effect.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44679704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Population growth and rapid urban development have led to urbanization, caused environmental problems such as: heat islands and air pollution. The installation of park green space system is widely regarded as effective in alleviating the thermal environment and improving the surrounding air quality. Therefore, this study focuses on parks in highly developed cities, The measurements of terrain and topography were conducted using unmanned aerial vehicles (UAVs) to establish a terrain model. This model was combined with environmental factors such as wind speed, direction, solar radiation, temperature, and soil infiltration were measured to assess the correlation between different landscape elements and the environment in various parks. In addition, an air particulate monitor (Arduino Uno) was developed to measure the contribution of green space systems to urban air pollution. Furthermore, by integrating measurements of multiple factors and employing the Pearson's correlation method and three-dimensional scatter plots, this study explored the relationships between many variables of park. Test results show that 1. The materials of the landscape elements should have moderate thermal conductivity; 2. The moisture content of the soil of grassland should be monitored; 3. To improve the air quality, the correlation between wind speed and wind direction should be considered in the placement of landscape elements.
{"title":"Influence of landscape elements in the park on thermal environment – using a metropolitan park in Taichung city as an example","authors":"W. Sung, M. Shih, T. Chen, Chun-hao Liu","doi":"10.21595/jme.2023.23248","DOIUrl":"https://doi.org/10.21595/jme.2023.23248","url":null,"abstract":"Population growth and rapid urban development have led to urbanization, caused environmental problems such as: heat islands and air pollution. The installation of park green space system is widely regarded as effective in alleviating the thermal environment and improving the surrounding air quality. Therefore, this study focuses on parks in highly developed cities, The measurements of terrain and topography were conducted using unmanned aerial vehicles (UAVs) to establish a terrain model. This model was combined with environmental factors such as wind speed, direction, solar radiation, temperature, and soil infiltration were measured to assess the correlation between different landscape elements and the environment in various parks. In addition, an air particulate monitor (Arduino Uno) was developed to measure the contribution of green space systems to urban air pollution. Furthermore, by integrating measurements of multiple factors and employing the Pearson's correlation method and three-dimensional scatter plots, this study explored the relationships between many variables of park. Test results show that 1. The materials of the landscape elements should have moderate thermal conductivity; 2. The moisture content of the soil of grassland should be monitored; 3. To improve the air quality, the correlation between wind speed and wind direction should be considered in the placement of landscape elements.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44682352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}