Xiao-lei Man, Hongge Li, Hao Xiao, Hanyue Wang, Mengyu Rong
The permeability of sand covered with geotextile is affected by the permeability of geotextile, which is related to the tensile state of the geotextile. Considering the weaving mode of geotextile, the effects of warp tension and weft tension on the permeability of sand covered with geotextile were studied by experiment. Four different specifications of geotextiles were selected for warp and weft tension respectively. The changes of permeability parameters of sand covered with geotextile under non tension, warp and weft tension were measured by vertical permeability instrument, and the effects of warp and weft tension on permeability parameters such as seepage velocity, sand loss and gradient ratio were analyzed. The test results show that the water permeability and anti silting performance of the geotextile increase with the increase of tensile strain, and the soil conservation performance decreases with the tensile strain increasing. Meanwhile, the relationship between permeability and warp tensile strain is not monotonic. When the warp tensile strain 3%, the water permeability and anti silting performance of geotextile are the weakest, and the soil conservation performance is the strongest.
{"title":"Effect of warp and weft uniaxial tension on the permeability of sand covered with geotextile","authors":"Xiao-lei Man, Hongge Li, Hao Xiao, Hanyue Wang, Mengyu Rong","doi":"10.21595/jme.2022.22681","DOIUrl":"https://doi.org/10.21595/jme.2022.22681","url":null,"abstract":"The permeability of sand covered with geotextile is affected by the permeability of geotextile, which is related to the tensile state of the geotextile. Considering the weaving mode of geotextile, the effects of warp tension and weft tension on the permeability of sand covered with geotextile were studied by experiment. Four different specifications of geotextiles were selected for warp and weft tension respectively. The changes of permeability parameters of sand covered with geotextile under non tension, warp and weft tension were measured by vertical permeability instrument, and the effects of warp and weft tension on permeability parameters such as seepage velocity, sand loss and gradient ratio were analyzed. The test results show that the water permeability and anti silting performance of the geotextile increase with the increase of tensile strain, and the soil conservation performance decreases with the tensile strain increasing. Meanwhile, the relationship between permeability and warp tensile strain is not monotonic. When the warp tensile strain 3%, the water permeability and anti silting performance of geotextile are the weakest, and the soil conservation performance is the strongest.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46726768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vilma Petrauskiene, J. Ragulskiene, Huaxin Zhu, Jie Wang, Maosen Cao
The slope fitting line between MPE (multi-scale permutation entropy) and MWPE (multi-scale weighted permutation entropy) is recently proposed as a discriminant statistic for testing the nonlinearity of a time series. The main objective of this paper is to demonstrate that the selection of the optimal parameters of the non-uniform embedding is essential for the proposed discriminant statistic. In particular, the presented case studies indicate that the modified discriminant statistic based on non-uniform embedding can detect differences between such time series which remain indistinguishable if the original approach is used.
{"title":"The discriminant statistic based on MPE-MWPE relationship and non-uniform embedding","authors":"Vilma Petrauskiene, J. Ragulskiene, Huaxin Zhu, Jie Wang, Maosen Cao","doi":"10.21595/jme.2022.22897","DOIUrl":"https://doi.org/10.21595/jme.2022.22897","url":null,"abstract":"The slope fitting line between MPE (multi-scale permutation entropy) and MWPE (multi-scale weighted permutation entropy) is recently proposed as a discriminant statistic for testing the nonlinearity of a time series. The main objective of this paper is to demonstrate that the selection of the optimal parameters of the non-uniform embedding is essential for the proposed discriminant statistic. In particular, the presented case studies indicate that the modified discriminant statistic based on non-uniform embedding can detect differences between such time series which remain indistinguishable if the original approach is used.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42824483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ancient buildings carry important information, such as ancient politics, economy, culture, customs. However, with the course of time, ancient buildings are often damaged to different degrees, so the restoration of ancient buildings is of great importance from the historical point of view. There are three commonly used non-contact measurement methods, including UAV-based oblique photogrammetry, terrestrial laser scanning, and close-range photogrammetry. These methods can provide integrated three-dimensional surveys of open spaces, indoor and outdoor surfaces for ancient buildings. Theoretically, the combined use of the three measurement methods can provide 3D (three-dimensional) data support for the protection and repair of ancient buildings. However, data from the three methods need to be fused urgently, because if the image data is not used, it will lead to a lack of real and intuitive texture information, and if only image matching point clouds are used, their accuracy will be lower than that of terrestrial laser scanning point clouds, and it will also lead to a lack of digital expression for components with high indoor historical value of ancient buildings. Therefore, in this paper, a data fusion method is proposed to achieve multi-source and multi-scale 3D data fusion of indoor and outdoor surfaces. It takes the terrestrial laser point cloud as the core, and based on fine component texture features and building outline features, respectively, the ground close-range image matching point cloud and UAV oblique image matching point cloud are registered with the terrestrial laser point cloud. This method unifies the data from three measurements in the point cloud and realizes the high-precision fusion of these three data. Based on the indoor and outdoor 3D full-element point cloud formed by the proposed method, it will constitute a visual point cloud model in producing plans, elevations, sections, orthophotos, and other elements for the study of ancient buildings.
{"title":"Indoor and outdoor multi-source 3D data fusion method for ancient buildings","authors":"Shuangfeng Wei, Changchang Liu, Nian Tang, Xiaoyu Zhao, Haocheng Zhang, Xiaohang Zhou","doi":"10.21595/jme.2022.22710","DOIUrl":"https://doi.org/10.21595/jme.2022.22710","url":null,"abstract":"Ancient buildings carry important information, such as ancient politics, economy, culture, customs. However, with the course of time, ancient buildings are often damaged to different degrees, so the restoration of ancient buildings is of great importance from the historical point of view. There are three commonly used non-contact measurement methods, including UAV-based oblique photogrammetry, terrestrial laser scanning, and close-range photogrammetry. These methods can provide integrated three-dimensional surveys of open spaces, indoor and outdoor surfaces for ancient buildings. Theoretically, the combined use of the three measurement methods can provide 3D (three-dimensional) data support for the protection and repair of ancient buildings. However, data from the three methods need to be fused urgently, because if the image data is not used, it will lead to a lack of real and intuitive texture information, and if only image matching point clouds are used, their accuracy will be lower than that of terrestrial laser scanning point clouds, and it will also lead to a lack of digital expression for components with high indoor historical value of ancient buildings. Therefore, in this paper, a data fusion method is proposed to achieve multi-source and multi-scale 3D data fusion of indoor and outdoor surfaces. It takes the terrestrial laser point cloud as the core, and based on fine component texture features and building outline features, respectively, the ground close-range image matching point cloud and UAV oblique image matching point cloud are registered with the terrestrial laser point cloud. This method unifies the data from three measurements in the point cloud and realizes the high-precision fusion of these three data. Based on the indoor and outdoor 3D full-element point cloud formed by the proposed method, it will constitute a visual point cloud model in producing plans, elevations, sections, orthophotos, and other elements for the study of ancient buildings.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45280663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chunhui Xie, Yu Wang, Huaxin Zhu, Jie Wang, L. Cui, M. Cao
The contradiction between ships and bridges is becoming increasingly prominent, and ship-bridge collision accidents occur frequently. However, the existing researches focus on the impact force, the bridge will be simplified to a single pier, but the single pier collision model cannot accurately reflect the dynamic behaviors and damage evolution process of collision. In order to solve this problem, a refined barge-whole bridge collision finite element model is established. This model can be used to analyze the dynamic characteristics of barge and whole bridge collision. According to finite element results, the impact force can be divided into four phases: (1) Linear elastic phase, (2) Buckling unstable phase, (3) Plastic deformation phase and (4) Unloading phase. The impact velocity and barge mass change the initial kinetic energy of the barge, which is positively correlated with the peak impact force and the duration of the impact force. Compared with the barge-single pier collision model, the barge-whole bridge collision model is more systematic and comprehensive in reflecting the dynamic behavior of collision. In this paper, the research of barge-bridge collision provides a scientific basic theoretical basis for the design of anti-collision facilities, the proposal of post-collision damage assessment techniques and the development of bridge post-collision warning system.
{"title":"Nonlinear dynamic behavior analysis of bridge pier impacted by a moving barge","authors":"Chunhui Xie, Yu Wang, Huaxin Zhu, Jie Wang, L. Cui, M. Cao","doi":"10.21595/jme.2022.22824","DOIUrl":"https://doi.org/10.21595/jme.2022.22824","url":null,"abstract":"The contradiction between ships and bridges is becoming increasingly prominent, and ship-bridge collision accidents occur frequently. However, the existing researches focus on the impact force, the bridge will be simplified to a single pier, but the single pier collision model cannot accurately reflect the dynamic behaviors and damage evolution process of collision. In order to solve this problem, a refined barge-whole bridge collision finite element model is established. This model can be used to analyze the dynamic characteristics of barge and whole bridge collision. According to finite element results, the impact force can be divided into four phases: (1) Linear elastic phase, (2) Buckling unstable phase, (3) Plastic deformation phase and (4) Unloading phase. The impact velocity and barge mass change the initial kinetic energy of the barge, which is positively correlated with the peak impact force and the duration of the impact force. Compared with the barge-single pier collision model, the barge-whole bridge collision model is more systematic and comprehensive in reflecting the dynamic behavior of collision. In this paper, the research of barge-bridge collision provides a scientific basic theoretical basis for the design of anti-collision facilities, the proposal of post-collision damage assessment techniques and the development of bridge post-collision warning system.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48468788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenhui Zhang, Zhi-Wei Wen, Yangfan Ye, Shuhua Zhou
As the key connecting part of the rigid flexible coupling manipulator, the structural dynamic characteristics of the bolted joint are analyzed by using the joint simulation technology of pro/e and ANSYS. Based on the spring equivalent principle, the finite element equivalent model of bolt joint is established, the relationship equation between contact surface pressure and bolt preload is derived, and its stress state is analyzed; Based on the micro convex deformation model and Hertz contact theory, the tangential stiffness equation and normal stiffness equation of the bolted joint are derived respectively. The three-dimensional model of the bolted joint is established by using pro/e and imported into ANSYS for joint simulation. The simulation experiments reveal the influence of bolt joint vibration characteristics under different conditions from the aspects of bolt diameter, pre tightening force, bolt group number and bolt distribution. The conclusions have important engineering value for the structural optimization of rigid flexible coupling manipulator.
{"title":"Structural mechanics analysis of bolt joint of rigid flexible coupling manipulator","authors":"Wenhui Zhang, Zhi-Wei Wen, Yangfan Ye, Shuhua Zhou","doi":"10.21595/jme.2022.22688","DOIUrl":"https://doi.org/10.21595/jme.2022.22688","url":null,"abstract":"As the key connecting part of the rigid flexible coupling manipulator, the structural dynamic characteristics of the bolted joint are analyzed by using the joint simulation technology of pro/e and ANSYS. Based on the spring equivalent principle, the finite element equivalent model of bolt joint is established, the relationship equation between contact surface pressure and bolt preload is derived, and its stress state is analyzed; Based on the micro convex deformation model and Hertz contact theory, the tangential stiffness equation and normal stiffness equation of the bolted joint are derived respectively. The three-dimensional model of the bolted joint is established by using pro/e and imported into ANSYS for joint simulation. The simulation experiments reveal the influence of bolt joint vibration characteristics under different conditions from the aspects of bolt diameter, pre tightening force, bolt group number and bolt distribution. The conclusions have important engineering value for the structural optimization of rigid flexible coupling manipulator.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46679210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In a period of ten years, from 2011-2020 rainfall in Indonesia is relatively high, with annual rainfall between 460.5-4,627.4 mm. The high rainfall has implications for flooding in several provinces. During this period, almost every year several areas in Banten Province experienced floods. To predict areas of Banten Province that have the potential for flooding, forecasts of rainfall and the potential for repeated occurrences of high rainfall are carried out. In making the forecast, observations were made at the Serang Meteorological Station, the Budiarto Curug Meteorological Station, the South Tangerang Climatology Station, and the Tangerang Geophysics Station. Rainfall data from the four stations were analyzed by Fourier transform, Gumbel method and Mononobe method. Distribution analysis results obtained rainfall in Banten Province between 0.0-607.9 mm with the length of rainy days per month between 0-26 days. Then, the results of the Fourier transform analysis; Banten Province included a monsoon rain pattern with unimodial rainfall. Furthermore, the results of the analysis of the Gumbel method and the Mononobe method, Banten Province included the category of moderate rain and tended to be heavy, even extreme. Based on the results of the analysis using these two methods, in 2025 in Banten Province, it is predicted that 11 % heavy rain, 3 % very heavy rain and 1 % extreme rain are predicted. In that year, it is predicted that there will be 65 sub-districts in Banten Province that have the potential for flooding. The sub-districts that have the potential for flooding are mostly located in Serang Regency, Serang City, Tangerang City, and South Tangerang City. This potential flood is predicted to occur in: January, February, March, April, May, October and November.
{"title":"Forecasting rainfall and potential for repeated events to predict flood areas in Banten province, Indonesia","authors":"Y. Ruhiat","doi":"10.21595/jme.2022.22363","DOIUrl":"https://doi.org/10.21595/jme.2022.22363","url":null,"abstract":"In a period of ten years, from 2011-2020 rainfall in Indonesia is relatively high, with annual rainfall between 460.5-4,627.4 mm. The high rainfall has implications for flooding in several provinces. During this period, almost every year several areas in Banten Province experienced floods. To predict areas of Banten Province that have the potential for flooding, forecasts of rainfall and the potential for repeated occurrences of high rainfall are carried out. In making the forecast, observations were made at the Serang Meteorological Station, the Budiarto Curug Meteorological Station, the South Tangerang Climatology Station, and the Tangerang Geophysics Station. Rainfall data from the four stations were analyzed by Fourier transform, Gumbel method and Mononobe method. Distribution analysis results obtained rainfall in Banten Province between 0.0-607.9 mm with the length of rainy days per month between 0-26 days. Then, the results of the Fourier transform analysis; Banten Province included a monsoon rain pattern with unimodial rainfall. Furthermore, the results of the analysis of the Gumbel method and the Mononobe method, Banten Province included the category of moderate rain and tended to be heavy, even extreme. Based on the results of the analysis using these two methods, in 2025 in Banten Province, it is predicted that 11 % heavy rain, 3 % very heavy rain and 1 % extreme rain are predicted. In that year, it is predicted that there will be 65 sub-districts in Banten Province that have the potential for flooding. The sub-districts that have the potential for flooding are mostly located in Serang Regency, Serang City, Tangerang City, and South Tangerang City. This potential flood is predicted to occur in: January, February, March, April, May, October and November.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48029537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wansheng Wang, Xiao-lei Man, Wanglin Li, Xia Xue, Xiaomin Teng
To clarify the effect of particle gradation of filling soil on the dewatering and consolidation performance of geotubes, the content of four-particle size classes (powder, fine, medium, and coarse) which are commonly used in engineering as the research object was taken. The dewatering rate, soil infiltration and solid-liquid mixing pressure in the bag with time when filling soil with different particles were studied, and the soil loss of the hanging bag was analyzed from the perspective of seepage soil gradation. The research results show that the dewatering process could be divided into the quick dewatering stage, silting stage, and stable stage according to the dewatering rate. According to the performance of soil conservation, it could be divided into the loss stage and reverse filtration stage. Further, based on the effects of powder content, non-uniformity coefficient, and curvature coefficient of soil on the dewatering rate of the hanging bag, a formula for calculating the dewatering rate of geotubes is summarized.
{"title":"Experimental study on the effect of particle gradation on dewatering performance of geotubes","authors":"Wansheng Wang, Xiao-lei Man, Wanglin Li, Xia Xue, Xiaomin Teng","doi":"10.21595/jme.2022.22468","DOIUrl":"https://doi.org/10.21595/jme.2022.22468","url":null,"abstract":"To clarify the effect of particle gradation of filling soil on the dewatering and consolidation performance of geotubes, the content of four-particle size classes (powder, fine, medium, and coarse) which are commonly used in engineering as the research object was taken. The dewatering rate, soil infiltration and solid-liquid mixing pressure in the bag with time when filling soil with different particles were studied, and the soil loss of the hanging bag was analyzed from the perspective of seepage soil gradation. The research results show that the dewatering process could be divided into the quick dewatering stage, silting stage, and stable stage according to the dewatering rate. According to the performance of soil conservation, it could be divided into the loss stage and reverse filtration stage. Further, based on the effects of powder content, non-uniformity coefficient, and curvature coefficient of soil on the dewatering rate of the hanging bag, a formula for calculating the dewatering rate of geotubes is summarized.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49085165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In helicopter rotorcraft design, two main approaches as passive and active control methods widely used to decline vibration. In this study passive control methods are used to reduce vibration in the helicopter rotor blade. The most common passive control devices are dynamic vibration dampers, isolators and structural distribution of the composite blades. A surrogate optimization formula is used as the objective function of vibration reduction which includes vibratory hub loads and bending moments. In optimization model, composite ply angles are design variables and spar frequency-placement, autorotation and stress conditions are constraints. As the optimization method, a hybrid solution is chosen. The gradient-based algorithms generate accurate results in trust region and heuristic methods scan very large area of solution space. Due to the aforementioned advantages, these algorithms are hybridized. As a result of the comparison of the optimization outcomes with the baseline UH-60 rotor blades, approximately 38 % vibration reduction is observed in the new design.
{"title":"Helicopter rotor blade vibration reduction with optimizing the structural distribution of composite layers","authors":"Hacer Arıol Taymaz","doi":"10.21595/jme.2022.22337","DOIUrl":"https://doi.org/10.21595/jme.2022.22337","url":null,"abstract":"In helicopter rotorcraft design, two main approaches as passive and active control methods widely used to decline vibration. In this study passive control methods are used to reduce vibration in the helicopter rotor blade. The most common passive control devices are dynamic vibration dampers, isolators and structural distribution of the composite blades. A surrogate optimization formula is used as the objective function of vibration reduction which includes vibratory hub loads and bending moments. In optimization model, composite ply angles are design variables and spar frequency-placement, autorotation and stress conditions are constraints. As the optimization method, a hybrid solution is chosen. The gradient-based algorithms generate accurate results in trust region and heuristic methods scan very large area of solution space. Due to the aforementioned advantages, these algorithms are hybridized. As a result of the comparison of the optimization outcomes with the baseline UH-60 rotor blades, approximately 38 % vibration reduction is observed in the new design.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46187312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thamaraiselvi Arivazhagan, S. Srikrishna, Naveenkumar Kaliyan, Ganesan Sivarajan
. The technological advancements and policy reformations make the electric power distribution system an active network. The modern power system operational regulations encourage coordinated network operations among various entities and customer participation. Unlike traditional operational environments, real-time monitoring has become a mandate for secure and reliable operations. Phasor Measurement Units (PMU) is the most reliable data acquisition tool, and their application for State Estimation (SE) has already been proven. This work extends the application of PMUs for the distribution system. A multi-objective optimization framework is proposed considering the optimal placement of PMU, network reconfiguration, and topology expansion. A novel optimization tool, the sea lion optimizer has been chosen to address the developed optimization problem. The proposed operational model is employed in IEEE RBTS-2 bus system, IEEE 33 node system and 69 node radial distribution network. Numerical results provide new insights into PMUs role in enhancing distribution network operations. The statistical indices confirm that the intended optimizer performs well in the chosen highly constrained optimization environment.
{"title":"Optimal PMU placements using sea lion optimization for adaptable distribution system","authors":"Thamaraiselvi Arivazhagan, S. Srikrishna, Naveenkumar Kaliyan, Ganesan Sivarajan","doi":"10.21595/jme.2022.22346","DOIUrl":"https://doi.org/10.21595/jme.2022.22346","url":null,"abstract":". The technological advancements and policy reformations make the electric power distribution system an active network. The modern power system operational regulations encourage coordinated network operations among various entities and customer participation. Unlike traditional operational environments, real-time monitoring has become a mandate for secure and reliable operations. Phasor Measurement Units (PMU) is the most reliable data acquisition tool, and their application for State Estimation (SE) has already been proven. This work extends the application of PMUs for the distribution system. A multi-objective optimization framework is proposed considering the optimal placement of PMU, network reconfiguration, and topology expansion. A novel optimization tool, the sea lion optimizer has been chosen to address the developed optimization problem. The proposed operational model is employed in IEEE RBTS-2 bus system, IEEE 33 node system and 69 node radial distribution network. Numerical results provide new insights into PMUs role in enhancing distribution network operations. The statistical indices confirm that the intended optimizer performs well in the chosen highly constrained optimization environment.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46241009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
. Using frequency splitting, two energy management strategies (EMS) based on Haar wavelet decomposition and Fourier analysis for fuel cell hybrid vehicle (FCHV) are proposed to manage efficiently the power flow between components. The paper aims to discuss the performances of the proposed EMS in terms of dynamic behavior, robustness operation, real time application and fuel economy. For apply this methodology, two EMS approaches are elaborated and successfully tested for parallel Fuel Cell/UC: conventional approach using Fourier Transform analysis (FT) and Wavelet analysis approach allowing natural frequency splitting. Finally, and to evaluate the performance and relevance of the developed approach, a comparison analysis were conducted. The simulation results exhibit the effectiveness of both strategies. Indeed, Wavelet analysis leads to better results in terms of energy flow and dynamic behavior, excellent robustness and stability of system, as well as energy economy improvement. A very relevant strategy is proposed based on Wavelet analysis using digital filtering techniques, which enables a natural frequency splitting to ensure the best global performances. In addition, the approach remains simple and suitable for real time operation.
{"title":"Frequency splitting approach using wavelet for energy management strategies in fuel cell ultra-capacitor hybrid system","authors":"Bourdim Samia, Azib Toufik, Hemsas Kamel-Eddine","doi":"10.21595/jme.2022.22233","DOIUrl":"https://doi.org/10.21595/jme.2022.22233","url":null,"abstract":". Using frequency splitting, two energy management strategies (EMS) based on Haar wavelet decomposition and Fourier analysis for fuel cell hybrid vehicle (FCHV) are proposed to manage efficiently the power flow between components. The paper aims to discuss the performances of the proposed EMS in terms of dynamic behavior, robustness operation, real time application and fuel economy. For apply this methodology, two EMS approaches are elaborated and successfully tested for parallel Fuel Cell/UC: conventional approach using Fourier Transform analysis (FT) and Wavelet analysis approach allowing natural frequency splitting. Finally, and to evaluate the performance and relevance of the developed approach, a comparison analysis were conducted. The simulation results exhibit the effectiveness of both strategies. Indeed, Wavelet analysis leads to better results in terms of energy flow and dynamic behavior, excellent robustness and stability of system, as well as energy economy improvement. A very relevant strategy is proposed based on Wavelet analysis using digital filtering techniques, which enables a natural frequency splitting to ensure the best global performances. In addition, the approach remains simple and suitable for real time operation.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":"1 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42049400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}