Amany Ebrahim Nofal, Amal Mohamed Shaaban, Hany Mohammed Ibrahim, Faten Abouelmagd, Azza Hassan Mohamed
Bilharziasis is a widespread trematode parasite that poses a severe public health burden. Dandelion (Taraxacum officinale) has several pharmacological and traditional properties critical for treating several hepatic disorders. The present study was designed to assess the potential efficacy of T. officinale root (TOR) dietary supplementation with or without praziquantel (PZQ) against liver and intestinal disorders in mice infected with Schistosoma mansoni. This study was conducted on five groups; G1: uninfected control, G2: untreated S. mansoni-infected mice, G3: infected animals treated with 250 mg/kg PZQ for three alternative days, G4: infected animals were orally administered 600 mg/kg bw TOR daily for 10 days, and G5: infected animals that received both PZQ and TOR as previously described. The current findings after different treatments indicated topographical scanning electron microscopy alterations of male adult worms and a critical reduction in worm burden, ova count, granuloma diameter, hepatic and intestinal histological abnormalities, fibrosis, immunohistochemical expression of CD3+ and CD20+ cells, oxidative stress, and interleukin-10, also upregulation of interferon-gamma, and antioxidant enzymes, when compared to the infected untreated mice. The best results were obtained in mice administered PZQ+TOR together because of their antioxidant properties and ability to promote the host immune response to parasitic infection.
{"title":"In Vivo Antischistosomicidal and Immunomodulatory Effects of Dietary Supplementation with <i>Taraxacum officinale</i>.","authors":"Amany Ebrahim Nofal, Amal Mohamed Shaaban, Hany Mohammed Ibrahim, Faten Abouelmagd, Azza Hassan Mohamed","doi":"10.3390/jox14030056","DOIUrl":"10.3390/jox14030056","url":null,"abstract":"<p><p>Bilharziasis is a widespread trematode parasite that poses a severe public health burden. Dandelion (<i>Taraxacum officinale</i>) has several pharmacological and traditional properties critical for treating several hepatic disorders. The present study was designed to assess the potential efficacy of <i>T. officinale</i> root (TOR) dietary supplementation with or without praziquantel (PZQ) against liver and intestinal disorders in mice infected with <i>Schistosoma mansoni</i>. This study was conducted on five groups; G1: uninfected control, G2: untreated <i>S. mansoni</i>-infected mice, G3: infected animals treated with 250 mg/kg PZQ for three alternative days, G4: infected animals were orally administered 600 mg/kg bw TOR daily for 10 days, and G5: infected animals that received both PZQ and TOR as previously described. The current findings after different treatments indicated topographical scanning electron microscopy alterations of male adult worms and a critical reduction in worm burden, ova count, granuloma diameter, hepatic and intestinal histological abnormalities, fibrosis, immunohistochemical expression of CD3<sup>+</sup> and CD20<sup>+</sup> cells, oxidative stress, and interleukin-10, also upregulation of interferon-gamma, and antioxidant enzymes, when compared to the infected untreated mice. The best results were obtained in mice administered PZQ+TOR together because of their antioxidant properties and ability to promote the host immune response to parasitic infection.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 3","pages":"1003-1022"},"PeriodicalIF":6.8,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348042/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142074150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although the effects of cigarette smoke (CS) on the development of several intestinal diseases is well documented, the impact of e-cigarette aerosol (e-cig) on digestive health is largely unknown. To compare the effects of e-cig and CS on mouse ileum and colon, animals were chronically exposed for 6 months by nose-only inhalation to e-cig at 18 or 30 W power, or to 3R4F CS. Results showed that e-cig exposure decreased colon cell proliferation. Several other proliferative defects were observed in response to both e-cig and CS exposure, including up- and down-regulation of cyclin D1 protein levels in the ileum and colon, respectively. E-cig and CS exposure reduced myeloperoxidase activity in the ileum. In the colon, both exposures disrupted gene expression of cytokines and T cell transcription factors. For tight junction genes, ZO-1- and occludin-protein expression levels were reduced in the ileum and colon, respectively, by e-cig and CS exposure. The 16S sequencing of microbiota showed specific mild dysbiosis, according to the type of exposure. Overall, e-cig exposure led to altered proliferation, inflammation, and barrier function in both the ileum and colon, and therefore may be a gut hazard on par with conventional CS.
{"title":"Chronic Exposure to Both Electronic and Conventional Cigarettes Alters Ileum and Colon Turnover, Immune Function, and Barrier Integrity in Mice.","authors":"Madjid Djouina, Anaïs Ollivier, Christophe Waxin, Gwenola Kervoaze, Muriel Pichavant, Ségolène Caboche, Djamal Achour, Céline Grare, Delphine Beury, David Hot, Sébastien Anthérieu, Jean-Marc Lo-Guidice, Laurent Dubuquoy, David Launay, Cécile Vignal, Philippe Gosset, Mathilde Body-Malapel","doi":"10.3390/jox14030053","DOIUrl":"10.3390/jox14030053","url":null,"abstract":"<p><p>Although the effects of cigarette smoke (CS) on the development of several intestinal diseases is well documented, the impact of e-cigarette aerosol (e-cig) on digestive health is largely unknown. To compare the effects of e-cig and CS on mouse ileum and colon, animals were chronically exposed for 6 months by nose-only inhalation to e-cig at 18 or 30 W power, or to 3R4F CS. Results showed that e-cig exposure decreased colon cell proliferation. Several other proliferative defects were observed in response to both e-cig and CS exposure, including up- and down-regulation of cyclin D1 protein levels in the ileum and colon, respectively. E-cig and CS exposure reduced myeloperoxidase activity in the ileum. In the colon, both exposures disrupted gene expression of cytokines and T cell transcription factors. For tight junction genes, ZO-1- and occludin-protein expression levels were reduced in the ileum and colon, respectively, by e-cig and CS exposure. The 16S sequencing of microbiota showed specific mild dysbiosis, according to the type of exposure. Overall, e-cig exposure led to altered proliferation, inflammation, and barrier function in both the ileum and colon, and therefore may be a gut hazard on par with conventional CS.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 3","pages":"950-969"},"PeriodicalIF":6.8,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270428/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Social biases may concentrate the attention of researchers on a small number of well-known molecules/mechanisms leaving others underexplored. In accordance with this view, central to mechanistic toxicology is a narrow range of molecular pathways that are assumed to be involved in a significant part of the responses to toxicity. It is unclear, however, if there are other molecular mechanisms which play an important role in toxicity events but are overlooked by toxicology. To identify overlooked genes sensitive to chemical exposures, we used publicly available databases. First, we used data on the published chemical-gene interactions for 17,338 genes to estimate their sensitivity to chemical exposures. Next, we extracted data on publication numbers per gene for 19,243 human genes from the Find My Understudied Genes database. Thresholds were applied to both datasets using our algorithm to identify chemically sensitive and chemically insensitive genes and well-studied and underexplored genes. A total of 1110 underexplored genes highly sensitive to chemical exposures were used in GSEA and Shiny GO analyses to identify enriched biological categories. The metabolism of fatty acids, amino acids, and glucose were identified as underexplored molecular mechanisms sensitive to chemical exposures. These findings suggest that future effort is needed to uncover the role of xenobiotics in the current epidemics of metabolic diseases.
{"title":"Underexplored Molecular Mechanisms of Toxicity.","authors":"Olatunbosun Arowolo, Alexander Suvorov","doi":"10.3390/jox14030052","DOIUrl":"10.3390/jox14030052","url":null,"abstract":"<p><p>Social biases may concentrate the attention of researchers on a small number of well-known molecules/mechanisms leaving others underexplored. In accordance with this view, central to mechanistic toxicology is a narrow range of molecular pathways that are assumed to be involved in a significant part of the responses to toxicity. It is unclear, however, if there are other molecular mechanisms which play an important role in toxicity events but are overlooked by toxicology. To identify overlooked genes sensitive to chemical exposures, we used publicly available databases. First, we used data on the published chemical-gene interactions for 17,338 genes to estimate their sensitivity to chemical exposures. Next, we extracted data on publication numbers per gene for 19,243 human genes from the Find My Understudied Genes database. Thresholds were applied to both datasets using our algorithm to identify chemically sensitive and chemically insensitive genes and well-studied and underexplored genes. A total of 1110 underexplored genes highly sensitive to chemical exposures were used in GSEA and Shiny GO analyses to identify enriched biological categories. The metabolism of fatty acids, amino acids, and glucose were identified as underexplored molecular mechanisms sensitive to chemical exposures. These findings suggest that future effort is needed to uncover the role of xenobiotics in the current epidemics of metabolic diseases.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 3","pages":"939-949"},"PeriodicalIF":6.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270369/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Properly managing aquatic organisms is crucial, including protecting endemic species and controlling invasive species. From a circular economy perspective, the sustainable use of aquatic species as a source of bioactive molecules is an area that is increasingly being explored. This includes the use of non-edible portions of seafood, which could pose considerable risks to the environment due to current methods of disposal. Therefore, it is of paramount importance to ensure that the exploitation of these resources does not result in the transfer of pollutants to the final product. This study analyzed two types of non-edible parts from the crayfish Procambarus clarkii: the abdominal portion of the exoskeleton (AbE) and the whole exoskeleton (WE), including the cephalothorax. These portions could potentially be utilized in the context of eradication activities regulated by local authorities. A screening analysis of four classes of pollutants, including pesticides, per- and polyfluoroalkyl substances (PFAS), phthalic acid esters (PAEs), and trace elements (TEs), was performed. The only analytes detected were TEs, and significant differences in the contamination profile were found between AbE and WE. Nevertheless, the levels recorded were comparable to or lower than those reported in the literature and below the maximum levels allowed in the current European legislation for food, suggesting that their potential use is legally permitted. In terms of scalability, the utilization of the entire non-edible P. clarkii portion would represent a sustainable solution for the reuse of waste products.
妥善管理水生生物至关重要,包括保护特有物种和控制入侵物种。从循环经济的角度来看,可持续地利用水生物种作为生物活性分子的来源是一个正被越来越多地探索的领域。这包括使用海产品中的非食用部分,由于目前的处理方法,这些部分可能会对环境造成相当大的风险。因此,确保这些资源的开发不会导致污染物转移到最终产品中至关重要。本研究分析了克氏原螯虾的两种非食用部分:外骨骼腹部(ABE)和包括头胸部在内的整个外骨骼(WE)。这些部分有可能用于地方当局监管的根除活动。对四类污染物进行了筛选分析,包括杀虫剂、全氟和多氟烷基物质 (PFAS)、邻苯二甲酸酯 (PAE) 和微量元素 (TE)。检测到的唯一分析物是 TEs,发现 AbE 和 WE 之间的污染概况存在显著差异。不过,所记录的含量与文献报道的含量相当或更低,也低于欧洲现行食品法规允许的最高含量,这表明其潜在用途是合法允许的。就可扩展性而言,利用整个非食用云斑爪鲈部分将是废物再利用的可持续解决方案。
{"title":"Contamination Profiles of Selected Pollutants in <i>Procambarus clarkii</i> Non-Edible Portions Highlight Their Potential Exploitation Applications.","authors":"Dario Savoca, Mirella Vazzana, Vincenzo Arizza, Antonella Maccotta, Santino Orecchio, Francesco Longo, Vittoria Giudice, Gaetano D'Oca, Salvatore Messina, Federico Marrone, Manuela Mauro","doi":"10.3390/jox14030049","DOIUrl":"10.3390/jox14030049","url":null,"abstract":"<p><p>Properly managing aquatic organisms is crucial, including protecting endemic species and controlling invasive species. From a circular economy perspective, the sustainable use of aquatic species as a source of bioactive molecules is an area that is increasingly being explored. This includes the use of non-edible portions of seafood, which could pose considerable risks to the environment due to current methods of disposal. Therefore, it is of paramount importance to ensure that the exploitation of these resources does not result in the transfer of pollutants to the final product. This study analyzed two types of non-edible parts from the crayfish <i>Procambarus clarkii</i>: the abdominal portion of the exoskeleton (AbE) and the whole exoskeleton (WE), including the cephalothorax. These portions could potentially be utilized in the context of eradication activities regulated by local authorities. A screening analysis of four classes of pollutants, including pesticides, per- and polyfluoroalkyl substances (PFAS), phthalic acid esters (PAEs), and trace elements (TEs), was performed. The only analytes detected were TEs, and significant differences in the contamination profile were found between AbE and WE. Nevertheless, the levels recorded were comparable to or lower than those reported in the literature and below the maximum levels allowed in the current European legislation for food, suggesting that their potential use is legally permitted. In terms of scalability, the utilization of the entire non-edible <i>P. clarkii</i> portion would represent a sustainable solution for the reuse of waste products.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 3","pages":"893-906"},"PeriodicalIF":6.8,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270285/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the recent past, the formulation and development of nanocarriers has been elaborated into the broader fields and opened various avenues in their preclinical and clinical applications. In particular, the cellular membrane-based nanoformulations have been formulated to surpass and surmount the limitations and restrictions associated with naïve or free forms of therapeutic compounds and circumvent various physicochemical and immunological barriers including but not limited to systemic barriers, microenvironmental roadblocks, and other cellular or subcellular hinderances-which are quite heterogeneous throughout the diseases and patient cohorts. These limitations in drug delivery have been overcome through mesenchymal cells membrane-based precision therapeutics, where these interventions have led to the significant enhancements in therapeutic efficacies. However, the formulation and development of nanocarriers still focuses on optimization of drug delivery paradigms with a one-size-fits-all resolutions. As mesenchymal stem cell membrane-based nanocarriers have been engineered in highly diversified fashions, these are being optimized for delivering the drug payloads in more and better personalized modes, entering the arena of precision as well as personalized nanomedicine. In this Review, we have included some of the advanced nanocarriers which have been designed and been utilized in both the non-personalized as well as precision applicability which can be employed for the improvements in precision nanotherapeutics. In the present report, authors have focused on various other aspects of the advancements in stem cells membrane-based nanoparticle conceptions which can surmount several roadblocks and barriers in drug delivery and nanomedicine. It has been suggested that well-informed designing of these nanocarriers will lead to appreciable improvements in the therapeutic efficacy in therapeutic payload delivery applications. These approaches will also enable the tailored and customized designs of MSC-based nanocarriers for personalized therapeutic applications, and finally amending the patient outcomes.
{"title":"Precision Nanomedicine with Bio-Inspired Nanosystems: Recent Trends and Challenges in Mesenchymal Stem Cells Membrane-Coated Bioengineered Nanocarriers in Targeted Nanotherapeutics.","authors":"Mirza Salman Baig, Anas Ahmad, Rijawan Rajjak Pathan, Rakesh Kumar Mishra","doi":"10.3390/jox14030047","DOIUrl":"10.3390/jox14030047","url":null,"abstract":"<p><p>In the recent past, the formulation and development of nanocarriers has been elaborated into the broader fields and opened various avenues in their preclinical and clinical applications. In particular, the cellular membrane-based nanoformulations have been formulated to surpass and surmount the limitations and restrictions associated with naïve or free forms of therapeutic compounds and circumvent various physicochemical and immunological barriers including but not limited to systemic barriers, microenvironmental roadblocks, and other cellular or subcellular hinderances-which are quite heterogeneous throughout the diseases and patient cohorts. These limitations in drug delivery have been overcome through mesenchymal cells membrane-based precision therapeutics, where these interventions have led to the significant enhancements in therapeutic efficacies. However, the formulation and development of nanocarriers still focuses on optimization of drug delivery paradigms with a one-size-fits-all resolutions. As mesenchymal stem cell membrane-based nanocarriers have been engineered in highly diversified fashions, these are being optimized for delivering the drug payloads in more and better personalized modes, entering the arena of precision as well as personalized nanomedicine. In this Review, we have included some of the advanced nanocarriers which have been designed and been utilized in both the non-personalized as well as precision applicability which can be employed for the improvements in precision nanotherapeutics. In the present report, authors have focused on various other aspects of the advancements in stem cells membrane-based nanoparticle conceptions which can surmount several roadblocks and barriers in drug delivery and nanomedicine. It has been suggested that well-informed designing of these nanocarriers will lead to appreciable improvements in the therapeutic efficacy in therapeutic payload delivery applications. These approaches will also enable the tailored and customized designs of MSC-based nanocarriers for personalized therapeutic applications, and finally amending the patient outcomes.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 3","pages":"827-872"},"PeriodicalIF":6.8,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270309/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microplastic contamination in agricultural soil is an emerging problem worldwide as it contaminates the food chain. Therefore, this research investigated the distribution of microplastics (MPs) in agricultural soils without mulch at various depths (0-5, 5-10, and 10-15 cm) across different zones: rural, local market, industrial, coastal, and research areas. The detection of MP types and morphology was conducted using FTIR and fluorescence microscopy, respectively. Eight types of MPs were identified, including high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinyl fluoride (PVF), polyvinyl alcohol (PVA), and polytetrafluoroethylene (PTFE), with concentrations ranging from 0.6 ± 0.21 to 3.71 ± 2.36 MPs/g of soil. The study found no significant trends in MP concentration, with ranges of 0-2.1 ± 0.38, 0-2.87 ± 0.55, and 0-2.0 ± 0.34 MPs/g of soil at depths of 0-5 cm, 5-10 cm, and 10-15 cm, respectively. The highest MP quantity was recorded at 8.67 in coastal area, while the lowest was 6.44 in the local market area. Various MP shapes, e.g., fiber, film, pellet, fragment, and irregular, were observed across all layers. PCA suggested irrigation and organic manure as potential sources of MPs. The estimated concentrations of MPs possessed low non-carcinogenic and carcinogenic risks to the farming community of Bangladesh.
{"title":"Microplastic Contamination of Non-Mulched Agricultural Soils in Bangladesh: Detection, Characterization, Source Apportionment and Probabilistic Health Risk Assessment.","authors":"Sumaya Sharmin, Qingyue Wang, Md Rezwanul Islam, Weiqian Wang, Christian Ebere Enyoh","doi":"10.3390/jox14020046","DOIUrl":"10.3390/jox14020046","url":null,"abstract":"<p><p>Microplastic contamination in agricultural soil is an emerging problem worldwide as it contaminates the food chain. Therefore, this research investigated the distribution of microplastics (MPs) in agricultural soils without mulch at various depths (0-5, 5-10, and 10-15 cm) across different zones: rural, local market, industrial, coastal, and research areas. The detection of MP types and morphology was conducted using FTIR and fluorescence microscopy, respectively. Eight types of MPs were identified, including high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinyl fluoride (PVF), polyvinyl alcohol (PVA), and polytetrafluoroethylene (PTFE), with concentrations ranging from 0.6 ± 0.21 to 3.71 ± 2.36 MPs/g of soil. The study found no significant trends in MP concentration, with ranges of 0-2.1 ± 0.38, 0-2.87 ± 0.55, and 0-2.0 ± 0.34 MPs/g of soil at depths of 0-5 cm, 5-10 cm, and 10-15 cm, respectively. The highest MP quantity was recorded at 8.67 in coastal area, while the lowest was 6.44 in the local market area. Various MP shapes, e.g., fiber, film, pellet, fragment, and irregular, were observed across all layers. PCA suggested irrigation and organic manure as potential sources of MPs. The estimated concentrations of MPs possessed low non-carcinogenic and carcinogenic risks to the farming community of Bangladesh.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 2","pages":"812-826"},"PeriodicalIF":6.8,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11204539/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vanda Lopes de Andrade, Iolanda Ribeiro, Ana Paula Marreilha Dos Santos, Michael Aschner, Maria Luisa Mateus
Our previous work demonstrated the presence of lead (Pb) and cadmium (Cd) contamination in cow milk (CM) and soy beverages (SBs) in Portugal. These metals share carcinogenic mechanisms, suggesting at least additive effects. Our goals were to assess carcinogenic risks from Pb and Cd intake detected in various CM and SB brands on the Portuguese market and to determine the relative contributions of Pb and Cd. Furthermore, we modeled different consumption scenarios for various age/body weight groups to estimate cumulative Excess Lifetime Carcinogenic Risk (ELCR). ELCR was computed by multiplying chronic daily intake by a cancer slope factor for each metal, with an ELCR > 1 × 10-4 indicating carcinogenic risk. Five CM and three SB brands posed cancer risks in children, with the highest values at 1.75 × 10-4 and 9.12 × 10-5, respectively; Pb had mean relative contributions of 87.8 ± 3.1% in CM and 54.9 ± 12.1% in SB. Carcinogenic risks were observed for children, adolescents, and adults in several CM or SB consumption scenarios, albeit at levels above typical Portuguese intakes. Strict monitoring of metal levels, such as Pb and Cd, is advised because CM is a component of many foods, including baby food.
{"title":"Carcinogenic Risk from Lead and Cadmium Contaminating Cow Milk and Soya Beverage Brands Available in the Portuguese Market.","authors":"Vanda Lopes de Andrade, Iolanda Ribeiro, Ana Paula Marreilha Dos Santos, Michael Aschner, Maria Luisa Mateus","doi":"10.3390/jox14020045","DOIUrl":"10.3390/jox14020045","url":null,"abstract":"<p><p>Our previous work demonstrated the presence of lead (Pb) and cadmium (Cd) contamination in cow milk (CM) and soy beverages (SBs) in Portugal. These metals share carcinogenic mechanisms, suggesting at least additive effects. Our goals were to assess carcinogenic risks from Pb and Cd intake detected in various CM and SB brands on the Portuguese market and to determine the relative contributions of Pb and Cd. Furthermore, we modeled different consumption scenarios for various age/body weight groups to estimate cumulative Excess Lifetime Carcinogenic Risk (ELCR). ELCR was computed by multiplying chronic daily intake by a cancer slope factor for each metal, with an ELCR > 1 × 10<sup>-4</sup> indicating carcinogenic risk. Five CM and three SB brands posed cancer risks in children, with the highest values at 1.75 × 10<sup>-4</sup> and 9.12 × 10<sup>-5</sup>, respectively; Pb had mean relative contributions of 87.8 ± 3.1% in CM and 54.9 ± 12.1% in SB. Carcinogenic risks were observed for children, adolescents, and adults in several CM or SB consumption scenarios, albeit at levels above typical Portuguese intakes. Strict monitoring of metal levels, such as Pb and Cd, is advised because CM is a component of many foods, including baby food.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 2","pages":"798-811"},"PeriodicalIF":6.8,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11204583/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander C Ø Jensen, Niels E Ebbehøj, Anja J Huusom, Keld A Jensen, Ulla B Vogel, Jorid B Sørli
Waterproofing sprays can cause acute respiratory symptoms after inhalation, including coughing and dyspnoea shortly after use. Here, we describe two cases where persons used the same brand of waterproofing spray product. In both cases the persons followed the instructions on the product and maximized the ventilation by opening windows and doors; however, they still became affected during the application of the product. Products with the same batch number as that used in one case were tested for their effect on respiration patterns of mice in whole-body plethysmographs and lung surfactant function inhibition in vitro. The product was used in spraying experiments to determine the particle size distribution of the aerosol, both using a can from one case and a can with an identical batch number. In addition, the aerosols in the mouse exposure chamber were measured. Aerosol data from a small-scale exposure chamber and data on the physical and temporal dimensions of the spraying during one case were used to estimate the deposited dose during the spraying events. All collected data point to the spraying of the waterproofing product being the reason that two people became ill, and that the inhibition of lung surfactant function was a key component of this illness.
{"title":"The Underlying Mechanism of Poisoning after the Accidental Inhalation of Aerosolised Waterproofing Spray.","authors":"Alexander C Ø Jensen, Niels E Ebbehøj, Anja J Huusom, Keld A Jensen, Ulla B Vogel, Jorid B Sørli","doi":"10.3390/jox14020039","DOIUrl":"10.3390/jox14020039","url":null,"abstract":"<p><p>Waterproofing sprays can cause acute respiratory symptoms after inhalation, including coughing and dyspnoea shortly after use. Here, we describe two cases where persons used the same brand of waterproofing spray product. In both cases the persons followed the instructions on the product and maximized the ventilation by opening windows and doors; however, they still became affected during the application of the product. Products with the same batch number as that used in one case were tested for their effect on respiration patterns of mice in whole-body plethysmographs and lung surfactant function inhibition in vitro. The product was used in spraying experiments to determine the particle size distribution of the aerosol, both using a can from one case and a can with an identical batch number. In addition, the aerosols in the mouse exposure chamber were measured. Aerosol data from a small-scale exposure chamber and data on the physical and temporal dimensions of the spraying during one case were used to estimate the deposited dose during the spraying events. All collected data point to the spraying of the waterproofing product being the reason that two people became ill, and that the inhibition of lung surfactant function was a key component of this illness.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 2","pages":"679-689"},"PeriodicalIF":6.8,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11204789/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Melissa I Ortiz-Román, Ileska M Casiano-Muñiz, Felix R Román-Velázquez
The benzophenone (BP) family, including oxybenzone (BP-3), a prevalent sunscreen ingredient and environmental contaminant, has raised concerns since the year 2005. This study investigated oxybenzone toxicity in zebrafish (Danio rerio) eleutheroembryos and brine shrimp (Artemia salina) nauplii, focusing on the LC50 and developmental impacts. Zebrafish embryos (0.100-1.50 mg/L BP-3, 96 h) and A. salina (0.100-5.00 mg/L BP-3, 48 h) were tested with ultrasound-assisted emulsified liquid-phase microextraction (UA-ELPME) used for zebrafish tissue analysis. HPLC-DAD determined BP-3 concentrations (highest: 0.74 ± 0.13 mg/L). Although no significant zebrafish embryo mortality or hatching changes occurred, developmental effects were evident. Lethal concentrations were determined (A. salina LC50 at 24 h = 3.19 ± 2.02 mg/L; D. rerio embryos LC50 at 24 h = 4.19 ± 3.60 mg/L), with malformations indicating potential teratogenic effects. A. salina displayed intestinal tract alterations and D. rerio embryos exhibited pericardial edema and spinal deformities. These findings highlight oxybenzone's environmental risks, posing threats to species and ecosystem health.
{"title":"Toxicity of UV Filter Benzophenone-3 in Brine Shrimp Nauplii (<i>Artemia salina</i>) and Zebrafish (<i>Danio rerio</i>) Embryos.","authors":"Melissa I Ortiz-Román, Ileska M Casiano-Muñiz, Felix R Román-Velázquez","doi":"10.3390/jox14020032","DOIUrl":"10.3390/jox14020032","url":null,"abstract":"<p><p>The benzophenone (BP) family, including oxybenzone (BP-3), a prevalent sunscreen ingredient and environmental contaminant, has raised concerns since the year 2005. This study investigated oxybenzone toxicity in zebrafish (<i>Danio rerio</i>) eleutheroembryos and brine shrimp (<i>Artemia salina</i>) nauplii, focusing on the LC<sub>50</sub> and developmental impacts. Zebrafish embryos (0.100-1.50 mg/L BP-3, 96 h) and <i>A. salina</i> (0.100-5.00 mg/L BP-3, 48 h) were tested with ultrasound-assisted emulsified liquid-phase microextraction (UA-ELPME) used for zebrafish tissue analysis. HPLC-DAD determined BP-3 concentrations (highest: 0.74 ± 0.13 mg/L). Although no significant zebrafish embryo mortality or hatching changes occurred, developmental effects were evident. Lethal concentrations were determined (<i>A. salina</i> LC<sub>50</sub> at 24 h = 3.19 ± 2.02 mg/L; <i>D. rerio</i> embryos LC<sub>50</sub> at 24 h = 4.19 ± 3.60 mg/L), with malformations indicating potential teratogenic effects. <i>A. salina</i> displayed intestinal tract alterations and <i>D. rerio</i> embryos exhibited pericardial edema and spinal deformities. These findings highlight oxybenzone's environmental risks, posing threats to species and ecosystem health.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 2","pages":"537-553"},"PeriodicalIF":6.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11130858/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141157167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study utilizes the National Health and Nutrition Examination Survey (NHANES) 2017-2018 data to explore the relationship between exposure to perfluoroalkyl substances (specifically perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), metals lead (Pb), mercury (Hg), and cadmium (Cd), allostatic load, and hepatic disease markers, including the fatty liver index a measure of the likelihood of non-alcoholic fatty liver disease, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and total bilirubin. The paper identified significant associations and interaction effects by employing descriptive statistics, Spearman's correlation analysis, linear regression, and Bayesian kernel machine regression (BKMR). Descriptive statistics highlight sex-specific differences in contaminant levels. Spearman's analysis underscores strong correlations among metals and per- and polyfluoroalkyl substances (PFAS). Linear regression reveals significant impacts of specific contaminants on AST, ALT, ALP, and bilirubin levels, adjusting for age and alcohol consumption. BKMR results further elucidate the complex, potentially synergistic relationships between these environmental exposures and the likelihood of non-alcoholic fatty liver disease, offering nuanced insights into their combined effects on liver health. The findings emphasize the intricate dynamics of environmental exposures on hepatic function, advocating for targeted public health interventions.
{"title":"Association of Combined PFOA, PFOS, Metals and Allostatic Load on Hepatic Disease Risk.","authors":"Mary Balogun, Emmanuel Obeng-Gyasi","doi":"10.3390/jox14020031","DOIUrl":"10.3390/jox14020031","url":null,"abstract":"<p><p>This study utilizes the National Health and Nutrition Examination Survey (NHANES) 2017-2018 data to explore the relationship between exposure to perfluoroalkyl substances (specifically perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), metals lead (Pb), mercury (Hg), and cadmium (Cd), allostatic load, and hepatic disease markers, including the fatty liver index a measure of the likelihood of non-alcoholic fatty liver disease, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and total bilirubin. The paper identified significant associations and interaction effects by employing descriptive statistics, Spearman's correlation analysis, linear regression, and Bayesian kernel machine regression (BKMR). Descriptive statistics highlight sex-specific differences in contaminant levels. Spearman's analysis underscores strong correlations among metals and per- and polyfluoroalkyl substances (PFAS). Linear regression reveals significant impacts of specific contaminants on AST, ALT, ALP, and bilirubin levels, adjusting for age and alcohol consumption. BKMR results further elucidate the complex, potentially synergistic relationships between these environmental exposures and the likelihood of non-alcoholic fatty liver disease, offering nuanced insights into their combined effects on liver health. The findings emphasize the intricate dynamics of environmental exposures on hepatic function, advocating for targeted public health interventions.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 2","pages":"516-536"},"PeriodicalIF":6.0,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11130830/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141157009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}