Bisphenol S (BPS), one of the substitutes for bisphenol A (BPA), is widely used in various commodities. The BPS concentrations in surface water have gradually increased in recent years, making it a predominant bisphenol analogue in the aquatic environment and raising concerns about its health and ecological effects on aquatic organisms. For this study, we conducted a 96 h acute toxicity test and a 15-day developmental exposure test to assess the adverse effects of BPS exposure in Chinese medaka (Oryzias sinensis), a new local aquatic animal model. The results indicate that the acute exposure of Chinese medaka embryos to BPS led to relatively low toxicity. However, developmental exposure to BPS was found to cause developmental abnormalities, such as decreased hatching rate and body length, at 15 dpf. A transcriptome analysis showed that exposure to different concentrations of bisphenol S often induced different reactions. In summary, environmental concentrations of BPS can have adverse effects on the hatching and physical development of Chinese medaka, and further attention needs to be paid to the potential toxicity of environmental BPS.
双酚 S(BPS)是双酚 A(BPA)的替代品之一,被广泛应用于各种商品中。近年来,BPS 在地表水中的浓度逐渐升高,成为水生环境中最主要的双酚类似物,引起了人们对其对水生生物健康和生态影响的关注。在这项研究中,我们进行了 96 h 急性毒性试验和 15 天发育暴露试验,以评估暴露于 BPS 对中国青鳉(一种新的本地水生动物模型)的不良影响。结果表明,中国青鳉胚胎急性接触 BPS 的毒性相对较低。然而,发育期暴露于 BPS 会导致发育异常,如在 15 dpf 时孵化率和体长下降。转录组分析表明,暴露于不同浓度的双酚 S 往往会引起不同的反应。总之,环境浓度的双酚 S 会对中国青鳉的孵化和身体发育产生不利影响,需要进一步关注环境双酚 S 的潜在毒性。
{"title":"Effects of Acute and Developmental Exposure to Bisphenol S on Chinese Medaka (<i>Oryzias sinensis</i>).","authors":"Bingying Li, Yongsi Huang, Duan Pi, Xiang Li, Yafen Guo, Zhiying Liang, Xiaohong Song, Junjie Wang, Xuegeng Wang","doi":"10.3390/jox14020027","DOIUrl":"10.3390/jox14020027","url":null,"abstract":"<p><p>Bisphenol S (BPS), one of the substitutes for bisphenol A (BPA), is widely used in various commodities. The BPS concentrations in surface water have gradually increased in recent years, making it a predominant bisphenol analogue in the aquatic environment and raising concerns about its health and ecological effects on aquatic organisms. For this study, we conducted a 96 h acute toxicity test and a 15-day developmental exposure test to assess the adverse effects of BPS exposure in Chinese medaka (<i>Oryzias sinensis</i>), a new local aquatic animal model. The results indicate that the acute exposure of Chinese medaka embryos to BPS led to relatively low toxicity. However, developmental exposure to BPS was found to cause developmental abnormalities, such as decreased hatching rate and body length, at 15 dpf. A transcriptome analysis showed that exposure to different concentrations of bisphenol S often induced different reactions. In summary, environmental concentrations of BPS can have adverse effects on the hatching and physical development of Chinese medaka, and further attention needs to be paid to the potential toxicity of environmental BPS.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 2","pages":"452-466"},"PeriodicalIF":6.8,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10961820/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140207794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Johanna Romina Zuccoli, María Del Carmen Martínez, Pablo Vallecorsa, Ana María Buzaleh
Heme enzyme dysfunction causes a group of diseases called porphyrias. Particularly, a decrease in porphobilinogen deaminase, involved in the third step of heme biosynthesis, leads to acute intermittent porphyria (AIP). Considering our previous works demonstrating the multiplicity of brain metabolisms affected by porphyrinogenic agents, this study aimed to elucidate whether they cause any alteration on the mitochondrial respiratory chain. The activities of respiratory chain complexes (I to IV) were measured in encephalon mitochondria of CF1 male mice receiving volatile anesthetics: isoflurane (2 mL/kg) and sevoflurane (1.5 mL/kg), ethanol (30%), allylisopropylacetamide (AIA) (350 mg/kg), and barbital (167 mg/kg). Moreover, they were compared versus animals with pathological levels of 5-aminolevulinic acid (ALA, 40 mg/kg). Complex I-III activity was induced by isoflurane and decreased by AIA, ethanol, and ALA. Complex II-III activity was increased by sevoflurane and decreased by isoflurane and AIA. Complex II activity was increased by sevoflurane and barbital and decreased by AIA, ethanol, and ALA. Complex IV activity was increased by barbital and ALA and decreased by sevoflurane. The damage to the respiratory chain by ALA could be reflecting the pathophysiological condition of patients with AIP. Better understanding the broad effect of porphyrinogenic drugs and the mechanisms acting on the onset of AIP is vital in translational medicine.
血红素酶功能障碍会导致一组名为卟啉症的疾病。特别是,参与第三步血红素生物合成的卟啉原脱氨酶的减少会导致急性间歇性卟啉症(AIP)。考虑到我们之前的研究表明卟啉生成剂对大脑代谢的影响是多方面的,本研究旨在阐明卟啉生成剂是否会对线粒体呼吸链造成任何改变。研究人员测量了接受异氟醚(2 mL/kg)和七氟醚(1.5 mL/kg)、乙醇(30%)、烯丙基异丙基乙酰胺(AIA)(350 mg/kg)和巴比妥(167 mg/kg)等挥发性麻醉剂的 CF1 雄性小鼠脑线粒体中呼吸链复合物(I 至 IV)的活性。此外,它们还与5-氨基乙酰丙酸(ALA,40毫克/千克)达到病理水平的动物进行了比较。异氟醚诱导了复合体 I-III 的活性,而 AIA、乙醇和 ALA 则降低了复合体 I-III 的活性。七氟醚可增加复合体 II-III 的活性,异氟醚和 AIA 可降低其活性。七氟醚和巴比妥会增加复合体 II 的活性,而 AIA、乙醇和 ALA 会降低复合体 II 的活性。巴比妥和 ALA 可提高复合物 IV 的活性,而七氟烷则会降低其活性。ALA 对呼吸链的破坏可能反映了 AIP 患者的病理生理状况。更好地了解致卟啉药物的广泛作用以及AIP的发病机制对转化医学至关重要。
{"title":"Xenobiotics Triggering Acute Intermittent Porphyria and Their Effect on Mouse Brain Respiratory Complexes.","authors":"Johanna Romina Zuccoli, María Del Carmen Martínez, Pablo Vallecorsa, Ana María Buzaleh","doi":"10.3390/jox14010019","DOIUrl":"10.3390/jox14010019","url":null,"abstract":"<p><p>Heme enzyme dysfunction causes a group of diseases called porphyrias. Particularly, a decrease in porphobilinogen deaminase, involved in the third step of heme biosynthesis, leads to acute intermittent porphyria (AIP). Considering our previous works demonstrating the multiplicity of brain metabolisms affected by porphyrinogenic agents, this study aimed to elucidate whether they cause any alteration on the mitochondrial respiratory chain. The activities of respiratory chain complexes (I to IV) were measured in encephalon mitochondria of <i>CF1</i> male mice receiving volatile anesthetics: isoflurane (2 mL/kg) and sevoflurane (1.5 mL/kg), ethanol (30%), allylisopropylacetamide (AIA) (350 mg/kg), and barbital (167 mg/kg). Moreover, they were compared versus animals with pathological levels of 5-aminolevulinic acid (ALA, 40 mg/kg). Complex I-III activity was induced by isoflurane and decreased by AIA, ethanol, and ALA. Complex II-III activity was increased by sevoflurane and decreased by isoflurane and AIA. Complex II activity was increased by sevoflurane and barbital and decreased by AIA, ethanol, and ALA. Complex IV activity was increased by barbital and ALA and decreased by sevoflurane. The damage to the respiratory chain by ALA could be reflecting the pathophysiological condition of patients with AIP. Better understanding the broad effect of porphyrinogenic drugs and the mechanisms acting on the onset of AIP is vital in translational medicine.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 1","pages":"308-319"},"PeriodicalIF":6.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10971141/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140294900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dandan Wang, Hong Yu, Xinbei Liu, Li Sun, Xijian Liu, Ruilong Hu, Chao Wang, Yuping Zhuge, Zhihong Xie
The accumulation of high amounts of plastic waste in the environment has raised ecological and health concerns, particularly in croplands, and biological degradation presents a promising approach for the sustainable treatment of this issue. In this study, a polyvinyl chloride (PVC)-degrading bacterium was isolated from farmland soil samples attached to waste plastic, utilizing PVC as the sole carbon source. The circular chromosome of the strain Cbmb3, with a length of 5,768,926 bp, was subsequently sequenced. The average GC content was determined to be 35.45%, and a total of 5835 open reading frames were identified. The strain Cbmb3 was designated as Bacillus toyonensis based on phylogenomic analyses and genomic characteristics. The bioinformatic analysis of the Cbmb3 genome revealed putative genes encoding essential enzymes involved in PVC degradation. Additionally, the potential genomic characteristics associated with phytoprobiotic effects, such as the synthesis of indole acetic acid and secondary metabolite synthesis, were also revealed. Overall, the present study provides the first complete genome of Bacillus toyonensis with PVC-degrading properties, suggesting that Cbmb3 is a potential strain for PVC bioremediation and application.
{"title":"The Complete Genome Sequence of <i>Bacillus toyonensis</i> Cbmb3 with Polyvinyl Chloride-Degrading Properties.","authors":"Dandan Wang, Hong Yu, Xinbei Liu, Li Sun, Xijian Liu, Ruilong Hu, Chao Wang, Yuping Zhuge, Zhihong Xie","doi":"10.3390/jox14010018","DOIUrl":"10.3390/jox14010018","url":null,"abstract":"<p><p>The accumulation of high amounts of plastic waste in the environment has raised ecological and health concerns, particularly in croplands, and biological degradation presents a promising approach for the sustainable treatment of this issue. In this study, a polyvinyl chloride (PVC)-degrading bacterium was isolated from farmland soil samples attached to waste plastic, utilizing PVC as the sole carbon source. The circular chromosome of the strain Cbmb3, with a length of 5,768,926 bp, was subsequently sequenced. The average GC content was determined to be 35.45%, and a total of 5835 open reading frames were identified. The strain Cbmb3 was designated as <i>Bacillus toyonensis</i> based on phylogenomic analyses and genomic characteristics. The bioinformatic analysis of the Cbmb3 genome revealed putative genes encoding essential enzymes involved in PVC degradation. Additionally, the potential genomic characteristics associated with phytoprobiotic effects, such as the synthesis of indole acetic acid and secondary metabolite synthesis, were also revealed. Overall, the present study provides the first complete genome of <i>Bacillus toyonensis</i> with PVC-degrading properties, suggesting that Cbmb3 is a potential strain for PVC bioremediation and application.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 1","pages":"295-307"},"PeriodicalIF":6.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10970875/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140294899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Susana I L Gomes, Janeck J Scott-Fordsmand, Mónica J B Amorim
Nanobiomaterials (NBMs) have tremendous potential applications including in cancer diagnosis and treatment. However, the health and environmental effects of NBMs must be thoroughly assessed to ensure safety. Fe3O4 (magnetite) nanoparticles coated with polyethylene glycol (PEG) and poly (lactic-co-glycolic acid) (PLGA) were one of the focus NBMs within the EU project BIORIMA. Fe3O4 PEG-PLGA has been proposed to be used as a contrast agent in magnetic resonance imaging for the identification of solid tumors and has revealed low cytotoxicity in several cell lines. However, the effects of Fe3O4 PEG-PLGA have not been assessed in terrestrial environments, the eventual final sink of most materials. In the present study, the effects of Fe3O4 PEG-PLGA and its precursor, (un-coated) Fe3O4 NMs, were assessed in soil model invertebrates Enchytraeus crypticus (Oligochaeta) and Folsomia candida (Collembola). The endpoints were survival, reproduction, and size, based on the standard OECD test (28 days) and its extension (56 days). The results showed no toxicity for any of the endpoints evaluated, indicating that the NBM Fe3O4 PEG-PLGA poses no unacceptable risk to the terrestrial environment.
{"title":"Iron Oxide (Magnetite)-Based Nanobiomaterial with Medical Applications-Environmental Hazard Assessment Using Terrestrial Model Species.","authors":"Susana I L Gomes, Janeck J Scott-Fordsmand, Mónica J B Amorim","doi":"10.3390/jox14010017","DOIUrl":"10.3390/jox14010017","url":null,"abstract":"<p><p>Nanobiomaterials (NBMs) have tremendous potential applications including in cancer diagnosis and treatment. However, the health and environmental effects of NBMs must be thoroughly assessed to ensure safety. Fe<sub>3</sub>O<sub>4</sub> (magnetite) nanoparticles coated with polyethylene glycol (PEG) and poly (lactic-co-glycolic acid) (PLGA) were one of the focus NBMs within the EU project BIORIMA. Fe<sub>3</sub>O<sub>4</sub> PEG-PLGA has been proposed to be used as a contrast agent in magnetic resonance imaging for the identification of solid tumors and has revealed low cytotoxicity in several cell lines. However, the effects of Fe<sub>3</sub>O<sub>4</sub> PEG-PLGA have not been assessed in terrestrial environments, the eventual final sink of most materials. In the present study, the effects of Fe<sub>3</sub>O<sub>4</sub> PEG-PLGA and its precursor, (un-coated) Fe<sub>3</sub>O<sub>4</sub> NMs, were assessed in soil model invertebrates <i>Enchytraeus crypticus</i> (Oligochaeta) and <i>Folsomia candida</i> (Collembola). The endpoints were survival, reproduction, and size, based on the standard OECD test (28 days) and its extension (56 days). The results showed no toxicity for any of the endpoints evaluated, indicating that the NBM Fe<sub>3</sub>O<sub>4</sub> PEG-PLGA poses no unacceptable risk to the terrestrial environment.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 1","pages":"285-294"},"PeriodicalIF":6.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10971733/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140294898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eunice Nuwamanya, Denis Byamugisha, Caroline K Nakiguli, Christopher Angiro, Alice V Khanakwa, Timothy Omara, Simon Ocakacon, Patrick Onen, Daniel Omoding, Boniface Opio, Daniel Nimusiima, Emmanuel Ntambi
Metal fabrication workshops (MFWs) are common businesses in Ugandan cities, and especially those producing metallic security gates, window and door frames (burglar-proof), and balcony and staircase rails. The objective of this study was to comparatively assess the pollution levels and potential health risks of manganese (Mn), chromium (Cr), cadmium (Cd), lead (Pd) and nickel (Ni) in pooled surface soil samples from four 5-, 7-, 8-, and 10-year-old MFWs (n = 28) and a control site (n = 8) in Mbarara City, Uganda. The concentration of the potentially toxic elements (PTEs) was determined using inductively coupled plasma-optical emission spectrometry. Contamination, ecological, and human health risk assessment indices and models were used to identify any risks that the PTEs could pose to the pristine environment and humans. Our results showed that PTE pollution of soils is occuring in the MFWs than at the control site. The mean concentrations of the PTEs (mg kg-1) in the samples were: Mn (2012.75 ± 0.23-3377.14 ± 0.31), Cr (237.55 ± 0.29-424.93 ± 0.31), Cd (0.73 ± 0.13-1.29 ± 0.02), Pb (107.80 ± 0.23-262.01 ± 0.19), and Ni (74.85 ± 0.25-211.37 ± 0.14). These results indicate that the PTEs could plausibly derive from the fabrication activities in these workshops, which is supported by the high values of contamination factors, index of geoaccumulation, and the overall increase in pollution load indices with the number of years of operation of the MFWs. Human health risk assessment showed that there are non-carcinogenic health risks that could be experienced by children who ingest PTEs in the soils from the 7-, 8- and 10-year-old MFWs. The incremental life cancer risk assessment suggested that there are potential cancerous health effects of Cd and Ni that could be experienced in children (who ingest soils from all the four MFWs) and adults (ingesting soils from the 8- and 10-year-old MFWs). This study underscores the need to implement regulatory guidelines on the operation and location of MFWs in Uganda. Further research should be undertaken to investigate the emission of the PTEs during welding operations in the MFWs.
{"title":"Exposure and Health Risks Posed by Potentially Toxic Elements in Soils of Metal Fabrication Workshops in Mbarara City, Uganda.","authors":"Eunice Nuwamanya, Denis Byamugisha, Caroline K Nakiguli, Christopher Angiro, Alice V Khanakwa, Timothy Omara, Simon Ocakacon, Patrick Onen, Daniel Omoding, Boniface Opio, Daniel Nimusiima, Emmanuel Ntambi","doi":"10.3390/jox14010011","DOIUrl":"10.3390/jox14010011","url":null,"abstract":"<p><p>Metal fabrication workshops (MFWs) are common businesses in Ugandan cities, and especially those producing metallic security gates, window and door frames (burglar-proof), and balcony and staircase rails. The objective of this study was to comparatively assess the pollution levels and potential health risks of manganese (Mn), chromium (Cr), cadmium (Cd), lead (Pd) and nickel (Ni) in pooled surface soil samples from four 5-, 7-, 8-, and 10-year-old MFWs (<i>n</i> = 28) and a control site (<i>n</i> = 8) in Mbarara City, Uganda. The concentration of the potentially toxic elements (PTEs) was determined using inductively coupled plasma-optical emission spectrometry. Contamination, ecological, and human health risk assessment indices and models were used to identify any risks that the PTEs could pose to the pristine environment and humans. Our results showed that PTE pollution of soils is occuring in the MFWs than at the control site. The mean concentrations of the PTEs (mg kg<sup>-1</sup>) in the samples were: Mn (2012.75 ± 0.23-3377.14 ± 0.31), Cr (237.55 ± 0.29-424.93 ± 0.31), Cd (0.73 ± 0.13-1.29 ± 0.02), Pb (107.80 ± 0.23-262.01 ± 0.19), and Ni (74.85 ± 0.25-211.37 ± 0.14). These results indicate that the PTEs could plausibly derive from the fabrication activities in these workshops, which is supported by the high values of contamination factors, index of geoaccumulation, and the overall increase in pollution load indices with the number of years of operation of the MFWs. Human health risk assessment showed that there are non-carcinogenic health risks that could be experienced by children who ingest PTEs in the soils from the 7-, 8- and 10-year-old MFWs. The incremental life cancer risk assessment suggested that there are potential cancerous health effects of Cd and Ni that could be experienced in children (who ingest soils from all the four MFWs) and adults (ingesting soils from the 8- and 10-year-old MFWs). This study underscores the need to implement regulatory guidelines on the operation and location of MFWs in Uganda. Further research should be undertaken to investigate the emission of the PTEs during welding operations in the MFWs.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 1","pages":"176-192"},"PeriodicalIF":6.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10885048/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139933444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Gaspari, Marie-Odile Soyer-Gobillard, Scott Kerlin, Françoise Paris, Charles Sultan
Diagnostic of transsexualism and gender incongruence are terms to describe individuals whose self-identity does not match their sex assignment at birth. A transgender woman is an individual assigned male at birth (AMAB) on the basis of the external or internal genitalia who identifies and lives as a woman. In recent decades, a significant increase in the number of transgender people has been reported. Although, its etiology is unknown, biological, anatomical, genetic, environmental and cultural factors have been suggested to contribute to gender variation. In XY animals, it has been shown that environmental endocrine disruptors, through their anti-androgenic activity, induce a female identity. In this work, we described four XY individuals who were exposed in utero to the xenoestrogen diethylstilbesterol (DES) and were part of the French HHORAGES cohort. They all reported a female transgender identity starting from childhood and adolescence. This high prevalence of male to female transgenderism (1.58%) in our cohort of 253 DES sons suggests that exposure to chemicals with xenoestrogen activity during fetal life may affect the male sex identity and behavior.
{"title":"Early Female Transgender Identity after Prenatal Exposure to Diethylstilbestrol: Report from a French National Diethylstilbestrol (DES) Cohort.","authors":"Laura Gaspari, Marie-Odile Soyer-Gobillard, Scott Kerlin, Françoise Paris, Charles Sultan","doi":"10.3390/jox14010010","DOIUrl":"10.3390/jox14010010","url":null,"abstract":"<p><p>Diagnostic of transsexualism and gender incongruence are terms to describe individuals whose self-identity does not match their sex assignment at birth. A transgender woman is an individual assigned male at birth (AMAB) on the basis of the external or internal genitalia who identifies and lives as a woman. In recent decades, a significant increase in the number of transgender people has been reported. Although, its etiology is unknown, biological, anatomical, genetic, environmental and cultural factors have been suggested to contribute to gender variation. In XY animals, it has been shown that environmental endocrine disruptors, through their anti-androgenic activity, induce a female identity. In this work, we described four XY individuals who were exposed in utero to the xenoestrogen diethylstilbesterol (DES) and were part of the French HHORAGES cohort. They all reported a female transgender identity starting from childhood and adolescence. This high prevalence of male to female transgenderism (1.58%) in our cohort of 253 DES sons suggests that exposure to chemicals with xenoestrogen activity during fetal life may affect the male sex identity and behavior.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 1","pages":"166-175"},"PeriodicalIF":6.8,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10801508/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139513858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annette Limke, Gereon Poschmann, Kai Stühler, Patrick Petzsch, Thorsten Wachtmeister, Anna von Mikecz
The incidence of age-related neurodegenerative diseases is rising globally. However, the temporal sequence of neurodegeneration throughout adult life is poorly understood. To identify the starting points and schedule of neurodegenerative events, serotonergic and dopaminergic neurons were monitored in the model organism C. elegans, which has a life span of 2-3 weeks. Neural morphology was examined from young to old nematodes that were exposed to silica nanoparticles. Young nematodes showed phenotypes such as dendritic beading of serotonergic and dopaminergic neurons that are normally not seen until late life. During aging, neurodegeneration spreads from specifically susceptible ADF and PDE neurons in young C. elegans to other more resilient neurons, such as dopaminergic CEP in middle-aged worms. Investigation of neurodegenerative hallmarks and animal behavior revealed a temporal correlation with the acceleration of neuromuscular defects, such as internal hatch in 2-day-old C. elegans. Transcriptomics and proteomics of young worms exposed to nano silica showed a change in gene expression concerning the gene ontology groups serotonergic and dopaminergic signaling as well as neuropeptide signaling. Consistent with this, reporter strains for nlp-3, nlp-14 and nlp-21 confirmed premature degeneration of the serotonergic neuron HSN and other neurons in young C. elegans. The results identify young nematodes as a vulnerable age group for nano silica-induced neural defects with a significantly reduced health span. Neurodegeneration of specific neurons impairs signaling by classical neurotransmitters as well as neuropeptides and compromises related neuromuscular behaviors in critical phases of life, such as the reproductive phase.
{"title":"Silica Nanoparticles Disclose a Detailed Neurodegeneration Profile throughout the Life Span of a Model Organism.","authors":"Annette Limke, Gereon Poschmann, Kai Stühler, Patrick Petzsch, Thorsten Wachtmeister, Anna von Mikecz","doi":"10.3390/jox14010008","DOIUrl":"10.3390/jox14010008","url":null,"abstract":"<p><p>The incidence of age-related neurodegenerative diseases is rising globally. However, the temporal sequence of neurodegeneration throughout adult life is poorly understood. To identify the starting points and schedule of neurodegenerative events, serotonergic and dopaminergic neurons were monitored in the model organism <i>C. elegans</i>, which has a life span of 2-3 weeks. Neural morphology was examined from young to old nematodes that were exposed to silica nanoparticles. Young nematodes showed phenotypes such as dendritic beading of serotonergic and dopaminergic neurons that are normally not seen until late life. During aging, neurodegeneration spreads from specifically susceptible ADF and PDE neurons in young <i>C. elegans</i> to other more resilient neurons, such as dopaminergic CEP in middle-aged worms. Investigation of neurodegenerative hallmarks and animal behavior revealed a temporal correlation with the acceleration of neuromuscular defects, such as internal hatch in 2-day-old <i>C. elegans</i>. Transcriptomics and proteomics of young worms exposed to nano silica showed a change in gene expression concerning the gene ontology groups serotonergic and dopaminergic signaling as well as neuropeptide signaling. Consistent with this, reporter strains for nlp-3, nlp-14 and nlp-21 confirmed premature degeneration of the serotonergic neuron HSN and other neurons in young <i>C. elegans</i>. The results identify young nematodes as a vulnerable age group for nano silica-induced neural defects with a significantly reduced health span. Neurodegeneration of specific neurons impairs signaling by classical neurotransmitters as well as neuropeptides and compromises related neuromuscular behaviors in critical phases of life, such as the reproductive phase.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 1","pages":"135-153"},"PeriodicalIF":6.8,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10801581/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139513869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aims/objectives: The aim of this cross-sectional observational study was to investigate cytogenetic damage to the buccal mucosa in non-smokers and consumers of traditional combustible tobacco products and non-combustible alternatives.
Methods: A total of 160 participants were divided into four groups according to the type of product used, including non-smokers, users of conventional combustible tobacco (cigarettes), heated tobacco, and electronic, tobacco-free vapor products (e-cigarettes). Buccal mucosa samples were analyzed using the micronucleus cytome assay to assess cytotoxic and genotoxic damage.
Results: E-cigarette users showed significantly higher values for all tested parameters in the micronucleus test compared to non-smokers (p < 0.05). Similarly, users of tobacco heating products showed an increase in all parameters (p < 0.05), with the exception of the number of cells with micronuclei. Conventional cigarette smokers showed a notable increase in the number of binucleated cells and cells with karyorrhexis and karyolysis (p ≤ 0.05). When assessing the differences between users of traditional combustible tobacco products and non-combustible alternatives, these did not appear to be significant, except for e-cigarette users, who had significantly more cells with condensed chromatin (p ≤ 0.001), while users of tobacco heating products had more pyknotic cells (p ≤ 0.001).
Conclusion: The results of this study underscore the heightened occurrence of cytotoxic and genotoxic damage in users of both conventional combustible tobacco products and non-combustible alternatives compared to non-smokers, emphasizing the detrimental impact of these products on the oral mucosa.
{"title":"Evaluation of Cytotoxic and Genotoxic Effects in Buccal Mucosal Cells in Non-Smokers and Users of Traditional Combustible Tobacco Products and Non-Combustible Alternatives.","authors":"Antonija Tadin, Vinka Stazic, Nada Galic, Davor Zeljezic","doi":"10.3390/jox14010009","DOIUrl":"10.3390/jox14010009","url":null,"abstract":"<p><strong>Aims/objectives: </strong>The aim of this cross-sectional observational study was to investigate cytogenetic damage to the buccal mucosa in non-smokers and consumers of traditional combustible tobacco products and non-combustible alternatives.</p><p><strong>Methods: </strong>A total of 160 participants were divided into four groups according to the type of product used, including non-smokers, users of conventional combustible tobacco (cigarettes), heated tobacco, and electronic, tobacco-free vapor products (e-cigarettes). Buccal mucosa samples were analyzed using the micronucleus cytome assay to assess cytotoxic and genotoxic damage.</p><p><strong>Results: </strong>E-cigarette users showed significantly higher values for all tested parameters in the micronucleus test compared to non-smokers (<i>p</i> < 0.05). Similarly, users of tobacco heating products showed an increase in all parameters (<i>p</i> < 0.05), with the exception of the number of cells with micronuclei. Conventional cigarette smokers showed a notable increase in the number of binucleated cells and cells with karyorrhexis and karyolysis (<i>p</i> ≤ 0.05). When assessing the differences between users of traditional combustible tobacco products and non-combustible alternatives, these did not appear to be significant, except for e-cigarette users, who had significantly more cells with condensed chromatin (<i>p</i> ≤ 0.001), while users of tobacco heating products had more pyknotic cells (<i>p</i> ≤ 0.001).</p><p><strong>Conclusion: </strong>The results of this study underscore the heightened occurrence of cytotoxic and genotoxic damage in users of both conventional combustible tobacco products and non-combustible alternatives compared to non-smokers, emphasizing the detrimental impact of these products on the oral mucosa.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"14 1","pages":"154-165"},"PeriodicalIF":6.8,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10801550/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139513860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent decades, the poultry farming industry has assumed a pivotal role in meeting the global demand for affordable animal proteins. While poultry farming makes a substantial contribution to food security and nutrition, it also presents environmental and public health challenges. The use of poultry litter as fertilizer for agricultural soils raises concerns about the transfer of pathogens and drug-resistant microorganisms from poultry farms to crop production areas. On the other hand, according to the Food and Agriculture Organization of the United Nations (FAO), fungicides represent the second most used chemical group in agricultural practices. In this context, agricultural soils receive the application of both poultry litter as a fertilizer and fungicides used in agricultural production. This practice can result in fungal contamination of the soil and the development of antifungal resistance. This article explores the necessity of monitoring antifungal resistance, particularly in food production areas with co-application of poultry litter and fungicides. It also highlights the role of fungi in ecosystems, decomposition, and mutualistic plant associations. We call for interdisciplinary research to comprehensively understand fungal resistance to fungicides in the environment. This approach seeks to promote sustainability in the realms of human health, agriculture, and the environment, aligning seamlessly with the One Health concept.
{"title":"Hazards Associated with the Combined Application of Fungicides and Poultry Litter in Agricultural Areas","authors":"Dario Corrêa-Junior, C. Parente, Susana Frases","doi":"10.3390/jox14010007","DOIUrl":"https://doi.org/10.3390/jox14010007","url":null,"abstract":"In recent decades, the poultry farming industry has assumed a pivotal role in meeting the global demand for affordable animal proteins. While poultry farming makes a substantial contribution to food security and nutrition, it also presents environmental and public health challenges. The use of poultry litter as fertilizer for agricultural soils raises concerns about the transfer of pathogens and drug-resistant microorganisms from poultry farms to crop production areas. On the other hand, according to the Food and Agriculture Organization of the United Nations (FAO), fungicides represent the second most used chemical group in agricultural practices. In this context, agricultural soils receive the application of both poultry litter as a fertilizer and fungicides used in agricultural production. This practice can result in fungal contamination of the soil and the development of antifungal resistance. This article explores the necessity of monitoring antifungal resistance, particularly in food production areas with co-application of poultry litter and fungicides. It also highlights the role of fungi in ecosystems, decomposition, and mutualistic plant associations. We call for interdisciplinary research to comprehensively understand fungal resistance to fungicides in the environment. This approach seeks to promote sustainability in the realms of human health, agriculture, and the environment, aligning seamlessly with the One Health concept.","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"42 44","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139442231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemical agents can cause cancer in animals by damaging their DNA, mutating their genes, and modifying their epigenetic signatures. Carcinogen-induced preclinical cancer models are useful for understanding carcinogen-induced human cancers, as they can reproduce the diversity and complexity of tumor types, as well as the interactions with the host environment. However, these models also have some drawbacks that limit their applicability and validity. For instance, some chemicals may be more effective or toxic in animals than in humans, and the tumors may differ in their genetics and phenotypes. Some chemicals may also affect normal cells and tissues, such as by causing oxidative stress, inflammation, and cell death, which may alter the tumor behavior and response to therapy. Furthermore, some chemicals may have variable effects depending on the exposure conditions, such as dose, route, and duration, as well as the animal characteristics, such as genetics and hormones. Therefore, these models should be carefully chosen, validated, and standardized, and the results should be cautiously interpreted and compared with other models. This review covers the main features of chemically induced cancer models, such as genetic and epigenetic changes, tumor environment, angiogenesis, invasion and metastasis, and immune response. We also address the pros and cons of these models and the current and future challenges for their improvement. This review offers a comprehensive overview of the state of the art of carcinogen-induced cancer models and provides new perspectives for cancer research.
{"title":"Relevance of Carcinogen-Induced Preclinical Cancer Models","authors":"R. Sewduth, K. Georgelou","doi":"10.3390/jox14010006","DOIUrl":"https://doi.org/10.3390/jox14010006","url":null,"abstract":"Chemical agents can cause cancer in animals by damaging their DNA, mutating their genes, and modifying their epigenetic signatures. Carcinogen-induced preclinical cancer models are useful for understanding carcinogen-induced human cancers, as they can reproduce the diversity and complexity of tumor types, as well as the interactions with the host environment. However, these models also have some drawbacks that limit their applicability and validity. For instance, some chemicals may be more effective or toxic in animals than in humans, and the tumors may differ in their genetics and phenotypes. Some chemicals may also affect normal cells and tissues, such as by causing oxidative stress, inflammation, and cell death, which may alter the tumor behavior and response to therapy. Furthermore, some chemicals may have variable effects depending on the exposure conditions, such as dose, route, and duration, as well as the animal characteristics, such as genetics and hormones. Therefore, these models should be carefully chosen, validated, and standardized, and the results should be cautiously interpreted and compared with other models. This review covers the main features of chemically induced cancer models, such as genetic and epigenetic changes, tumor environment, angiogenesis, invasion and metastasis, and immune response. We also address the pros and cons of these models and the current and future challenges for their improvement. This review offers a comprehensive overview of the state of the art of carcinogen-induced cancer models and provides new perspectives for cancer research.","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"3 3","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139384254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}