首页 > 最新文献

Biomedical Engineering and Computational Biology最新文献

英文 中文
Next-Generation Microfluidics for Biomedical Research and Healthcare Applications. 用于生物医学研究和医疗保健应用的下一代微流体。
IF 2.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2023-11-27 eCollection Date: 2023-01-01 DOI: 10.1177/11795972231214387
Muhammedin Deliorman, Dima Samer Ali, Mohammad A Qasaimeh

Microfluidic systems offer versatile biomedical tools and methods to enhance human convenience and health. Advances in these systems enables next-generation microfluidics that integrates automation, manipulation, and smart readout systems, as well as design and three-dimensional (3D) printing for precise production of microchannels and other microstructures rapidly and with great flexibility. These 3D-printed microfluidic platforms not only control the complex fluid behavior for various biomedical applications, but also serve as microconduits for building 3D tissue constructs-an integral component of advanced drug development, toxicity assessment, and accurate disease modeling. Furthermore, the integration of other emerging technologies, such as advanced microscopy and robotics, enables the spatiotemporal manipulation and high-throughput screening of cell physiology within precisely controlled microenvironments. Notably, the portability and high precision automation capabilities in these integrated systems facilitate rapid experimentation and data acquisition to help deepen our understanding of complex biological systems and their behaviors. While certain challenges, including material compatibility, scaling, and standardization still exist, the integration with artificial intelligence, the Internet of Things, smart materials, and miniaturization holds tremendous promise in reshaping traditional microfluidic approaches. This transformative potential, when integrated with advanced technologies, has the potential to revolutionize biomedical research and healthcare applications, ultimately benefiting human health. This review highlights the advances in the field and emphasizes the critical role of the next generation microfluidic systems in advancing biomedical research, point-of-care diagnostics, and healthcare systems.

微流体系统提供了多种生物医学工具和方法,以提高人类的便利和健康。这些系统的进步使下一代微流体能够集成自动化,操作和智能读出系统,以及设计和三维(3D)打印,以快速和极大的灵活性精确生产微通道和其他微结构。这些3D打印的微流体平台不仅可以控制各种生物医学应用的复杂流体行为,还可以作为构建3D组织结构的微导管,是先进药物开发、毒性评估和准确疾病建模的一个组成部分。此外,其他新兴技术的整合,如先进的显微镜和机器人技术,能够在精确控制的微环境中进行时空操纵和细胞生理学的高通量筛选。值得注意的是,这些集成系统的便携性和高精度自动化能力促进了快速实验和数据采集,有助于加深我们对复杂生物系统及其行为的理解。虽然某些挑战,包括材料兼容性,缩放和标准化仍然存在,但与人工智能,物联网,智能材料和小型化的集成在重塑传统微流体方法方面具有巨大的希望。当与先进技术相结合时,这种变革潜力有可能彻底改变生物医学研究和医疗保健应用,最终造福人类健康。这篇综述强调了该领域的进展,并强调了下一代微流控系统在推进生物医学研究、即时诊断和医疗保健系统方面的关键作用。
{"title":"Next-Generation Microfluidics for Biomedical Research and Healthcare Applications.","authors":"Muhammedin Deliorman, Dima Samer Ali, Mohammad A Qasaimeh","doi":"10.1177/11795972231214387","DOIUrl":"10.1177/11795972231214387","url":null,"abstract":"<p><p>Microfluidic systems offer versatile biomedical tools and methods to enhance human convenience and health. Advances in these systems enables next-generation microfluidics that integrates automation, manipulation, and smart readout systems, as well as design and three-dimensional (3D) printing for precise production of microchannels and other microstructures rapidly and with great flexibility. These 3D-printed microfluidic platforms not only control the complex fluid behavior for various biomedical applications, but also serve as microconduits for building 3D tissue constructs-an integral component of advanced drug development, toxicity assessment, and accurate disease modeling. Furthermore, the integration of other emerging technologies, such as advanced microscopy and robotics, enables the spatiotemporal manipulation and high-throughput screening of cell physiology within precisely controlled microenvironments. Notably, the portability and high precision automation capabilities in these integrated systems facilitate rapid experimentation and data acquisition to help deepen our understanding of complex biological systems and their behaviors. While certain challenges, including material compatibility, scaling, and standardization still exist, the integration with artificial intelligence, the Internet of Things, smart materials, and miniaturization holds tremendous promise in reshaping traditional microfluidic approaches. This transformative potential, when integrated with advanced technologies, has the potential to revolutionize biomedical research and healthcare applications, ultimately benefiting human health. This review highlights the advances in the field and emphasizes the critical role of the next generation microfluidic systems in advancing biomedical research, point-of-care diagnostics, and healthcare systems.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"14 ","pages":"11795972231214387"},"PeriodicalIF":2.8,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683381/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138463291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of Druggable Allosteric Sites of Undruggable Multidrug Resistance Efflux Pump P. Gingivalis Proteins. 不耐多药流出泵牙龈卟啉单胞菌蛋白质的可药用变构位点预测。
IF 2.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2023-09-21 eCollection Date: 2023-01-01 DOI: 10.1177/11795972231202394
Pradeep Kumar Yadalam, Raghavendra Vamsi Anegundi, Artak Heboyan
4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). https://doi.org/10.1177/11795972231202394 Biomedical Engineering and Computational Biology Volume 14: 1–2 © The Author(s) 2023 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1 795972231 02394
{"title":"Prediction of Druggable Allosteric Sites of Undruggable Multidrug Resistance Efflux Pump <i>P. Gingivalis</i> Proteins.","authors":"Pradeep Kumar Yadalam,&nbsp;Raghavendra Vamsi Anegundi,&nbsp;Artak Heboyan","doi":"10.1177/11795972231202394","DOIUrl":"https://doi.org/10.1177/11795972231202394","url":null,"abstract":"4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). https://doi.org/10.1177/11795972231202394 Biomedical Engineering and Computational Biology Volume 14: 1–2 © The Author(s) 2023 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1 795972231 02394","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"14 ","pages":"11795972231202394"},"PeriodicalIF":2.8,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ca/55/10.1177_11795972231202394.PMC10515579.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41159980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-silico Structural Modeling of Human Immunodeficiency Virus Proteins. 人类免疫缺陷病毒蛋白的计算机结构建模。
IF 2.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2023-01-01 DOI: 10.1177/11795972231154402
Amir Elalouf

Human immunodeficiency virus (HIV) is an infectious virus that depletes the CD4+ T lymphocytes of the immune system and causes a chronic life-treating disease-acquired immunodeficiency syndrome (AIDS). The HIV genome encodes different structural and accessory proteins involved in viral entry and life cycle. Determining the 3D structure of HIV proteins is essential for new target position finding, structure-based drug designing, and future planning for computational and laboratory experimentations. Hence, the study aims to predict the 3D structures of all the HIV structural and accessory proteins using computational homology modeling to understand better the structural basis of HIV proteins interacting with host cells and viral replication. The sequences of HIV capsid, matrix, nucleocapsid, p6, reverse transcriptase, invertase, protease, gp120, gp41, virus protein r, viral infectivity factor, virus protein unique, RNA splicing regulator, transactivator protein, negative regulating factor, and virus protein x proteins were retrieved from UniProt. The primary and secondary structures of HIV proteins were predicted by Expasy ProtParam and SOPMA web servers. For the homology modeling, the MODELLER predicted the 3D structures of HIV proteins using templates. Then, the modeled structures were validated by the Ramachandran plot, local and global quality estimation scores, QMEAN scores, and Z-scores. Most of the amino acid residues of HIV proteins were present in the most favored and generously allowed regions in the Ramachandran plots. The local and global quality scores and Z-scores of the HIV proteins confirmed the good quality of modeled structures. The 3D modeled structures of HIV proteins might help further investigate the possible treatment.

人类免疫缺陷病毒(HIV)是一种传染性病毒,它消耗免疫系统的CD4+ T淋巴细胞,导致慢性获得性免疫缺陷综合征(AIDS)。HIV基因组编码参与病毒进入和生命周期的不同结构蛋白和辅助蛋白。确定HIV蛋白的三维结构对于寻找新的靶标位置、基于结构的药物设计以及未来的计算和实验室实验规划至关重要。因此,本研究旨在利用计算同源性模型预测所有HIV结构蛋白和辅助蛋白的三维结构,以更好地了解HIV蛋白与宿主细胞相互作用和病毒复制的结构基础。HIV衣壳、基质、核衣壳、p6、逆转录酶、转化酶、蛋白酶、gp120、gp41、病毒蛋白r、病毒感染因子、病毒蛋白unique、RNA剪接调节因子、反激活蛋白、负调节因子、病毒蛋白x蛋白的序列从UniProt中检索。利用Expasy ProtParam和SOPMA web服务器预测HIV蛋白的一级和二级结构。对于同源性建模,modeler使用模板预测了HIV蛋白的3D结构。然后,通过Ramachandran图、局部和全局质量估计分数、QMEAN分数和z分数验证模型结构。HIV蛋白的大多数氨基酸残基存在于Ramachandran图中最有利和最慷慨允许的区域。HIV蛋白的局部和全局质量分数和z分数证实了模型结构的良好质量。HIV蛋白的3D模型结构可能有助于进一步研究可能的治疗方法。
{"title":"<i>In-silico</i> Structural Modeling of Human Immunodeficiency Virus Proteins.","authors":"Amir Elalouf","doi":"10.1177/11795972231154402","DOIUrl":"https://doi.org/10.1177/11795972231154402","url":null,"abstract":"<p><p>Human immunodeficiency virus (HIV) is an infectious virus that depletes the CD4<sup>+</sup> <i>T</i> lymphocytes of the immune system and causes a chronic life-treating disease-acquired immunodeficiency syndrome (AIDS). The HIV genome encodes different structural and accessory proteins involved in viral entry and life cycle. Determining the 3D structure of HIV proteins is essential for new target position finding, structure-based drug designing, and future planning for computational and laboratory experimentations. Hence, the study aims to predict the 3D structures of all the HIV structural and accessory proteins using computational homology modeling to understand better the structural basis of HIV proteins interacting with host cells and viral replication. The sequences of HIV capsid, matrix, nucleocapsid, p6, reverse transcriptase, invertase, protease, gp120, gp41, virus protein r, viral infectivity factor, virus protein unique, RNA splicing regulator, transactivator protein, negative regulating factor, and virus protein x proteins were retrieved from UniProt. The primary and secondary structures of HIV proteins were predicted by Expasy ProtParam and SOPMA web servers. For the homology modeling, the MODELLER predicted the 3D structures of HIV proteins using templates. Then, the modeled structures were validated by the Ramachandran plot, local and global quality estimation scores, QMEAN scores, and <i>Z</i>-scores. Most of the amino acid residues of HIV proteins were present in the most favored and generously allowed regions in the Ramachandran plots. The local and global quality scores and <i>Z</i>-scores of the HIV proteins confirmed the good quality of modeled structures. The 3D modeled structures of HIV proteins might help further investigate the possible treatment.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"14 ","pages":"11795972231154402"},"PeriodicalIF":2.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8d/21/10.1177_11795972231154402.PMC9936402.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9317001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital Filtering and Signal Decomposition: A Priori and Adaptive Approaches in Body Area Sensing. 数字滤波和信号分解:身体区域传感的先验和自适应方法。
IF 2.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2023-01-01 DOI: 10.1177/11795972231166236
Roya Haratian

Elimination of undesired signals from a mixture of captured signals in body area sensing systems is studied in this paper. A series of filtering techniques including a priori and adaptive approaches are explored in detail and applied involving decomposition of signals along a new system's axis to separate the desired signals from other sources in the original data. Within the context of a case study in body area systems, a motion capture scenario is designed and the introduced signal decomposition techniques are critically evaluated and a new one is proposed. Applying the studied filtering and signal decomposition techniques demonstrates that the functional based approach outperforms the rest in reducing the effect of undesired changes in collected motion data which are due to random changes in sensors positioning. The results showed that the proposed technique reduces variations in the data for average of 94% outperforming the rest of the techniques in the case study although it will add computational complexity. Such technique helps wider adaptation of motion capture systems with less sensitivity to accurate sensor positioning; therefore, more portable body area sensing system.

本文研究了人体区域传感系统中采集的混合信号中不需要的信号的消除。包括先验和自适应方法在内的一系列滤波技术进行了详细的探讨,并应用于沿新系统轴分解信号以从原始数据中的其他来源分离所需信号。在身体区域系统案例研究的背景下,设计了一个动作捕捉场景,并对引入的信号分解技术进行了批判性评估,并提出了一个新的信号分解技术。应用所研究的滤波和信号分解技术表明,基于函数的方法在减少由于传感器定位随机变化而导致的采集运动数据的不期望变化的影响方面优于其他方法。结果表明,尽管该技术会增加计算复杂性,但在案例研究中,该技术比其他技术平均减少了94%的数据变化。这种技术有助于运动捕捉系统更广泛地适应较低灵敏度的精确传感器定位;因此,更便携的人体区域传感系统。
{"title":"Digital Filtering and Signal Decomposition: A Priori and Adaptive Approaches in Body Area Sensing.","authors":"Roya Haratian","doi":"10.1177/11795972231166236","DOIUrl":"https://doi.org/10.1177/11795972231166236","url":null,"abstract":"<p><p>Elimination of undesired signals from a mixture of captured signals in body area sensing systems is studied in this paper. A series of filtering techniques including a priori and adaptive approaches are explored in detail and applied involving decomposition of signals along a new system's axis to separate the desired signals from other sources in the original data. Within the context of a case study in body area systems, a motion capture scenario is designed and the introduced signal decomposition techniques are critically evaluated and a new one is proposed. Applying the studied filtering and signal decomposition techniques demonstrates that the functional based approach outperforms the rest in reducing the effect of undesired changes in collected motion data which are due to random changes in sensors positioning. The results showed that the proposed technique reduces variations in the data for average of 94% outperforming the rest of the techniques in the case study although it will add computational complexity. Such technique helps wider adaptation of motion capture systems with less sensitivity to accurate sensor positioning; therefore, more portable body area sensing system.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"14 ","pages":"11795972231166236"},"PeriodicalIF":2.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/13/22/10.1177_11795972231166236.PMC10108405.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9752896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomedical and Computational Biology: Second International Symposium, BECB 2022, Virtual Event, August 13–15, 2022, Revised Selected Papers 生物医学与计算生物学:第二届国际研讨会,BECB 2022,虚拟事件,2022年8月13-15日,修订论文选集
IF 2.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-25191-7
{"title":"Biomedical and Computational Biology: Second International Symposium, BECB 2022, Virtual Event, August 13–15, 2022, Revised Selected Papers","authors":"","doi":"10.1007/978-3-031-25191-7","DOIUrl":"https://doi.org/10.1007/978-3-031-25191-7","url":null,"abstract":"","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"100 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72419875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydroxyapatite-Bioceramic/Expanded Perlite Hybrid Composites Coating on Ti6Al4V by Hydrothermal Method and in vitro Behavior. 羟基磷灰石-生物陶瓷/膨胀珍珠岩杂化复合材料在Ti6Al4V表面的水热涂层及其体外行为
IF 2.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2023-01-01 DOI: 10.1177/11795972231151348
Mehtap Muratoğlu, Tuğçe Özcan

This study was aimed to coat a hybrid bioceramic composite onto Ti6Al4V by using hydrothermal method. The Hybrid bioceramic composite for coating was prepared by reinforcing different rations of expanded perlite (EP) and 5 wt.% chitosan into synthesized Hydroxyapatite (HA). Coating was performed at 1800°C for 12 hours. The coated specimens were gradually subjected to a sintering at 6000°C for 1 hour. For in vitro analysis, the specimens were kept in Ringer's solution for 1, 10, and 25 days. All specimens were examined by SEM, EDX, FTIR, and surface roughness analyses for characterizing. It was concluded that as the reinforcement ratio increased, there was an increase in coating thickness and surface roughness. The optimum reinforcement ratio for expanded perlite can be 10 wt.% (A3-B3). With increasing ratio of calcium (Ca) and phosphate (P) (Ca/P), the surface becomes more active in body fluid and then observed the formation of the hydroxycarbonate apatite (HCA) layer. As the waiting time increased, there was an increase in the formation of an apatite structure.

本研究旨在采用水热法制备Ti6Al4V表面的杂化生物陶瓷复合材料。通过增强不同配比的膨胀珍珠岩(EP)和5wt,制备了涂层用杂化生物陶瓷复合材料。%壳聚糖合成羟基磷灰石(HA)。涂层在1800°C下进行12小时。涂层试样在6000℃下烧结1小时。为了进行体外分析,将标本在林格氏液中保存1、10和25天。所有样品均通过SEM, EDX, FTIR和表面粗糙度分析进行表征。结果表明,随着配筋率的增加,涂层厚度和表面粗糙度增大。膨胀珍珠岩的最佳配筋率为10wt。% (a3b3)。随着钙(Ca)与磷酸(P) (Ca/P)比例的增加,其表面在体液中变得更加活跃,然后观察到羟基碳酸盐磷灰石(HCA)层的形成。随着等待时间的延长,磷灰石结构的形成增多。
{"title":"Hydroxyapatite-Bioceramic/Expanded Perlite Hybrid Composites Coating on Ti<sub>6</sub>Al<sub>4</sub>V by Hydrothermal Method and in vitro Behavior.","authors":"Mehtap Muratoğlu,&nbsp;Tuğçe Özcan","doi":"10.1177/11795972231151348","DOIUrl":"https://doi.org/10.1177/11795972231151348","url":null,"abstract":"<p><p>This study was aimed to coat a hybrid bioceramic composite onto Ti<sub>6</sub>Al<sub>4</sub>V by using hydrothermal method. The Hybrid bioceramic composite for coating was prepared by reinforcing different rations of expanded perlite (EP) and 5 wt.% chitosan into synthesized Hydroxyapatite (HA). Coating was performed at 1800°C for 12 hours. The coated specimens were gradually subjected to a sintering at 6000°C for 1 hour. For in vitro analysis, the specimens were kept in Ringer's solution for 1, 10, and 25 days. All specimens were examined by SEM, EDX, FTIR, and surface roughness analyses for characterizing. It was concluded that as the reinforcement ratio increased, there was an increase in coating thickness and surface roughness. The optimum reinforcement ratio for expanded perlite can be 10 wt.% (A3-B3). With increasing ratio of calcium (Ca) and phosphate (P) (Ca/P), the surface becomes more active in body fluid and then observed the formation of the hydroxycarbonate apatite (HCA) layer. As the waiting time increased, there was an increase in the formation of an apatite structure.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"14 ","pages":"11795972231151348"},"PeriodicalIF":2.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/69/d8/10.1177_11795972231151348.PMC10186576.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10645370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite Element Model-Computed Mechanical Behavior of Femurs with Metastatic Disease Varies Between Physiologic and Idealized Loading Simulations. 具有转移性疾病的股骨的有限元模型计算力学行为在生理和理想载荷模拟之间的差异。
IF 2.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2023-01-01 DOI: 10.1177/11795972231166240
Joshua E Johnson, Marc J Brouillette, Benjamin J Miller, Jessica E Goetz

Background and objectives: Femurs affected by metastatic bone disease (MBD) frequently undergo surgery to prevent impending pathologic fractures due to clinician-perceived increases in fracture risk. Finite element (FE) models can provide more objective assessments of fracture risk. However, FE models of femurs with MBD have implemented strain- and strength-based estimates of fracture risk under a wide variety of loading configurations, and "physiologic" loading models typically simulate a single abductor force. Due to these variations, it is currently difficult to interpret mechanical fracture risk results across studies of femoral MBD. Our aims were to evaluate (1) differences in mechanical behavior between idealized loading configurations and those incorporating physiologic muscle forces, and (2) differences in the rankings of mechanical behavior between different loading configurations, in FE simulations to predict fracture risk in femurs with MBD.

Methods: We evaluated 9 different patient-specific FE loading simulations for a cohort of 54 MBD femurs: strain outcome simulations-physiologic (normal walking [NW], stair ascent [SA], stumbling), and joint contact only (NW contact force, excluding muscle forces); strength outcome simulations-physiologic (NW, SA), joint contact only, offset torsion, and sideways fall. Tensile principal strain and femur strength were compared between simulations using statistical analyses.

Results: Tensile principal strain was 26% higher (R 2 = 0.719, P < .001) and femur strength was 4% lower (R 2 = 0.984, P < .001) in simulations excluding physiologic muscle forces. Rankings of the mechanical predictions were correlated between the strain outcome simulations (ρ = 0.723 to 0.990, P < .001), and between strength outcome simulations (ρ = 0.524 to 0.984, P < .001).

Conclusions: Overall, simulations incorporating physiologic muscle forces affected local strain outcomes more than global strength outcomes. Absolute values of strain and strength computed using idealized (no muscle forces) and physiologic loading configurations should be used within the appropriate context when interpreting fracture risk in femurs with MBD.

背景和目的:由于临床认为骨折风险增加,受转移性骨病(MBD)影响的股骨经常接受手术以预防即将发生的病理性骨折。有限元模型可以提供更客观的断裂风险评估。然而,MBD股骨的有限元模型已经在各种载荷配置下实现了基于应变和强度的骨折风险估计,而“生理”载荷模型通常模拟单一外展力。由于这些差异,目前很难解释股骨MBD研究中的机械骨折风险结果。我们的目的是评估(1)在预测MBD股骨骨折风险的有限元模拟中,理想加载配置和结合生理肌肉力的力学行为的差异;(2)不同加载配置之间力学行为排名的差异。方法:我们对一组54 MBD股骨进行了9种不同的患者特异性FE负荷模拟:应变结果模拟-生理性(正常行走[NW],上楼梯[SA],绊倒)和仅关节接触(NW接触力,不包括肌肉力);强度结果模拟-生理性(西北方向,西南方向),仅关节接触,偏移扭转和侧落。通过统计分析比较了不同模拟间的拉伸主应变和股骨强度。结果:拉伸主应变高26% (r2 = 0.719, r2 = 0.984, P P P P)。结论:总体而言,结合生理性肌肉力量的模拟对局部应变结果的影响大于对整体强度结果的影响。在解释MBD股骨骨折风险时,应在适当的背景下使用理想(无肌肉力)和生理负荷配置计算的应变和强度绝对值。
{"title":"Finite Element Model-Computed Mechanical Behavior of Femurs with Metastatic Disease Varies Between Physiologic and Idealized Loading Simulations.","authors":"Joshua E Johnson,&nbsp;Marc J Brouillette,&nbsp;Benjamin J Miller,&nbsp;Jessica E Goetz","doi":"10.1177/11795972231166240","DOIUrl":"https://doi.org/10.1177/11795972231166240","url":null,"abstract":"<p><strong>Background and objectives: </strong>Femurs affected by metastatic bone disease (MBD) frequently undergo surgery to prevent impending pathologic fractures due to clinician-perceived increases in fracture risk. Finite element (FE) models can provide more objective assessments of fracture risk. However, FE models of femurs with MBD have implemented strain- and strength-based estimates of fracture risk under a wide variety of loading configurations, and \"physiologic\" loading models typically simulate a single abductor force. Due to these variations, it is currently difficult to interpret mechanical fracture risk results across studies of femoral MBD. Our aims were to evaluate (1) differences in mechanical behavior between idealized loading configurations and those incorporating physiologic muscle forces, and (2) differences in the rankings of mechanical behavior between different loading configurations, in FE simulations to predict fracture risk in femurs with MBD.</p><p><strong>Methods: </strong>We evaluated 9 different patient-specific FE loading simulations for a cohort of 54 MBD femurs: <i>strain outcome</i> simulations-physiologic (normal walking [NW], stair ascent [SA], stumbling), and joint contact only (NW contact force, excluding muscle forces); <i>strength outcome</i> simulations-physiologic (NW, SA), joint contact only, offset torsion, and sideways fall. Tensile principal strain and femur strength were compared between simulations using statistical analyses.</p><p><strong>Results: </strong>Tensile principal strain was 26% higher (<i>R</i> <sup>2</sup> = 0.719, <i>P</i> < .001) and femur strength was 4% lower (<i>R</i> <sup>2</sup> = 0.984, <i>P</i> < .001) in simulations excluding physiologic muscle forces. Rankings of the mechanical predictions were correlated between the strain outcome simulations (ρ = 0.723 to 0.990, <i>P</i> < .001), and between strength outcome simulations (ρ = 0.524 to 0.984, <i>P</i> < .001).</p><p><strong>Conclusions: </strong>Overall, simulations incorporating physiologic muscle forces affected local strain outcomes more than global strength outcomes. Absolute values of strain and strength computed using idealized (no muscle forces) and physiologic loading configurations should be used within the appropriate context when interpreting fracture risk in femurs with MBD.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"14 ","pages":"11795972231166240"},"PeriodicalIF":2.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/07/41/10.1177_11795972231166240.PMC10068135.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9626486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning Based Classification of Dermatological Disorders. 基于深度学习的皮肤病分类。
IF 2.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2023-01-01 DOI: 10.1177/11795972221138470
Lulwah AlSuwaidan

Automated medical diagnosis has become crucial and significantly supports medical doctors. Thus, there is a demand for inventing deep learning (DL) and convolutional networks for analyzing medical images. Dermatology, in particular, is one of the domains that was recently targeted by AI specialists to introduce new DL algorithms or enhance convolutional neural network (CNN) architectures. A significantly high proportion of studies in the field are concerned with skin cancer, whereas other dermatological disorders are still limited. In this work, we examined the performance of 6 CNN architectures named VGG16, EfficientNet, InceptionV3, MobileNet, NasNet, and ResNet50 for the top 3 dermatological disorders that frequently appear in the Middle East. An Image filtering and denoising were imposed in this work to enhance image quality and increase architecture performance. Experimental results revealed that MobileNet achieved the highest performance and accuracy among the CNN architectures and can classify disorder with high performance (95.7% accuracy). Future scope will focus more on proposing a new methodology for deep-based classification. In addition, we will expand the dataset for more images that consider new disorders and variations.

自动医疗诊断已经变得至关重要,并为医生提供了重要的支持。因此,需要发明深度学习(DL)和卷积网络来分析医学图像。特别是皮肤科,是人工智能专家最近引入新的深度学习算法或增强卷积神经网络(CNN)架构的目标领域之一。该领域的研究有相当高的比例与皮肤癌有关,而其他皮肤病的研究仍然有限。在这项工作中,我们检查了6个CNN架构VGG16、EfficientNet、InceptionV3、MobileNet、NasNet和ResNet50对中东地区经常出现的前3种皮肤病的性能。在此工作中,对图像进行滤波和去噪以提高图像质量和提高结构性能。实验结果表明,MobileNet在CNN体系结构中取得了最高的性能和准确率,可以高效地对无序进行分类(准确率为95.7%)。未来的范围将更多地集中在提出一种新的基于深度的分类方法上。此外,我们将扩展数据集,以获得更多考虑新疾病和变化的图像。
{"title":"Deep Learning Based Classification of Dermatological Disorders.","authors":"Lulwah AlSuwaidan","doi":"10.1177/11795972221138470","DOIUrl":"https://doi.org/10.1177/11795972221138470","url":null,"abstract":"<p><p>Automated medical diagnosis has become crucial and significantly supports medical doctors. Thus, there is a demand for inventing deep learning (DL) and convolutional networks for analyzing medical images. Dermatology, in particular, is one of the domains that was recently targeted by AI specialists to introduce new DL algorithms or enhance convolutional neural network (CNN) architectures. A significantly high proportion of studies in the field are concerned with skin cancer, whereas other dermatological disorders are still limited. In this work, we examined the performance of 6 CNN architectures named VGG16, EfficientNet, InceptionV3, MobileNet, NasNet, and ResNet50 for the top 3 dermatological disorders that frequently appear in the Middle East. An Image filtering and denoising were imposed in this work to enhance image quality and increase architecture performance. Experimental results revealed that MobileNet achieved the highest performance and accuracy among the CNN architectures and can classify disorder with high performance (95.7% accuracy). Future scope will focus more on proposing a new methodology for deep-based classification. In addition, we will expand the dataset for more images that consider new disorders and variations.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"14 ","pages":"11795972221138470"},"PeriodicalIF":2.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/20/4b/10.1177_11795972221138470.PMC10392223.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9932977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Assessing Paracetamol Overdose in Children: Acceptability and Potential Market for a Non-Invasive Testing Device. 评估儿童对乙酰氨基酚过量:非侵入性检测设备的可接受性和潜在市场。
IF 2.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2023-01-01 DOI: 10.1177/11795972221140108
Debora Freitas, Christopher Parry, Gabrielle Seddon, Jana Lemke, James Moss, Neville Freeman, Julie Grice, Daniel B Hawcutt

Background: Assessment of paracetamol overdose in children and teenagers in the emergency department (ED) requires blood, taken 4 hours post ingestion. A commercial partner developed transdermal paracetamol measuring technology. This work aims to understand the acceptability of such a device, and potential market size.

Methods: A questionnaire study was undertaken with children and parents attending Alder Hey Children's Hospital, and healthcare professionals (HCP) involved in their care. A retrospective audit of paracetamol ingestion presenting to a paediatric ED was undertaken.

Results: One hundred forty-three questionnaires were distributed, and 139 returned (response rate 97.2%), comprising 55 children, 52 parents and 32 HCP (recruited between August-October 2019). Overall device acceptability, assessed by favourability of appearance and willingness to wear was high, at 60.0% and 81.5% respectively. Concerns raised included bulky size and weight, and concern regarding the duration younger children would tolerate wearing the device. All groups, including children, ranked accuracy of results as the most important device feature and device comfort the least important. Parents prioritised avoidance of blood tests more than children. One hundred twenty-seven children presented to ED with paracetamol ingestion (September 2017-August 2018), with 57 (44.9%) categorised as accidental overdose. Overall, 106 (83.4%) required paracetamol concentration measuring, and 25 (19.7%) of these required treatment with N-acetylcysteine. Extrapolating nationally, over 7000 children will present with accidental overdose per annum in the UK.

Conclusion: Acceptability of a non-invasive paracetamol sensor was high in all groups, provided accuracy could be assured.

背景:评估对乙酰氨基酚过量的儿童和青少年在急诊科(ED)需要血液,摄取后4小时。一个商业合作伙伴开发了透皮扑热息痛测量技术。这项工作旨在了解这种设备的可接受性,以及潜在的市场规模。方法:对在Alder Hey儿童医院就诊的儿童和家长以及参与护理的医护人员进行问卷调查。回顾性审计的扑热息痛摄入呈现给儿科急诊科进行。结果:共发放问卷143份,回收问卷139份(回复率97.2%),其中儿童55名,家长52名,HCP 32名(招募时间为2019年8 - 10月)。整体设备的可接受性,通过对外观的好感度和佩戴意愿来评估,分别为60.0%和81.5%。人们提出的担忧包括笨重的尺寸和重量,以及年幼的孩子能否忍受佩戴这种设备的时间。包括儿童在内的所有群体都将结果的准确性列为最重要的设备功能,而将设备的舒适度列为最不重要的。父母比儿童更重视避免验血。2017年9月至2018年8月期间,127名儿童因摄入扑热息痛而出现ED,其中57名(44.9%)被归类为意外过量。总体而言,106例(83.4%)患者需要测量扑热息痛浓度,其中25例(19.7%)患者需要n -乙酰半胱氨酸治疗。从全国范围来看,英国每年有超过7000名儿童意外服用过量药物。结论:在保证准确性的前提下,各组对乙酰氨基酚无创传感器的接受度均较高。
{"title":"Assessing Paracetamol Overdose in Children: Acceptability and Potential Market for a Non-Invasive Testing Device.","authors":"Debora Freitas,&nbsp;Christopher Parry,&nbsp;Gabrielle Seddon,&nbsp;Jana Lemke,&nbsp;James Moss,&nbsp;Neville Freeman,&nbsp;Julie Grice,&nbsp;Daniel B Hawcutt","doi":"10.1177/11795972221140108","DOIUrl":"https://doi.org/10.1177/11795972221140108","url":null,"abstract":"<p><strong>Background: </strong>Assessment of paracetamol overdose in children and teenagers in the emergency department (ED) requires blood, taken 4 hours post ingestion. A commercial partner developed transdermal paracetamol measuring technology. This work aims to understand the acceptability of such a device, and potential market size.</p><p><strong>Methods: </strong>A questionnaire study was undertaken with children and parents attending Alder Hey Children's Hospital, and healthcare professionals (HCP) involved in their care. A retrospective audit of paracetamol ingestion presenting to a paediatric ED was undertaken.</p><p><strong>Results: </strong>One hundred forty-three questionnaires were distributed, and 139 returned (response rate 97.2%), comprising 55 children, 52 parents and 32 HCP (recruited between August-October 2019). Overall device acceptability, assessed by favourability of appearance and willingness to wear was high, at 60.0% and 81.5% respectively. Concerns raised included bulky size and weight, and concern regarding the duration younger children would tolerate wearing the device. All groups, including children, ranked accuracy of results as the most important device feature and device comfort the least important. Parents prioritised avoidance of blood tests more than children. One hundred twenty-seven children presented to ED with paracetamol ingestion (September 2017-August 2018), with 57 (44.9%) categorised as accidental overdose. Overall, 106 (83.4%) required paracetamol concentration measuring, and 25 (19.7%) of these required treatment with N-acetylcysteine. Extrapolating nationally, over 7000 children will present with accidental overdose per annum in the UK.</p><p><strong>Conclusion: </strong>Acceptability of a non-invasive paracetamol sensor was high in all groups, provided accuracy could be assured.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"14 ","pages":"11795972221140108"},"PeriodicalIF":2.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902896/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10746502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the Effect of Directional Bremsstrahlung Splitting on the Output Spectra and Parameters Using BEAMnrc Monte Carlo Simulation Package. 利用BEAMnrc蒙特卡罗仿真包评估定向轫致分裂对输出光谱和参数的影响。
IF 2.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2022-11-29 eCollection Date: 2022-01-01 DOI: 10.1177/11795972221138473
Hamed Babapour, Somayeh Semyari, Masoumeh Yadollahi, Mehrsa Majdaeen, Razzagh Abedi-Firouzjah, Gholamreza Ataei

Introduction: EGSnrc software package is one of the computational packages for Monte Carlo simulation in radiation therapy and has several subset codes. Directional bremsstrahlung splitting (DBS) is a technique that applies braking radiations in interactions in this software. This study aimed to evaluate the effect of this technique on the simulation time, uncertainty, particle number of phase-space data, and photon beam spectrum resulting from a medical linear accelerator (LINAC).

Materials and methods: The gantry of the accelerator, including the materials and geometries of different parts, was simulated using the BEAMnrc code (a subset code in the EGSnrc package). The phase-space data were recorded in different parts of the LINAC. The DBS values (1, 10, 100, and 1000) were changed, and their effects were evaluated on the simulation parameters and output spectra.

Results: Increasing the DBS value from 1 to 1000 resulted in an increase in the simulation time from 1.778 to 11.310 hours, and increasing the number of particles in the phase-space plane (5 590 732-180 328 382). When the DBS had been picked up from 1 to 100, the simulation uncertainty decreased by about 1.29%. In addition, the DBS increment value from 100 to 1000 leads to an increase in uncertainty and simulation time of about 0.71% and 315%, respectively.

Conclusion: Although using the DBS technique reduces the simulation time or uncertainty, increasing the DBS from a specific value, equal to 100 in our study, increases simulation uncertainties and times. Therefore, we propose considering a specific DBS value as we obtained for the Monte Carlo simulation of photon beams produced by linear accelerators.

简介:EGSnrc软件包是放射治疗中蒙特卡罗模拟的计算软件包之一,有几个子集代码。定向轫致辐射分裂(DBS)是一种技术,应用制动辐射的相互作用,在这个软件。本研究旨在评估该技术对医用直线加速器(LINAC)产生的相空间数据的模拟时间、不确定性、粒子数和光子束谱的影响。材料和方法:使用BEAMnrc代码(EGSnrc包中的一个子集代码)对加速器的龙门架进行了模拟,包括不同部件的材料和几何形状。在LINAC的不同部位记录相空间数据。改变DBS值(1、10、100和1000),评估其对模拟参数和输出光谱的影响。结果:将DBS值从1增加到1000,模拟时间从1.778小时增加到11.310小时,相空间平面内粒子数量增加(5 590 732-180 328 382)。当DBS从1拾取到100时,模拟不确定性降低了约1.29%。此外,DBS增量值从100增加到1000,导致不确定性和模拟时间分别增加约0.71%和315%。结论:虽然使用DBS技术减少了模拟时间或不确定性,但从一个特定的值(在我们的研究中等于100)增加DBS,会增加模拟的不确定性和次数。因此,我们建议考虑一个特定的DBS值,因为我们得到的蒙特卡罗模拟由线性加速器产生的光子光束。
{"title":"Assessing the Effect of Directional Bremsstrahlung Splitting on the Output Spectra and Parameters Using BEAMnrc Monte Carlo Simulation Package.","authors":"Hamed Babapour,&nbsp;Somayeh Semyari,&nbsp;Masoumeh Yadollahi,&nbsp;Mehrsa Majdaeen,&nbsp;Razzagh Abedi-Firouzjah,&nbsp;Gholamreza Ataei","doi":"10.1177/11795972221138473","DOIUrl":"https://doi.org/10.1177/11795972221138473","url":null,"abstract":"<p><strong>Introduction: </strong>EGSnrc software package is one of the computational packages for Monte Carlo simulation in radiation therapy and has several subset codes. Directional bremsstrahlung splitting (DBS) is a technique that applies braking radiations in interactions in this software. This study aimed to evaluate the effect of this technique on the simulation time, uncertainty, particle number of phase-space data, and photon beam spectrum resulting from a medical linear accelerator (LINAC).</p><p><strong>Materials and methods: </strong>The gantry of the accelerator, including the materials and geometries of different parts, was simulated using the BEAMnrc code (a subset code in the EGSnrc package). The phase-space data were recorded in different parts of the LINAC. The DBS values (1, 10, 100, and 1000) were changed, and their effects were evaluated on the simulation parameters and output spectra.</p><p><strong>Results: </strong>Increasing the DBS value from 1 to 1000 resulted in an increase in the simulation time from 1.778 to 11.310 hours, and increasing the number of particles in the phase-space plane (5 590 732-180 328 382). When the DBS had been picked up from 1 to 100, the simulation uncertainty decreased by about 1.29%. In addition, the DBS increment value from 100 to 1000 leads to an increase in uncertainty and simulation time of about 0.71% and 315%, respectively.</p><p><strong>Conclusion: </strong>Although using the DBS technique reduces the simulation time or uncertainty, increasing the DBS from a specific value, equal to 100 in our study, increases simulation uncertainties and times. Therefore, we propose considering a specific DBS value as we obtained for the Monte Carlo simulation of photon beams produced by linear accelerators.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"13 ","pages":"11795972221138473"},"PeriodicalIF":2.8,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fb/fb/10.1177_11795972221138473.PMC9716629.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35207968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biomedical Engineering and Computational Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1