首页 > 最新文献

Biomedical Engineering and Computational Biology最新文献

英文 中文
Granular Cell Tumor Imaging Using Optical Coherence Tomography. 利用光学相干断层扫描进行颗粒细胞肿瘤成像。
IF 2.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2018-08-02 eCollection Date: 2018-01-01 DOI: 10.1177/1179597218790250
David Tes, Ahmed Aber, Mohsin Zafar, Luke Horton, Audrey Fotouhi, Qiuyun Xu, Ali Moiin, Andrew D Thompson, Tatiana Cristina Moraes Pinto Blumetti, Steven Daveluy, Wei Chen, Mohammadreza Nasiriavanaki

Background: Granular cell tumor (GCT) is a relatively uncommon tumor that may affect the skin. The tumor can develop anywhere on the body, although it is predominately seen in oral cavities and in the head and neck regions. Here, we present the results of optical coherence tomography (OCT) imaging of a large GCT located on the abdomen of a patient. We also present an analytical method to differentiate between healthy tissue and GCT tissues.

Materials and methods: A multibeam, Fourier domain, swept source OCT was used for imaging. The OCT had a central wavelength of 1305 ± 15 nm and lateral and axial resolutions of 7.5 and 10 µm, respectively. Qualitative and quantitative analyses of the tumor and healthy skin are reported.

Results: Abrupt changes in architectures of the dermal and epidermal layers in the GCT lesion were observed. These architectural changes were not observed in healthy skin.

Discussion: To quantitatively differentiate healthy skin from tumor regions, an optical attenuation coefficient analysis based on single-scattering formulation was performed. The methodology introduced here could have the capability to delineate boundaries of a tumor prior to surgical excision.

背景:颗粒细胞瘤(GCT)是一种比较少见的肿瘤,可影响皮肤。这种肿瘤可发生在身体的任何部位,但主要见于口腔和头颈部。在此,我们展示了一名患者腹部巨大 GCT 的光学相干断层扫描(OCT)成像结果。我们还介绍了一种区分健康组织和 GCT 组织的分析方法:使用多波束、傅立叶域、扫频源 OCT 进行成像。OCT 的中心波长为 1305 ± 15 纳米,横向和轴向分辨率分别为 7.5 微米和 10 微米。报告对肿瘤和健康皮肤进行了定性和定量分析:结果:在 GCT 病变中,真皮层和表皮层的结构发生了突变。讨论:讨论:为了定量区分健康皮肤和肿瘤区域,我们基于单散射公式进行了光学衰减系数分析。本文介绍的方法可在手术切除前划定肿瘤的边界。
{"title":"Granular Cell Tumor Imaging Using Optical Coherence Tomography.","authors":"David Tes, Ahmed Aber, Mohsin Zafar, Luke Horton, Audrey Fotouhi, Qiuyun Xu, Ali Moiin, Andrew D Thompson, Tatiana Cristina Moraes Pinto Blumetti, Steven Daveluy, Wei Chen, Mohammadreza Nasiriavanaki","doi":"10.1177/1179597218790250","DOIUrl":"10.1177/1179597218790250","url":null,"abstract":"<p><strong>Background: </strong>Granular cell tumor (GCT) is a relatively uncommon tumor that may affect the skin. The tumor can develop anywhere on the body, although it is predominately seen in oral cavities and in the head and neck regions. Here, we present the results of optical coherence tomography (OCT) imaging of a large GCT located on the abdomen of a patient. We also present an analytical method to differentiate between healthy tissue and GCT tissues.</p><p><strong>Materials and methods: </strong>A multibeam, Fourier domain, swept source OCT was used for imaging. The OCT had a central wavelength of 1305 ± 15 nm and lateral and axial resolutions of 7.5 and 10 µm, respectively. Qualitative and quantitative analyses of the tumor and healthy skin are reported.</p><p><strong>Results: </strong>Abrupt changes in architectures of the dermal and epidermal layers in the GCT lesion were observed. These architectural changes were not observed in healthy skin.</p><p><strong>Discussion: </strong>To quantitatively differentiate healthy skin from tumor regions, an optical attenuation coefficient analysis based on single-scattering formulation was performed. The methodology introduced here could have the capability to delineate boundaries of a tumor prior to surgical excision.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"9 ","pages":"1179597218790250"},"PeriodicalIF":2.8,"publicationDate":"2018-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5b/e2/10.1177_1179597218790250.PMC6088518.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36405562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Optimization of a Fluorescent Imaging System to Detect Amyloid-β Proteins: Phantom Study. 淀粉样蛋白-β荧光成像系统的开发与优化:幻影研究。
IF 2.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2018-06-18 eCollection Date: 2018-01-01 DOI: 10.1177/1179597218781081
David Tes, Karl Kratkiewicz, Ahmed Aber, Luke Horton, Mohsin Zafar, Nour Arafat, Afreen Fatima, Mohammad Rn Avanaki

Alzheimer disease is the most common form of dementia, affecting more than 5 million people in the United States. During the progression of Alzheimer disease, a particular protein begins to accumulate in the brain and also in extensions of the brain, ie, the retina. This protein, amyloid-β (Aβ), exhibits fluorescent properties. The purpose of this research article is to explore the implications of designing a fluorescent imaging system able to detect Aβ proteins in the retina. We designed and implemented a fluorescent imaging system with a range of applications that can be reconfigured on a fluorophore to fluorophore basis and tested its feasibility and capabilities using Cy5 and CRANAD-2 imaging probes. The results indicate a promising potential for the imaging system to be used to study the Aβ biomarker. A performance evaluation involving ex vivo and in vivo experiments is planned for future study.

阿尔茨海默病是最常见的痴呆症,在美国有超过500万人受到影响。在阿尔茨海默病的发展过程中,一种特殊的蛋白质开始在大脑中积累,也在大脑的延伸部分,即视网膜中积累。这种蛋白,淀粉样蛋白-β (Aβ),具有荧光特性。本研究的目的是探讨设计一种能够检测视网膜中a β蛋白的荧光成像系统的意义。我们设计并实现了一个具有一系列应用的荧光成像系统,该系统可以在荧光团的基础上重新配置,并使用Cy5和CRANAD-2成像探针测试了其可行性和能力。结果表明,该成像系统具有用于研究a β生物标志物的良好潜力。在未来的研究中,计划进行包括体外和体内实验在内的性能评估。
{"title":"Development and Optimization of a Fluorescent Imaging System to Detect Amyloid-β Proteins: Phantom Study.","authors":"David Tes,&nbsp;Karl Kratkiewicz,&nbsp;Ahmed Aber,&nbsp;Luke Horton,&nbsp;Mohsin Zafar,&nbsp;Nour Arafat,&nbsp;Afreen Fatima,&nbsp;Mohammad Rn Avanaki","doi":"10.1177/1179597218781081","DOIUrl":"https://doi.org/10.1177/1179597218781081","url":null,"abstract":"<p><p>Alzheimer disease is the most common form of dementia, affecting more than 5 million people in the United States. During the progression of Alzheimer disease, a particular protein begins to accumulate in the brain and also in extensions of the brain, ie, the retina. This protein, amyloid-β (Aβ), exhibits fluorescent properties. The purpose of this research article is to explore the implications of designing a fluorescent imaging system able to detect Aβ proteins in the retina. We designed and implemented a fluorescent imaging system with a range of applications that can be reconfigured on a fluorophore to fluorophore basis and tested its feasibility and capabilities using Cy5 and CRANAD-2 imaging probes. The results indicate a promising potential for the imaging system to be used to study the Aβ biomarker. A performance evaluation involving ex vivo and in vivo experiments is planned for future study.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"9 ","pages":"1179597218781081"},"PeriodicalIF":2.8,"publicationDate":"2018-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1179597218781081","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36285800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of a Causal Discovery Algorithm to the Analysis of Arthroplasty Registry Data. 应用因果发现算法分析关节成形术登记数据。
IF 2.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2018-02-22 eCollection Date: 2018-01-01 DOI: 10.1177/1179597218756896
Camden Cheek, Huiyong Zheng, Brian R Hallstrom, Richard E Hughes

Improving the quality of care for hip arthroplasty (replacement) patients requires the systematic evaluation of clinical performance of implants and the identification of "outlier" devices that have an especially high risk of reoperation ("revision"). Postmarket surveillance of arthroplasty implants, which rests on the analysis of large patient registries, has been effective in identifying outlier implants such as the ASR metal-on-metal hip resurfacing device that was recalled. Although identifying an implant as an outlier implies a causal relationship between the implant and revision risk, traditional signal detection methods use classical biostatistical methods. The field of probabilistic graphical modeling of causal relationships has developed tools for rigorous analysis of causal relationships in observational data. The purpose of this study was to evaluate one causal discovery algorithm (PC) to determine its suitability for hip arthroplasty implant signal detection. Simulated data were generated using distributions of patient and implant characteristics, and causal discovery was performed using the TETRAD software package. Two sizes of registries were simulated: (1) a statewide registry in Michigan and (2) a nationwide registry in the United Kingdom. The results showed that the algorithm performed better for the simulation of a large national registry. The conclusion is that the causal discovery algorithm used in this study may be a useful tool for implant signal detection for large arthroplasty registries; regional registries may only be able to only detect implants that perform especially poorly.

要提高髋关节置换术(置换)患者的治疗质量,就必须对植入物的临床表现进行系统评估,并找出再次手术("翻修")风险特别高的 "异常 "植入物。对关节置换术植入物的市场后监测主要依靠对大型患者登记资料的分析,这种方法能有效识别出异常植入物,如被召回的 ASR 金属髋关节置换植入物。虽然将植入物识别为异常点意味着植入物与翻修风险之间存在因果关系,但传统的信号检测方法使用的是经典的生物统计方法。因果关系概率图形建模领域已开发出用于严格分析观察数据中因果关系的工具。本研究旨在评估一种因果关系发现算法(PC),以确定其是否适用于髋关节置换术植入信号检测。使用患者和植入物特征的分布生成模拟数据,并使用 TETRAD 软件包进行因果发现。模拟了两种规模的登记处:(1) 密歇根州的全州登记处;(2) 英国的全国登记处。结果显示,该算法在模拟大型全国性登记处时表现更好。结论是本研究中使用的因果发现算法可能是大型关节成形术登记处检测植入物信号的有用工具;地区登记处可能只能检测到表现特别差的植入物。
{"title":"Application of a Causal Discovery Algorithm to the Analysis of Arthroplasty Registry Data.","authors":"Camden Cheek, Huiyong Zheng, Brian R Hallstrom, Richard E Hughes","doi":"10.1177/1179597218756896","DOIUrl":"10.1177/1179597218756896","url":null,"abstract":"<p><p>Improving the quality of care for hip arthroplasty (replacement) patients requires the systematic evaluation of clinical performance of implants and the identification of \"outlier\" devices that have an especially high risk of reoperation (\"revision\"). Postmarket surveillance of arthroplasty implants, which rests on the analysis of large patient registries, has been effective in identifying outlier implants such as the ASR metal-on-metal hip resurfacing device that was recalled. Although identifying an implant as an outlier implies a causal relationship between the implant and revision risk, traditional signal detection methods use classical biostatistical methods. The field of probabilistic graphical modeling of causal relationships has developed tools for rigorous analysis of causal relationships in observational data. The purpose of this study was to evaluate one causal discovery algorithm (PC) to determine its suitability for hip arthroplasty implant signal detection. Simulated data were generated using distributions of patient and implant characteristics, and causal discovery was performed using the TETRAD software package. Two sizes of registries were simulated: (1) a statewide registry in Michigan and (2) a nationwide registry in the United Kingdom. The results showed that the algorithm performed better for the simulation of a large national registry. The conclusion is that the causal discovery algorithm used in this study may be a useful tool for implant signal detection for large arthroplasty registries; regional registries may only be able to only detect implants that perform especially poorly.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"9 ","pages":"1179597218756896"},"PeriodicalIF":2.8,"publicationDate":"2018-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9c/ed/10.1177_1179597218756896.PMC5826097.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35889049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Retrospective Clinical Assessment of a Patient-Specific Closed-Form Integro-Differential Equation Model of Plasma Dilution. 血浆稀释患者特异性闭式积分-微分方程模型的建立和回顾性临床评估。
IF 2.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2017-10-26 eCollection Date: 2017-01-01 DOI: 10.1177/1179597217730305
Glen Atlas, John K-J Li, Shawn Amin, Robert G Hahn

A closed-form integro-differential equation (IDE) model of plasma dilution (PD) has been derived which represents both the intravenous (IV) infusion of crystalloid and the postinfusion period. Specifically, PD is mathematically represented using a combination of constant ratio, differential, and integral components. Furthermore, this model has successfully been applied to preexisting data, from a prior human study, in which crystalloid was infused for a period of 30 minutes at the beginning of thyroid surgery. Using Euler's formula and a Laplace transform solution to the IDE, patients could be divided into two distinct groups based on their response to PD during the infusion period. Explicitly, Group 1 patients had an infusion-based PD response which was modeled using an exponentially decaying hyperbolic sine function, whereas Group 2 patients had an infusion-based PD response which was modeled using an exponentially decaying trigonometric sine function. Both Group 1 and Group 2 patients had postinfusion PD responses which were modeled using the same combination of hyperbolic sine and hyperbolic cosine functions. Statistically significant differences, between Groups 1 and 2, were noted with respect to the area under their PD curves during both the infusion and postinfusion periods. Specifically, Group 2 patients exhibited a response to PD which was most likely consistent with a preoperative hypovolemia. Overall, this IDE model of PD appears to be highly "adaptable" and successfully fits clinically-obtained human data on a patient-specific basis, during both the infusion and postinfusion periods. In addition, patient-specific IDE modeling of PD may be a useful adjunct in perioperative fluid management and in assessing clinical volume kinetics, of crystalloid solutions, in real time.

本文建立了一种反映晶体药物静脉输注和输注后血浆稀释(PD)的闭型积分-微分方程(IDE)模型。具体地说,PD是用常数比、微分和积分分量的组合在数学上表示的。此外,该模型已成功应用于先前存在的数据,来自先前的人类研究,在甲状腺手术开始时注入晶体30分钟。使用欧拉公式和IDE的拉普拉斯变换解,可以根据患者在输注期间对PD的反应将患者分为两组。明确地,1组患者有基于输注的PD反应,使用指数衰减双曲正弦函数建模,而2组患者有基于输注的PD反应,使用指数衰减三角正弦函数建模。1组和2组患者均有输注后PD反应,采用双曲正弦和双曲余弦函数的相同组合建模。1组和2组在输注期间和输注后PD曲线下的面积有统计学上的显著差异。具体来说,第2组患者对PD的反应很可能与术前低血容量一致。总的来说,PD的IDE模型似乎具有高度的“适应性”,并且在输注和输注后阶段成功地适应了临床获得的针对患者的人类数据。此外,PD患者特异性IDE模型可能是围手术期液体管理和实时评估临床体积动力学晶体溶液的有用辅助手段。
{"title":"Development and Retrospective Clinical Assessment of a Patient-Specific Closed-Form Integro-Differential Equation Model of Plasma Dilution.","authors":"Glen Atlas,&nbsp;John K-J Li,&nbsp;Shawn Amin,&nbsp;Robert G Hahn","doi":"10.1177/1179597217730305","DOIUrl":"https://doi.org/10.1177/1179597217730305","url":null,"abstract":"<p><p>A closed-form integro-differential equation (IDE) model of plasma dilution (PD) has been derived which represents both the intravenous (IV) infusion of crystalloid and the postinfusion period. Specifically, PD is mathematically represented using a combination of constant ratio, differential, and integral components. Furthermore, this model has successfully been applied to preexisting data, from a prior human study, in which crystalloid was infused for a period of 30 minutes at the beginning of thyroid surgery. Using Euler's formula and a Laplace transform solution to the IDE, patients could be divided into two distinct groups based on their response to PD during the infusion period. Explicitly, Group 1 patients had an infusion-based PD response which was modeled using an exponentially decaying hyperbolic sine function, whereas Group 2 patients had an infusion-based PD response which was modeled using an exponentially decaying trigonometric sine function. Both Group 1 and Group 2 patients had postinfusion PD responses which were modeled using the same combination of hyperbolic sine and hyperbolic cosine functions. Statistically significant differences, between Groups 1 and 2, were noted with respect to the area under their PD curves during both the infusion and postinfusion periods. Specifically, Group 2 patients exhibited a response to PD which was most likely consistent with a preoperative hypovolemia. Overall, this IDE model of PD appears to be highly \"adaptable\" and successfully fits clinically-obtained human data on a patient-specific basis, during both the infusion and postinfusion periods. In addition, patient-specific IDE modeling of PD may be a useful adjunct in perioperative fluid management and in assessing clinical volume kinetics, of crystalloid solutions, in real time.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"8 ","pages":"1179597217730305"},"PeriodicalIF":2.8,"publicationDate":"2017-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1179597217730305","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35594652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Diffusion in Tube Dialyzer. 管内扩散透析器。
IF 2.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2017-09-29 eCollection Date: 2017-01-01 DOI: 10.1177/1179597217732006
Yohannes Nigatie

Nowadays, kidney failure is a problem of many peoples in the world. We know that the main function of kidney is maintaining the chemical quality of blood particularly removing urea through urine. But when they malfunction, the pathologic state known as uremia results in a condition in which the urea is retained in the body. Failure of the kidney results in building up of harmful wastes and excess fluids in the body. Kidney diseases (failures) can be due to infections, high blood pressure (hypertension), diabetes, and/or extensive use of medication. The best form of treatment is the implantation of a healthy kidney from a donor. However, this is often not possible due to the limited availability of human organs. Chronic kidney failure requires the treatment using a tube dialyzer called dialysis. Blood is taken out of the body and passes through a special membrane that removes waste and extra fluids. The clean blood is then returned to the body. The process is controlled by a dialysis machine (tube dialyzer) which is equipped with a blood pump and monitoring systems to ensure safety. So this article investigates the real application of mathematics (diffusion) in medical science, and it also contains the mathematical formulation and interpretation of tube dialyzer in relation to diffusion.

如今,肾衰竭是世界上许多人的问题。我们知道肾脏的主要功能是维持血液的化学性质,特别是通过尿液排出尿素。但当它们发生功能障碍时,这种被称为尿毒症的病理状态会导致尿素滞留在体内。肾功能衰竭会导致有害废物和体液在体内堆积。肾脏疾病(衰竭)可能是由于感染,高血压(高血压),糖尿病,和/或广泛使用药物。最好的治疗方式是从捐赠者那里移植一个健康的肾脏。然而,由于人体器官的供应有限,这往往是不可能的。慢性肾衰竭需要使用一种叫做透析的管式透析器进行治疗。血液被排出体外,通过一层特殊的膜,去除废物和多余的液体。然后,干净的血液被送回体内。整个过程由一台透析机(管式透析器)控制,该透析机配有血泵和监控系统,以确保安全。因此,本文探讨了数学(扩散)在医学中的实际应用,并包含了与扩散有关的管式透析器的数学公式和解释。
{"title":"Diffusion in Tube Dialyzer.","authors":"Yohannes Nigatie","doi":"10.1177/1179597217732006","DOIUrl":"https://doi.org/10.1177/1179597217732006","url":null,"abstract":"<p><p>Nowadays, kidney failure is a problem of many peoples in the world. We know that the main function of kidney is maintaining the chemical quality of blood particularly removing urea through urine. But when they malfunction, the pathologic state known as uremia results in a condition in which the urea is retained in the body. Failure of the kidney results in building up of harmful wastes and excess fluids in the body. Kidney diseases (failures) can be due to infections, high blood pressure (hypertension), diabetes, and/or extensive use of medication. The best form of treatment is the implantation of a healthy kidney from a donor. However, this is often not possible due to the limited availability of human organs. Chronic kidney failure requires the treatment using a tube dialyzer called dialysis. Blood is taken out of the body and passes through a special membrane that removes waste and extra fluids. The clean blood is then returned to the body. The process is controlled by a dialysis machine (tube dialyzer) which is equipped with a blood pump and monitoring systems to ensure safety. So this article investigates the real application of mathematics (diffusion) in medical science, and it also contains the mathematical formulation and interpretation of tube dialyzer in relation to diffusion.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"8 ","pages":"1179597217732006"},"PeriodicalIF":2.8,"publicationDate":"2017-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1179597217732006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35483329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review. 光学相干断层扫描技术和皮肤光学相干断层扫描图像质量改进方法:简评。
IF 2.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2017-06-12 eCollection Date: 2017-01-01 DOI: 10.1177/1179597217713475
Saba Adabi, Zahra Turani, Emad Fatemizadeh, Anne Clayton, Mohammadreza Nasiriavanaki

Optical coherence tomography (OCT) delivers 3-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution method, OCT images experience some artifacts that lead to misapprehension of tissue structures. Speckle, intensity decay, and blurring are 3 major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components. In this short review, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts.

光学相干断层扫描(OCT)可提供组织微观结构的三维图像。虽然 OCT 成像是一种很有前景的高分辨率方法,但 OCT 图像会出现一些伪影,导致对组织结构的误解。斑点、强度衰减和模糊是 OCT 图像中的三大伪像。斑点是由于 OCT 配置中使用的低相干光源造成的。强度衰减是光线随深度的衰减,而模糊则是光学元件缺陷的结果。在这篇简短的综述中,我们总结了一些针对上述伪影的 OCT 图像增强算法。
{"title":"Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review.","authors":"Saba Adabi, Zahra Turani, Emad Fatemizadeh, Anne Clayton, Mohammadreza Nasiriavanaki","doi":"10.1177/1179597217713475","DOIUrl":"10.1177/1179597217713475","url":null,"abstract":"<p><p>Optical coherence tomography (OCT) delivers 3-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution method, OCT images experience some artifacts that lead to misapprehension of tissue structures. Speckle, intensity decay, and blurring are 3 major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components. In this short review, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"8 ","pages":"1179597217713475"},"PeriodicalIF":2.8,"publicationDate":"2017-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f5/d4/10.1177_1179597217713475.PMC5470862.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35108809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FSI Simulations of Pulse Wave Propagation in Human Abdominal Aortic Aneurysm: The Effects of Sac Geometry and Stiffness. 脉冲波在人腹主动脉瘤内传播的FSI模拟:囊腔几何形状和刚度的影响。
IF 2.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2016-07-18 eCollection Date: 2016-01-01 DOI: 10.4137/BECB.S40094
Han Li, Kexin Lin, Danial Shahmirzadi

This study aims to quantify the effects of geometry and stiffness of aneurysms on the pulse wave velocity (PWV) and propagation in fluid-solid interaction (FSI) simulations of arterial pulsatile flow. Spatiotemporal maps of both the wall displacement and fluid velocity were generated in order to obtain the pulse wave propagation through fluid and solid media, and to examine the interactions between the two waves. The results indicate that the presence of abdominal aortic aneurysm (AAA) sac and variations in the sac modulus affect the propagation of the pulse waves both qualitatively (eg, patterns of change of forward and reflective waves) and quantitatively (eg, decreasing of PWV within the sac and its increase beyond the sac as the sac stiffness increases). The sac region is particularly identified on the spatiotemporal maps with a region of disruption in the wave propagation with multiple short-traveling forward/reflected waves, which is caused by the change in boundary conditions within the saccular region. The change in sac stiffness, however, is more pronounced on the wall displacement spatiotemporal maps compared to those of fluid velocity. We conclude that the existence of the sac can be identified based on the solid and fluid pulse waves, while the sac properties can also be estimated. This study demonstrates the initial findings in numerical simulations of FSI dynamics during arterial pulsations that can be used as reference for experimental and in vivo studies. Future studies are needed to demonstrate the feasibility of the method in identifying very mild sacs, which cannot be detected from medical imaging, where the material property degradation exists under early disease initiation.

本研究旨在量化动脉脉动流固耦合(FSI)模拟中动脉瘤的几何形状和刚度对脉冲波速度(PWV)和传播的影响。为了获得脉冲波在流体和固体介质中的传播,并研究两种波之间的相互作用,生成了壁面位移和流体速度的时空图。结果表明,腹主动脉瘤(AAA)囊的存在和囊模量的变化对脉冲波的传播既有定性影响(如正向波和反射波的变化模式),也有定量影响(如随着囊刚度的增加,囊内PWV减小,囊外PWV增大)。囊状区域在时空图上被特别识别,在波传播中有多个短行正/反射波的中断区域,这是由囊状区域内边界条件的变化引起的。然而,与流体速度相比,囊腔刚度的变化在壁面位移时空图上更为明显。我们得出结论,根据固体和流体脉冲波可以识别囊的存在,并可以估计囊的性质。本研究证明了动脉搏动过程中FSI动力学数值模拟的初步发现,可作为实验和体内研究的参考。未来的研究需要证明该方法在识别非常轻微的囊泡方面的可行性,这些囊泡无法从医学成像中检测到,在早期疾病开始时存在材料性能退化。
{"title":"FSI Simulations of Pulse Wave Propagation in Human Abdominal Aortic Aneurysm: The Effects of Sac Geometry and Stiffness.","authors":"Han Li,&nbsp;Kexin Lin,&nbsp;Danial Shahmirzadi","doi":"10.4137/BECB.S40094","DOIUrl":"https://doi.org/10.4137/BECB.S40094","url":null,"abstract":"<p><p>This study aims to quantify the effects of geometry and stiffness of aneurysms on the pulse wave velocity (PWV) and propagation in fluid-solid interaction (FSI) simulations of arterial pulsatile flow. Spatiotemporal maps of both the wall displacement and fluid velocity were generated in order to obtain the pulse wave propagation through fluid and solid media, and to examine the interactions between the two waves. The results indicate that the presence of abdominal aortic aneurysm (AAA) sac and variations in the sac modulus affect the propagation of the pulse waves both qualitatively (eg, patterns of change of forward and reflective waves) and quantitatively (eg, decreasing of PWV within the sac and its increase beyond the sac as the sac stiffness increases). The sac region is particularly identified on the spatiotemporal maps with a region of disruption in the wave propagation with multiple short-traveling forward/reflected waves, which is caused by the change in boundary conditions within the saccular region. The change in sac stiffness, however, is more pronounced on the wall displacement spatiotemporal maps compared to those of fluid velocity. We conclude that the existence of the sac can be identified based on the solid and fluid pulse waves, while the sac properties can also be estimated. This study demonstrates the initial findings in numerical simulations of FSI dynamics during arterial pulsations that can be used as reference for experimental and in vivo studies. Future studies are needed to demonstrate the feasibility of the method in identifying very mild sacs, which cannot be detected from medical imaging, where the material property degradation exists under early disease initiation. </p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"7 ","pages":"25-36"},"PeriodicalIF":2.8,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BECB.S40094","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34721844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
IMAGE AND VIDEO ACQUISITION AND PROCESSING FOR CLINICAL APPLICATIONS. 临床应用的图像和视频采集与处理。
IF 2.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2016-06-16 eCollection Date: 2016-01-01 DOI: 10.4137/BECB.S40272
Elie Zakhem, Sean V Murphy, Matthew L Davis, Shreya Raghavan, Mai T Lam
{"title":"IMAGE AND VIDEO ACQUISITION AND PROCESSING FOR CLINICAL APPLICATIONS.","authors":"Elie Zakhem,&nbsp;Sean V Murphy,&nbsp;Matthew L Davis,&nbsp;Shreya Raghavan,&nbsp;Mai T Lam","doi":"10.4137/BECB.S40272","DOIUrl":"https://doi.org/10.4137/BECB.S40272","url":null,"abstract":"","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"7 Suppl 1","pages":"35-8"},"PeriodicalIF":2.8,"publicationDate":"2016-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BECB.S40272","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34611685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Fluorescent Cell Imaging in Regenerative Medicine. 再生医学中的荧光细胞成像。
IF 2.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2016-05-02 eCollection Date: 2016-01-01 DOI: 10.4137/BECB.S39045
Etai Sapoznik, Guoguang Niu, Yu Zhou, Sean V Murphy, Shay Soker

Fluorescent protein imaging, a promising tool in biological research, incorporates numerous applications that can be of specific use in the field of regenerative medicine. To enhance tissue regeneration efforts, scientists have been developing new ways to monitor tissue development and maturation in vitro and in vivo. To that end, new imaging tools and novel fluorescent proteins have been developed for the purpose of performing deep-tissue high-resolution imaging. These new methods, such as intra-vital microscopy and Förster resonance energy transfer, are providing new insights into cellular behavior, including cell migration, morphology, and phenotypic changes in a dynamic environment. Such applications, combined with multimodal imaging, significantly expand the utility of fluorescent protein imaging in research and clinical applications of regenerative medicine.

荧光蛋白成像是生物学研究中一个很有前途的工具,在再生医学领域具有广泛的应用前景。为了加强组织再生的努力,科学家们一直在研究新的方法来监测体外和体内组织的发育和成熟。为此,开发了新的成像工具和新型荧光蛋白,用于进行深部组织高分辨率成像。这些新方法,如生命内显微镜和Förster共振能量转移,为细胞行为提供了新的见解,包括细胞迁移、形态学和动态环境中的表型变化。这些应用与多模态成像相结合,极大地扩展了荧光蛋白成像在再生医学研究和临床应用中的应用。
{"title":"Fluorescent Cell Imaging in Regenerative Medicine.","authors":"Etai Sapoznik,&nbsp;Guoguang Niu,&nbsp;Yu Zhou,&nbsp;Sean V Murphy,&nbsp;Shay Soker","doi":"10.4137/BECB.S39045","DOIUrl":"https://doi.org/10.4137/BECB.S39045","url":null,"abstract":"<p><p>Fluorescent protein imaging, a promising tool in biological research, incorporates numerous applications that can be of specific use in the field of regenerative medicine. To enhance tissue regeneration efforts, scientists have been developing new ways to monitor tissue development and maturation in vitro and in vivo. To that end, new imaging tools and novel fluorescent proteins have been developed for the purpose of performing deep-tissue high-resolution imaging. These new methods, such as intra-vital microscopy and Förster resonance energy transfer, are providing new insights into cellular behavior, including cell migration, morphology, and phenotypic changes in a dynamic environment. Such applications, combined with multimodal imaging, significantly expand the utility of fluorescent protein imaging in research and clinical applications of regenerative medicine. </p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"7 Suppl 1","pages":"29-33"},"PeriodicalIF":2.8,"publicationDate":"2016-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BECB.S39045","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34466399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Lung-On-A-Chip Technologies for Disease Modeling and Drug Development. 用于疾病建模和药物开发的肺芯片技术。
IF 2.8 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2016-04-20 eCollection Date: 2016-01-01 DOI: 10.4137/BECB.S34252
Dipasri Konar, Mahesh Devarasetty, Didem V Yildiz, Anthony Atala, Sean V Murphy

Animal and two-dimensional cell culture models have had a profound impact on not only lung research but also medical research at large, despite inherent flaws and differences when compared with in vivo and clinical observations. Three-dimensional (3D) tissue models are a natural progression and extension of existing techniques that seek to plug the gaps and mitigate the drawbacks of two-dimensional and animal technologies. In this review, we describe the transition of historic models to contemporary 3D cell and organoid models, the varieties of current 3D cell and tissue culture modalities, the common methods for imaging these models, and finally, the applications of these models and imaging techniques to lung research.

动物和二维细胞培养模型不仅对肺部研究,而且对整个医学研究都产生了深远的影响,尽管与体内和临床观察相比存在固有的缺陷和差异。三维(3D)组织模型是现有技术的自然发展和延伸,旨在填补空白并减轻二维和动物技术的缺点。在这篇综述中,我们描述了历史模型到当代3D细胞和类器官模型的转变,当前3D细胞和组织培养模式的种类,这些模型的常见成像方法,最后,这些模型和成像技术在肺研究中的应用。
{"title":"Lung-On-A-Chip Technologies for Disease Modeling and Drug Development.","authors":"Dipasri Konar,&nbsp;Mahesh Devarasetty,&nbsp;Didem V Yildiz,&nbsp;Anthony Atala,&nbsp;Sean V Murphy","doi":"10.4137/BECB.S34252","DOIUrl":"https://doi.org/10.4137/BECB.S34252","url":null,"abstract":"<p><p>Animal and two-dimensional cell culture models have had a profound impact on not only lung research but also medical research at large, despite inherent flaws and differences when compared with in vivo and clinical observations. Three-dimensional (3D) tissue models are a natural progression and extension of existing techniques that seek to plug the gaps and mitigate the drawbacks of two-dimensional and animal technologies. In this review, we describe the transition of historic models to contemporary 3D cell and organoid models, the varieties of current 3D cell and tissue culture modalities, the common methods for imaging these models, and finally, the applications of these models and imaging techniques to lung research. </p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"7 Suppl 1","pages":"17-27"},"PeriodicalIF":2.8,"publicationDate":"2016-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BECB.S34252","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34440156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 80
期刊
Biomedical Engineering and Computational Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1