首页 > 最新文献

Biomedical Engineering and Computational Biology最新文献

英文 中文
On Mechanical Behavior and Characterization of Soft Tissues. 论软组织的力学行为和特征。
IF 2.3 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-11-02 eCollection Date: 2024-01-01 DOI: 10.1177/11795972241294115
Radhika Chavan, Nitin Kamble, Chetan Kuthe, Sandeep Sarnobat

The growth and advancements done in solid mechanics and metallurgy have come up with various characterization techniques that help in prediction of elastic properties of different types of materials-isotropic, anisotropic, transverse isotropic, etc. Soft tissues which refer to fibrous tissues, fat, blood vessels, muscles and other tissues that support the body were found to have some control over its mechanical properties. This mechanical behavior of soft tissues has recently shifted the attention of many researchers to develop methods to characterize and describe the mechanical response of soft tissues. The paper discusses the biomechanical nature of soft tissues and the work done to characterize their elastic properties. The paper gives a review of the behavior and characteristics of soft tissues extracted from various experimental tests employed in their characterization. Soft tissues exhibit complex behavior and various complexities are involved in their experimental testing due to their small size and fragile nature. The paper focuses on the conventionally used tensile and compression tests and the difficulties encountered in soft tissue characterization. It also describes the utility of ultrasound technique which is a non-destructive method to characterize soft tissues. Tensile and compression test used to characterize materials are destructive in nature. Ultrasound technique can provide a better way to characterize material in a non-destructive manner.

随着固体力学和冶金学的发展和进步,各种表征技术应运而生,有助于预测各向同性、各向异性、横向各向同性等不同类型材料的弹性特性。软组织指的是纤维组织、脂肪、血管、肌肉和其他支撑身体的组织,人们发现这些组织的机械特性具有一定的可控性。近来,软组织的这种机械行为引起了许多研究人员的关注,他们开始开发表征和描述软组织机械响应的方法。本文讨论了软组织的生物力学性质以及表征其弹性特性的工作。本文综述了从表征软组织的各种实验测试中提取的软组织行为和特征。软组织表现出复杂的行为,由于其体积小和易碎的特性,其实验测试涉及各种复杂问题。本文重点介绍了传统的拉伸和压缩试验,以及在软组织表征中遇到的困难。本文还介绍了超声波技术的实用性,它是表征软组织的一种非破坏性方法。用于表征材料特性的拉伸和压缩试验具有破坏性。超声波技术可以提供一种以非破坏性方式表征材料特性的更好方法。
{"title":"On Mechanical Behavior and Characterization of Soft Tissues.","authors":"Radhika Chavan, Nitin Kamble, Chetan Kuthe, Sandeep Sarnobat","doi":"10.1177/11795972241294115","DOIUrl":"10.1177/11795972241294115","url":null,"abstract":"<p><p>The growth and advancements done in solid mechanics and metallurgy have come up with various characterization techniques that help in prediction of elastic properties of different types of materials-isotropic, anisotropic, transverse isotropic, etc. Soft tissues which refer to fibrous tissues, fat, blood vessels, muscles and other tissues that support the body were found to have some control over its mechanical properties. This mechanical behavior of soft tissues has recently shifted the attention of many researchers to develop methods to characterize and describe the mechanical response of soft tissues. The paper discusses the biomechanical nature of soft tissues and the work done to characterize their elastic properties. The paper gives a review of the behavior and characteristics of soft tissues extracted from various experimental tests employed in their characterization. Soft tissues exhibit complex behavior and various complexities are involved in their experimental testing due to their small size and fragile nature. The paper focuses on the conventionally used tensile and compression tests and the difficulties encountered in soft tissue characterization. It also describes the utility of ultrasound technique which is a non-destructive method to characterize soft tissues. Tensile and compression test used to characterize materials are destructive in nature. Ultrasound technique can provide a better way to characterize material in a non-destructive manner.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"15 ","pages":"11795972241294115"},"PeriodicalIF":2.3,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commentary on "Large-Scale Pancreatic Cancer Detection via Non-Contrast CT and Deep Learning". 关于 "通过非对比 CT 和深度学习大规模检测胰腺癌 "的评论。
IF 2.3 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-31 eCollection Date: 2024-01-01 DOI: 10.1177/11795972241293521
Ibrahem Alshybani

Cao et al. introduce PANDA, an AI model designed for the early detection of pancreatic ductal adenocarcinoma (PDAC) using non-contrast CT scans. While the model shows great promise, it faces several challenges. Notably, its training predominantly on East Asian datasets raises concerns about generalizability across diverse populations. Additionally, PANDA's ability to detect rare lesions, such as pancreatic neuroendocrine tumors (PNETs), could be improved by integrating other imaging modalities. High specificity is a strength, but it also poses risks of false positives, which may lead to unnecessary procedures and increased healthcare costs. Implementing a tiered diagnostic approach and expanding training data to include a wider demographic are essential steps for enhancing PANDA's clinical utility and ensuring its successful global implementation, ultimately shifting the focus from late diagnosis to proactive early detection.

Cao 等人介绍了 PANDA,这是一种利用非对比 CT 扫描早期检测胰腺导管腺癌(PDAC)的人工智能模型。虽然该模型前景广阔,但也面临着一些挑战。值得注意的是,它主要在东亚数据集上进行训练,这引起了人们对其在不同人群中通用性的担忧。此外,PANDA 检测胰腺神经内分泌肿瘤(PNET)等罕见病变的能力还可以通过整合其他成像模式来提高。高特异性是其优势,但也存在假阳性的风险,可能导致不必要的手术和医疗成本的增加。实施分级诊断方法和扩大培训数据以纳入更广泛的人群是提高 PANDA 临床实用性和确保其在全球成功实施的必要步骤,最终将重点从晚期诊断转移到主动早期检测。
{"title":"Commentary on \"Large-Scale Pancreatic Cancer Detection via Non-Contrast CT and Deep Learning\".","authors":"Ibrahem Alshybani","doi":"10.1177/11795972241293521","DOIUrl":"10.1177/11795972241293521","url":null,"abstract":"<p><p>Cao et al. introduce PANDA, an AI model designed for the early detection of pancreatic ductal adenocarcinoma (PDAC) using non-contrast CT scans. While the model shows great promise, it faces several challenges. Notably, its training predominantly on East Asian datasets raises concerns about generalizability across diverse populations. Additionally, PANDA's ability to detect rare lesions, such as pancreatic neuroendocrine tumors (PNETs), could be improved by integrating other imaging modalities. High specificity is a strength, but it also poses risks of false positives, which may lead to unnecessary procedures and increased healthcare costs. Implementing a tiered diagnostic approach and expanding training data to include a wider demographic are essential steps for enhancing PANDA's clinical utility and ensuring its successful global implementation, ultimately shifting the focus from late diagnosis to proactive early detection.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"15 ","pages":"11795972241293521"},"PeriodicalIF":2.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correspondence to "Conceptualizing Patient as an Organization with the Adoption of Digital Health". 对应 "采用数字医疗将患者视为一个组织的概念化"。
IF 2.3 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-29 eCollection Date: 2024-01-01 DOI: 10.1177/11795972241293514
Hinpetch Daungsupawong, Viroj Wiwanitkit
{"title":"Correspondence to \"Conceptualizing Patient as an Organization with the Adoption of Digital Health\".","authors":"Hinpetch Daungsupawong, Viroj Wiwanitkit","doi":"10.1177/11795972241293514","DOIUrl":"10.1177/11795972241293514","url":null,"abstract":"","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"15 ","pages":"11795972241293514"},"PeriodicalIF":2.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528574/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breast Cancer Diagnosis Using Virtualization and Extreme Learning Algorithm Based on Deep Feed Forward Networks. 利用虚拟化和基于深度前馈网络的极限学习算法诊断乳腺癌。
IF 2.3 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-28 eCollection Date: 2024-01-01 DOI: 10.1177/11795972241278907
G Siva Shankar, Edeh Michael Onyema, Balasubramanian Prabhu Kavin, Venkataramaiah Gude, Bvv Siva Prasad

One of the leading causes of death for women worldwide is breast cancer. Early detection and prompt treatment can reduce the risk of breast cancer-related death. Cloud computing and machine learning are crucial for disease diagnosis today, but they are especially important for those who live in distant places with poor access to healthcare. While machine learning-based diagnosis tools act as primary readers and aid radiologists in correctly diagnosing diseases, cloud-based technology can also assist remote diagnostics and telemedicine services. The promise of techniques based on Artificial Neural Networks (ANN) for sickness diagnosis has attracted the attention of several re-searchers. The 4 methods for the proposed research include preprocessing, feature extraction, and classification. A Smart Window Vestige Deletion (SWVD) technique is initially suggested for preprocessing. It consists of Savitzky-Golay (S-G) smoothing, updated 2-stage filtering, and adaptive time window division. This technique separates each channel into multiple time periods by adaptively pre-analyzing its specificity. On each window, an altered 2-stage filtering process is then used to retrieve some tumor information. After applying S-G smoothing and integrating the broken time sequences, the process is complete. In order to deliver effective feature extraction, the Deep Residual based Multiclass for architecture (DRMFA) is used. In histological photos, identify characteristics at the cellular and tissue levels in both tiny and large size patches. Finally, a fresh customized strategy that combines a better crow forage-ELM. Deep learning and the Extreme Learning Machine (ELM) are concepts that have been developed (ACF-ELM). When it comes to diagnosing ailments, the cloud-based ELM performs similarly to certain cutting-edge technology. The cloud-based ELM approach beats alternative solutions, according to the DDSM and INbreast dataset results. Significant experimental results show that the accuracy for data inputs is 0.9845, the precision is 0.96, the recall is 0.94, and the F1 score is 0.95.

乳腺癌是导致全球妇女死亡的主要原因之一。早期发现和及时治疗可以降低与乳腺癌相关的死亡风险。云计算和机器学习对于当今的疾病诊断至关重要,但对于那些生活在遥远地方、医疗条件差的人来说尤为重要。基于机器学习的诊断工具可以作为初级阅读器,帮助放射科医生正确诊断疾病,而基于云计算的技术也可以帮助远程诊断和远程医疗服务。基于人工神经网络(ANN)的疾病诊断技术的前景吸引了一些研究人员的关注。拟议研究的 4 种方法包括预处理、特征提取和分类。预处理最初采用的是智能窗口删除(SWVD)技术。它包括萨维茨基-戈莱(S-G)平滑、更新的两级滤波和自适应时间窗口划分。该技术通过自适应预分析每个信道的特异性,将其分为多个时间段。然后,在每个窗口上使用改变的 2 级滤波过程来检索一些肿瘤信息。在应用 S-G 平滑处理并整合破碎的时间序列后,整个过程就完成了。为了提供有效的特征提取,使用了基于深度残差的多类架构(DRMFA)。在组织学照片中,识别微小和大尺寸斑块中细胞和组织层面的特征。最后,一种全新的定制策略结合了更好的乌鸦饲养--ELM。深度学习和极限学习机(ELM)是已经开发出来的概念(ACF-ELM)。在诊断疾病方面,基于云的 ELM 的表现与某些尖端技术类似。根据 DDSM 和 INbreast 数据集的结果,基于云的 ELM 方法击败了其他解决方案。重要的实验结果显示,数据输入的准确度为0.9845,精确度为0.96,召回率为0.94,F1得分为0.95。
{"title":"Breast Cancer Diagnosis Using Virtualization and Extreme Learning Algorithm Based on Deep Feed Forward Networks.","authors":"G Siva Shankar, Edeh Michael Onyema, Balasubramanian Prabhu Kavin, Venkataramaiah Gude, Bvv Siva Prasad","doi":"10.1177/11795972241278907","DOIUrl":"10.1177/11795972241278907","url":null,"abstract":"<p><p>One of the leading causes of death for women worldwide is breast cancer. Early detection and prompt treatment can reduce the risk of breast cancer-related death. Cloud computing and machine learning are crucial for disease diagnosis today, but they are especially important for those who live in distant places with poor access to healthcare. While machine learning-based diagnosis tools act as primary readers and aid radiologists in correctly diagnosing diseases, cloud-based technology can also assist remote diagnostics and telemedicine services. The promise of techniques based on Artificial Neural Networks (ANN) for sickness diagnosis has attracted the attention of several re-searchers. The 4 methods for the proposed research include preprocessing, feature extraction, and classification. A Smart Window Vestige Deletion (SWVD) technique is initially suggested for preprocessing. It consists of Savitzky-Golay (S-G) smoothing, updated 2-stage filtering, and adaptive time window division. This technique separates each channel into multiple time periods by adaptively pre-analyzing its specificity. On each window, an altered 2-stage filtering process is then used to retrieve some tumor information. After applying S-G smoothing and integrating the broken time sequences, the process is complete. In order to deliver effective feature extraction, the Deep Residual based Multiclass for architecture (DRMFA) is used. In histological photos, identify characteristics at the cellular and tissue levels in both tiny and large size patches. Finally, a fresh customized strategy that combines a better crow forage-ELM. Deep learning and the Extreme Learning Machine (ELM) are concepts that have been developed (ACF-ELM). When it comes to diagnosing ailments, the cloud-based ELM performs similarly to certain cutting-edge technology. The cloud-based ELM approach beats alternative solutions, according to the DDSM and INbreast dataset results. Significant experimental results show that the accuracy for data inputs is 0.9845, the precision is 0.96, the recall is 0.94, and the F1 score is 0.95.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"15 ","pages":"11795972241278907"},"PeriodicalIF":2.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528671/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncovering the Therapeutic Target and Molecular Mechanism of Upadacitinib on Sjogren's Syndrome. 揭示 Upadacitinib 对 Sjogren's 综合征的治疗靶点和分子机制。
IF 2.3 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-23 eCollection Date: 2024-01-01 DOI: 10.1177/11795972241293519
Youguo Yang, Yuan Liu, Xiaofen Li, Yongping Zeng, Weiqian He, Juan Zhou

Objective: Upadacitinib, a selective Janus associated kinase 1 (JAK-1) inhibitor, can be prescribed particularly for the clinical treatment with Crohn's disease or rheumatoid arthritis. It is clinically observed that upadacitinib has been found with potential therapeutic effectiveness on Sjogren's syndrome (SS). However, the anti-SS targets and mechanisms involved in upadacitinib treatment remain uninvestigated.

Materials and methods: Thus, this study was designed to identify therapeutic targets and mechanisms of upadacitinib for treating SS through conducting network pharmacology and molecular docking analyses.

Results: In total, we identified 298 upadacitinib-related target genes, 1339 SS-related targets before collecting 56 overlapped target genes and 12 hub target genes. Upadacitinib largely exerted the critical biological processes including regulation of microenvironment homeostasis, inflammatory response, and cell apoptosis, and largely acted on pivotal molecular mechanisms including hypoxia-inducible factor 1 (HIF-1) signaling pathway, apoptosis pathway, phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, or Th17 cell differentiation pathway. Molecular docking data suggested that upadacitinib exhibited the high affinities with signal transducer and activator of transcription 3 (STAT3), HIF1A, poly(ADP-ribose) polymerase 1 (PARP1) target proteins, in which the structural interactions between upadacitinib and STAT3, HIF1A, PARP1 showed potential therapeutic activities against SS.

Conclusion: In conclusion, upadacitinib possesses the bright anti-inflammatory and anti-apoptotic activities on SS, and this study can provide a theoretical basis for clinical therapy of SS using upadacitinib.

目的:乌达帕替尼是一种选择性 Janus 相关激酶 1(JAK-1)抑制剂,特别适用于克罗恩病或类风湿性关节炎的临床治疗。临床观察发现,奥达帕替尼对 Sjogren's 综合征(SS)具有潜在疗效。然而,奥达替尼治疗SS的抗SS靶点和机制仍未得到研究:因此,本研究旨在通过开展网络药理学和分子对接分析,确定乌达替尼治疗SS的治疗靶点和机制:结果:我们共发现了 298 个达达替尼相关靶基因、1339 个 SS 相关靶基因,然后收集了 56 个重叠靶基因和 12 个枢纽靶基因。奥达替尼在很大程度上影响了微环境稳态调节、炎症反应和细胞凋亡等关键生物学过程,并在很大程度上作用于缺氧诱导因子1(HIF-1)信号通路、细胞凋亡通路、磷脂酰肌醇3-激酶/蛋白激酶B(PI3K/Akt)信号通路或Th17细胞分化通路等关键分子机制。分子对接数据表明,乌达替尼与信号转导和转录激活因子3(STAT3)、HIF1A、聚(ADP-核糖)聚合酶1(PARP1)靶蛋白具有高亲和力,其中乌达替尼与STAT3、HIF1A、PARP1之间的结构相互作用显示出对SS的潜在治疗活性:总之,奥达替尼对SS具有明显的抗炎和抗凋亡活性,该研究可为奥达替尼对SS的临床治疗提供理论依据。
{"title":"Uncovering the Therapeutic Target and Molecular Mechanism of Upadacitinib on Sjogren's Syndrome.","authors":"Youguo Yang, Yuan Liu, Xiaofen Li, Yongping Zeng, Weiqian He, Juan Zhou","doi":"10.1177/11795972241293519","DOIUrl":"10.1177/11795972241293519","url":null,"abstract":"<p><strong>Objective: </strong>Upadacitinib, a selective Janus associated kinase 1 (JAK-1) inhibitor, can be prescribed particularly for the clinical treatment with Crohn's disease or rheumatoid arthritis. It is clinically observed that upadacitinib has been found with potential therapeutic effectiveness on Sjogren's syndrome (SS). However, the anti-SS targets and mechanisms involved in upadacitinib treatment remain uninvestigated.</p><p><strong>Materials and methods: </strong>Thus, this study was designed to identify therapeutic targets and mechanisms of upadacitinib for treating SS through conducting network pharmacology and molecular docking analyses.</p><p><strong>Results: </strong>In total, we identified 298 upadacitinib-related target genes, 1339 SS-related targets before collecting 56 overlapped target genes and 12 hub target genes. Upadacitinib largely exerted the critical biological processes including regulation of microenvironment homeostasis, inflammatory response, and cell apoptosis, and largely acted on pivotal molecular mechanisms including hypoxia-inducible factor 1 (HIF-1) signaling pathway, apoptosis pathway, phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, or Th17 cell differentiation pathway. Molecular docking data suggested that upadacitinib exhibited the high affinities with signal transducer and activator of transcription 3 (STAT3), HIF1A, poly(ADP-ribose) polymerase 1 (PARP1) target proteins, in which the structural interactions between upadacitinib and STAT3, HIF1A, PARP1 showed potential therapeutic activities against SS.</p><p><strong>Conclusion: </strong>In conclusion, upadacitinib possesses the bright anti-inflammatory and anti-apoptotic activities on SS, and this study can provide a theoretical basis for clinical therapy of SS using upadacitinib.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"15 ","pages":"11795972241293519"},"PeriodicalIF":2.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528621/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cranial Defect Repair With 3D Designed Models. 利用 3D 设计模型修复颅骨缺损
IF 2.3 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-14 eCollection Date: 2024-01-01 DOI: 10.1177/11795972241291777
Sambardhan Dabadi, Raju Raj Dhungel

Cranioplasty is one of the most common neurosurgical procedure performed to repair cranial defect. Many materials and fabrication technique are used to prepare cranial implant in cases where autologous bone is not available. Polymethyl Methacrylate (PMMA) is one of the most common polymer used as bone substitute. PMMA fabricated using 3D printed models have shown better fit, symmetrical shape, and restore esthetic looks of patients. The use of 3D printed implants in medical procedures has several advantages over traditional manufacturing methods. 3D printing allows for greater precision, customization, and quicker implant time.

颅骨成形术是修复颅骨缺损最常见的神经外科手术之一。在没有自体骨的情况下,许多材料和制造技术被用来制作颅骨植入物。聚甲基丙烯酸甲酯(PMMA)是最常用的骨替代聚合物之一。使用三维打印模型制作的 PMMA 具有更好的贴合性、对称性,并能恢复患者的美观。与传统制造方法相比,在医疗程序中使用三维打印植入物具有多项优势。三维打印可以实现更高的精度、定制化和更快的植入时间。
{"title":"Cranial Defect Repair With 3D Designed Models.","authors":"Sambardhan Dabadi, Raju Raj Dhungel","doi":"10.1177/11795972241291777","DOIUrl":"https://doi.org/10.1177/11795972241291777","url":null,"abstract":"<p><p>Cranioplasty is one of the most common neurosurgical procedure performed to repair cranial defect. Many materials and fabrication technique are used to prepare cranial implant in cases where autologous bone is not available. Polymethyl Methacrylate (PMMA) is one of the most common polymer used as bone substitute. PMMA fabricated using 3D printed models have shown better fit, symmetrical shape, and restore esthetic looks of patients. The use of 3D printed implants in medical procedures has several advantages over traditional manufacturing methods. 3D printing allows for greater precision, customization, and quicker implant time.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"15 ","pages":"11795972241291777"},"PeriodicalIF":2.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11474787/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142477123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning-Based Detection of Impacted Teeth on Panoramic Radiographs. 基于深度学习的全景 X 光片牙齿撞击检测。
IF 2.3 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-05 eCollection Date: 2024-01-01 DOI: 10.1177/11795972241288319
He Zhicheng, Wang Yipeng, Li Xiao

Objective: The aim is to detect impacted teeth in panoramic radiology by refining the pretrained MedSAM model.

Study design: Impacted teeth are dental issues that can cause complications and are diagnosed via radiographs. We modified SAM model for individual tooth segmentation using 1016 X-ray images. The dataset was split into training, validation, and testing sets, with a ratio of 16:3:1. We enhanced the SAM model to automatically detect impacted teeth by focusing on the tooth's center for more accurate results.

Results: With 200 epochs, batch size equals to 1, and a learning rate of 0.001, random images trained the model. Results on the test set showcased performance up to an accuracy of 86.73%, F1-score of 0.5350, and IoU of 0.3652 on SAM-related models.

Conclusion: This study fine-tunes MedSAM for impacted tooth segmentation in X-ray images, aiding dental diagnoses. Further improvements on model accuracy and selection are essential for enhancing dental practitioners' diagnostic capabilities.

研究目的研究设计:研究设计:撞击牙是一种可引起并发症的牙科问题,可通过 X 光片进行诊断。我们利用 1016 张 X 光图像修改了用于单个牙齿分割的 SAM 模型。数据集分为训练集、验证集和测试集,比例为 16:3:1。我们对 SAM 模型进行了改进,通过聚焦牙齿中心来自动检测撞击牙齿,从而获得更准确的结果:在 200 个历元、批量大小等于 1 和学习率为 0.001 的条件下,随机图像对模型进行了训练。测试集的结果显示,SAM 相关模型的准确率高达 86.73%,F1 分数为 0.5350,IoU 为 0.3652:本研究对 MedSAM 进行了微调,用于 X 射线图像中的撞击牙分割,为牙科诊断提供了帮助。要提高牙科医生的诊断能力,进一步提高模型的准确性和选择至关重要。
{"title":"Deep Learning-Based Detection of Impacted Teeth on Panoramic Radiographs.","authors":"He Zhicheng, Wang Yipeng, Li Xiao","doi":"10.1177/11795972241288319","DOIUrl":"10.1177/11795972241288319","url":null,"abstract":"<p><strong>Objective: </strong>The aim is to detect impacted teeth in panoramic radiology by refining the pretrained MedSAM model.</p><p><strong>Study design: </strong>Impacted teeth are dental issues that can cause complications and are diagnosed via radiographs. We modified SAM model for individual tooth segmentation using 1016 X-ray images. The dataset was split into training, validation, and testing sets, with a ratio of 16:3:1. We enhanced the SAM model to automatically detect impacted teeth by focusing on the tooth's center for more accurate results.</p><p><strong>Results: </strong>With 200 epochs, batch size equals to 1, and a learning rate of 0.001, random images trained the model. Results on the test set showcased performance up to an accuracy of 86.73%, F1-score of 0.5350, and IoU of 0.3652 on SAM-related models.</p><p><strong>Conclusion: </strong>This study fine-tunes MedSAM for impacted tooth segmentation in X-ray images, aiding dental diagnoses. Further improvements on model accuracy and selection are essential for enhancing dental practitioners' diagnostic capabilities.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"15 ","pages":"11795972241288319"},"PeriodicalIF":2.3,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in Tissue Engineering: A Review of Bioprinting Techniques, Scaffolds, and Bioinks. 组织工程学的进步:生物打印技术、支架和生物材料综述》。
IF 2.3 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-01 eCollection Date: 2024-01-01 DOI: 10.1177/11795972241288099
Shervin Zoghi

Tissue engineering is a multidisciplinary field that uses biomaterials to restore tissue function and assist with drug development. Over the last decade, the fabrication of three-dimensional (3D) multifunctional scaffolds has become commonplace in tissue engineering and regenerative medicine. Thanks to the development of 3D bioprinting technologies, these scaffolds more accurately recapitulate in vivo conditions and provide the support structure necessary for microenvironments conducive to cell growth and function. The purpose of this review is to provide a background on the leading 3D bioprinting methods and bioink selections for tissue engineering applications, with a specific focus on the growing field of developing multifunctional bioinks and possible future applications.

组织工程是一个多学科领域,它利用生物材料恢复组织功能并协助药物开发。在过去的十年中,三维(3D)多功能支架的制造在组织工程和再生医学中已变得司空见惯。由于三维生物打印技术的发展,这些支架能更准确地再现体内条件,并提供有利于细胞生长和功能的微环境所需的支撑结构。本综述旨在介绍组织工程应用中的主要三维生物打印方法和生物墨水选择的背景,特别关注不断发展的多功能生物墨水开发领域和未来可能的应用。
{"title":"Advancements in Tissue Engineering: A Review of Bioprinting Techniques, Scaffolds, and Bioinks.","authors":"Shervin Zoghi","doi":"10.1177/11795972241288099","DOIUrl":"10.1177/11795972241288099","url":null,"abstract":"<p><p>Tissue engineering is a multidisciplinary field that uses biomaterials to restore tissue function and assist with drug development. Over the last decade, the fabrication of three-dimensional (3D) multifunctional scaffolds has become commonplace in tissue engineering and regenerative medicine. Thanks to the development of 3D bioprinting technologies, these scaffolds more accurately recapitulate in vivo conditions and provide the support structure necessary for microenvironments conducive to cell growth and function. The purpose of this review is to provide a background on the leading 3D bioprinting methods and bioink selections for tissue engineering applications, with a specific focus on the growing field of developing multifunctional bioinks and possible future applications.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"15 ","pages":"11795972241288099"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447703/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conceptualizing Patient as an Organization With the Adoption of Digital Health. 随着数字医疗的采用,将患者概念化为一个组织。
IF 2.3 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-24 eCollection Date: 2024-01-01 DOI: 10.1177/11795972241277292
Atantra Das Gupta

The concept of viewing a patient as an organization within the context of digital healthcare is an innovative and evolving concept. Traditionally, the patient-doctor relationship has been centered around the individual patient and their interactions with healthcare providers. However, with the advent of technology and digital healthcare solutions, the dynamics of this relationship are changing. Digital healthcare platforms and technologies enable patients to have more control and active participation in managing their health and healthcare processes. This shift empowers patients to take on a more proactive role, similar to how an organization functions with various stakeholders, goals, and strategies. The prevalence of mobile phones and wearables is regarded as an important factor in the acceptance of digital health.

Objective: This study aimed to identify the factors affecting adoption intention using the TAM (Technology Acceptance Model), HB (Health Belief model), and the UTAUT (Unified Theory of Acceptance and Use of Technology). The argument is made that the adoption of the technology enables patients to create resources (ie, data), transforming patients from mere consumers to producers as well.

Results: PLS analysis showed that health beliefs and perceived ease of use had positive effects on the perceived usefulness of digital healthcare, and system capabilities positively impacted perceived ease of use. Furthermore, perceived service, the customer's willingness to change and reference group influence significantly impacted adoption intention (b > 0.1, t > 1.96, P < .05). However, privacy protection and data security, online healthcare resources, and user guidance were not positively associated with perceived usefulness.

Conclusions: Perceived usefulness, the customer's willingness to change, and the influence of the reference group are decisive variables affecting adoption intention among the general population, whereas privacy protection and data security are indecisive variables. Online resources and user guides do not support adoption intentions.

在数字医疗的背景下,将患者视为一个组织,是一个创新且不断发展的概念。传统意义上的医患关系一直以患者个人及其与医疗服务提供者的互动为中心。然而,随着技术和数字医疗解决方案的出现,这种关系的动态正在发生变化。数字医疗保健平台和技术使患者能够更多地控制和积极参与管理自己的健康和医疗保健过程。这种转变使患者有能力扮演更加积极主动的角色,就像一个组织如何与不同的利益相关者、目标和战略一起运作一样。手机和可穿戴设备的普及被认为是影响人们接受数字医疗的一个重要因素:本研究旨在利用 TAM(技术接受模型)、HB(健康信念模型)和 UTAUT(技术接受和使用统一理论)确定影响采用意向的因素。其论点是,采用该技术能使患者创造资源(即数据),使患者从单纯的消费者转变为生产者:PLS分析表明,健康信念和感知易用性对感知数字医疗有用性有积极影响,系统能力对感知易用性有积极影响。感知的有用性、客户的改变意愿和参照群体的影响是影响普通人群采用意愿的决定性变量,而隐私保护和数据安全则是不确定的变量。在线资源和用户指南并不支持采用意愿。
{"title":"Conceptualizing Patient as an Organization With the Adoption of Digital Health.","authors":"Atantra Das Gupta","doi":"10.1177/11795972241277292","DOIUrl":"https://doi.org/10.1177/11795972241277292","url":null,"abstract":"<p><p>The concept of viewing a patient as an organization within the context of digital healthcare is an innovative and evolving concept. Traditionally, the patient-doctor relationship has been centered around the individual patient and their interactions with healthcare providers. However, with the advent of technology and digital healthcare solutions, the dynamics of this relationship are changing. Digital healthcare platforms and technologies enable patients to have more control and active participation in managing their health and healthcare processes. This shift empowers patients to take on a more proactive role, similar to how an organization functions with various stakeholders, goals, and strategies. The prevalence of mobile phones and wearables is regarded as an important factor in the acceptance of digital health.</p><p><strong>Objective: </strong>This study aimed to identify the factors affecting adoption intention using the TAM (Technology Acceptance Model), HB (Health Belief model), and the UTAUT (Unified Theory of Acceptance and Use of Technology). The argument is made that the adoption of the technology enables patients to create resources (ie, data), transforming patients from mere consumers to producers as well.</p><p><strong>Results: </strong>PLS analysis showed that health beliefs and perceived ease of use had positive effects on the perceived usefulness of digital healthcare, and system capabilities positively impacted perceived ease of use. Furthermore, perceived service, the customer's willingness to change and reference group influence significantly impacted adoption intention (<i>b</i> > 0.1, <i>t</i> > 1.96, <i>P</i> < .05). However, privacy protection and data security, online healthcare resources, and user guidance were not positively associated with perceived usefulness.</p><p><strong>Conclusions: </strong>Perceived usefulness, the customer's willingness to change, and the influence of the reference group are decisive variables affecting adoption intention among the general population, whereas privacy protection and data security are indecisive variables. Online resources and user guides do not support adoption intentions.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"15 ","pages":"11795972241277292"},"PeriodicalIF":2.3,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423387/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142356036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning Based Micro-RNA Analysis of Lipopolysaccharide Exposed Periodontal Ligament Stem Cells Exosomes Reveal Apoptotic and Inflammasome Derived Pathway Activation. 基于深度学习的暴露于脂多糖的牙周韧带干细胞外泌体微RNA分析揭示了凋亡和炎症体衍生途径的激活。
IF 2.3 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-06 eCollection Date: 2024-01-01 DOI: 10.1177/11795972241277639
Pradeep Kumar Yadalam, Raghavendra Vamsi Anegundi, Sivasankari Thilagar, Deepavalli Arumuganainar, Deepti Shrivastava, Artak Heboyan

Background: The production of inflammatory factors in periodontium is increased by LPS, particularly from P. gingivalis, and the damage to periodontal tissues is exacerbated. Exosomes from periodontal ligament stem cells change regeneration and repair brought on by bacterial LPS. MiRNAs are carried by exosomes to recipient cells to affect epigenetic functions. Thus, this study aims to utilize deep learning algorithms to uncover novel micro-RNA biomarkers in bacterial LPS-exposed PDLSC stem cells to understand the activation pathway.

Methods: Using NCBI GEO DATA SET GSE163489, the most differentially expressed micro RNAs were found to differ between healthy and LPS-induced PDLSC cells. Deep learning analysis, employing a Random Forest, Artificial Neural Network c, a Support Vector Machine (SVM), and a Linear Regression model implemented within the orange data mining toolkit, identified novel microRNA biomarkers. The orange data mining toolkit was utilized for deep learning analysis of microRNA expression data, providing a user-friendly environment for machine learning tasks like classification, regression, and clustering.

Results: Random Forest emerged as the superior model, achieving the highest R 2 score (.985) and the lowest RMSE (0.189) compared to Neural Networks (R 2 = .952, RMSE = 0.332), Linear Regression (R 2 = .949, RMSE = 0.343), and SVM (R 2 = .931, RMSE = 0.398). This suggests its superior ability to capture the underlying patterns in the microRNA expression data. Given its robust performance, Random Forest holds promise for identifying novel biomarkers, developing more accurate diagnostic tools, and potentially guiding the stratification of patients for targeted therapeutic interventions in periodontal disease.

Conclusion: The current study utilizes deep learning analysis of microRNA expression data to identify novel biomarkers associated with inflammasome activation and anti-apoptotic pathways. These findings hold promise for guiding the development of novel therapeutic strategies for periodontal disease. However, future studies are warranted to validate these biomarkers using independent datasets and experimental methods.

背景:LPS(尤其是来自牙龈脓疱疮杆菌的 LPS)会增加牙周炎症因子的产生,加剧对牙周组织的损害。来自牙周韧带干细胞的外泌体改变了细菌 LPS 带来的再生和修复。外泌体携带的 MiRNA 会影响受体细胞的表观遗传功能。因此,本研究旨在利用深度学习算法发现细菌LPS暴露的PDLSC干细胞中的新型微RNA生物标记物,以了解其激活途径:方法:利用NCBI GEO DATA SET GSE163489,发现健康和LPS诱导的PDLSC细胞中差异表达最多的微RNA。深度学习分析采用了随机森林(Random Forest)、人工神经网络(Artificial Neural Network c)、支持向量机(SVM)和线性回归(Linear Regression)模型,并在橙色数据挖掘工具包中实施,从而确定了新型 microRNA 生物标记。橙色数据挖掘工具包用于对 microRNA 表达数据进行深度学习分析,为分类、回归和聚类等机器学习任务提供了用户友好型环境:随机森林是最优秀的模型,与神经网络(R 2 = .952,RMSE = 0.332)、线性回归(R 2 = .949,RMSE = 0.343)和 SVM(R 2 = .931,RMSE = 0.398)相比,随机森林的 R 2 得分最高(0.985),RMSE 最低(0.189)。这表明随机森林具有捕捉 microRNA 表达数据中潜在模式的卓越能力。鉴于其强大的性能,随机森林有望识别新型生物标记物、开发更准确的诊断工具,并有可能指导对牙周病患者进行分层,以采取有针对性的治疗干预措施:当前的研究利用对 microRNA 表达数据的深度学习分析,确定了与炎症小体激活和抗凋亡通路相关的新型生物标志物。这些发现有望指导牙周病新型治疗策略的开发。然而,未来的研究还需要使用独立的数据集和实验方法来验证这些生物标志物。
{"title":"Deep Learning Based Micro-RNA Analysis of Lipopolysaccharide Exposed Periodontal Ligament Stem Cells Exosomes Reveal Apoptotic and Inflammasome Derived Pathway Activation.","authors":"Pradeep Kumar Yadalam, Raghavendra Vamsi Anegundi, Sivasankari Thilagar, Deepavalli Arumuganainar, Deepti Shrivastava, Artak Heboyan","doi":"10.1177/11795972241277639","DOIUrl":"10.1177/11795972241277639","url":null,"abstract":"<p><strong>Background: </strong>The production of inflammatory factors in periodontium is increased by LPS, particularly from P. gingivalis, and the damage to periodontal tissues is exacerbated. Exosomes from periodontal ligament stem cells change regeneration and repair brought on by bacterial LPS. MiRNAs are carried by exosomes to recipient cells to affect epigenetic functions. Thus, this study aims to utilize deep learning algorithms to uncover novel micro-RNA biomarkers in bacterial LPS-exposed PDLSC stem cells to understand the activation pathway.</p><p><strong>Methods: </strong>Using NCBI GEO DATA SET GSE163489, the most differentially expressed micro RNAs were found to differ between healthy and LPS-induced PDLSC cells. Deep learning analysis, employing a Random Forest, Artificial Neural Network c, a Support Vector Machine (SVM), and a Linear Regression model implemented within the orange data mining toolkit, identified novel microRNA biomarkers. The orange data mining toolkit was utilized for deep learning analysis of microRNA expression data, providing a user-friendly environment for machine learning tasks like classification, regression, and clustering.</p><p><strong>Results: </strong>Random Forest emerged as the superior model, achieving the highest <i>R</i> <sup>2</sup> score (.985) and the lowest RMSE (0.189) compared to Neural Networks (<i>R</i> <sup>2</sup> = .952, RMSE = 0.332), Linear Regression (<i>R</i> <sup>2</sup> = .949, RMSE = 0.343), and SVM (<i>R</i> <sup>2</sup> = .931, RMSE = 0.398). This suggests its superior ability to capture the underlying patterns in the microRNA expression data. Given its robust performance, Random Forest holds promise for identifying novel biomarkers, developing more accurate diagnostic tools, and potentially guiding the stratification of patients for targeted therapeutic interventions in periodontal disease.</p><p><strong>Conclusion: </strong>The current study utilizes deep learning analysis of microRNA expression data to identify novel biomarkers associated with inflammasome activation and anti-apoptotic pathways. These findings hold promise for guiding the development of novel therapeutic strategies for periodontal disease. However, future studies are warranted to validate these biomarkers using independent datasets and experimental methods.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"15 ","pages":"11795972241277639"},"PeriodicalIF":2.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380121/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biomedical Engineering and Computational Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1