Pub Date : 2023-09-04DOI: 10.26565/2312-4334-2023-3-69
Olga Zhytniakivska, Uliana Tarabara, Kateryna Vus, Valeriya Trusova, Galyna Gorbenko
Protein nanoparticles are currently regarded as promising biocompatible and biodegradable systems for targeted delivery of different types of pharmacological agents. Prior to fabricating such kind of drug nanocarriers it is reasonable to evaluate the drug-protein binding affinity and possible interaction modes using the computational tools, particularly, the molecular docking technique. The present study was undertaken to evaluate the possibility of creating the protein nanoparticles carrying the antiviral drugs and cyanine dyes as visualizing agents. The components of the examined systems included endogenous functional proteins cytochrome c, serum albumin, lysozyme and insulin, antiviral drugs favipiravir, molnupiravir, nirmatrelvir and ritonavir, mono- and heptamethinecyanine dyes. Using the multiple ligand simultaneous docking technique, it was demonstrated that: i) the drugs and the dyes occupy different binding sites on the protein molecule and do not interfere with each other; ii) the heptamethines AK7-5 and AK7-6 possess the highest affinity for the proteins; iii) among the examined systems the strongest complexes are formed between the heptamethine dyes and serum albumin. Taken together, the results obtained indicate that albumin-based nanoparticles functionalized by the heptamethine cyanine dyes can be used for targeted delivery of the explored antiviral agents.
{"title":"Multiple Ligand Simultaneous Docking of Antiviral Drugs and Cyanine Dyes with Proteins","authors":"Olga Zhytniakivska, Uliana Tarabara, Kateryna Vus, Valeriya Trusova, Galyna Gorbenko","doi":"10.26565/2312-4334-2023-3-69","DOIUrl":"https://doi.org/10.26565/2312-4334-2023-3-69","url":null,"abstract":"Protein nanoparticles are currently regarded as promising biocompatible and biodegradable systems for targeted delivery of different types of pharmacological agents. Prior to fabricating such kind of drug nanocarriers it is reasonable to evaluate the drug-protein binding affinity and possible interaction modes using the computational tools, particularly, the molecular docking technique. The present study was undertaken to evaluate the possibility of creating the protein nanoparticles carrying the antiviral drugs and cyanine dyes as visualizing agents. The components of the examined systems included endogenous functional proteins cytochrome c, serum albumin, lysozyme and insulin, antiviral drugs favipiravir, molnupiravir, nirmatrelvir and ritonavir, mono- and heptamethinecyanine dyes. Using the multiple ligand simultaneous docking technique, it was demonstrated that: i) the drugs and the dyes occupy different binding sites on the protein molecule and do not interfere with each other; ii) the heptamethines AK7-5 and AK7-6 possess the highest affinity for the proteins; iii) among the examined systems the strongest complexes are formed between the heptamethine dyes and serum albumin. Taken together, the results obtained indicate that albumin-based nanoparticles functionalized by the heptamethine cyanine dyes can be used for targeted delivery of the explored antiviral agents.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"82 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135497840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-04DOI: 10.26565/2312-4334-2023-3-72
Stanislav V. Dudin, Stanislav D. Yakovin, Aleksandr V. Zykov
The effect of plasma activation of reactive gas on the process of reactive magnetron synthesis of oxide coatings was theoretically and experimentally investigated using a radio-frequency inductively coupled plasma source, which creates a flow of activated reactive gas directed towards the surface on which the oxide coating is deposited. The reactive gas passes through a dense inductively coupled plasma located inside the plasma source, while argon is supplied through a separate channel near the magnetron. A theoretical model has been built allowing the calculation of spatial distributions of fluxes of metal atoms and molecules of activated reaction gas, as well as the stoichiometry area of the synthesized coatings. Calculations were performed on the example of aluminum oxide. It was found that the plasma activation of the reactive gas allows to increase the sticking coefficient of oxygen to the surface of the growing coating from values less than 0.1 for non-activated molecular oxygen to 0.9 when 500 W of RF power is introduced into the inductive discharge. In order to verify the developed model, experiments were conducted on depositing an aluminum oxide film on glass substrates located at different distances from the magnetron target, followed by measuring the distribution of film transparency along the substrate length and comparing it with the calculated distribution. A comparison of the calculation results with the experimental data shows a good agreement in the entire studied range of parameters. Based on the generalization of the obtained results, an empirical rule was formulated that the power ratio of the magnetron discharge and the plasma activator should be approximately 8:1.
{"title":"The Effect of Plasma Activation of Reactive Gas in Reactive Magnetron Sputtering","authors":"Stanislav V. Dudin, Stanislav D. Yakovin, Aleksandr V. Zykov","doi":"10.26565/2312-4334-2023-3-72","DOIUrl":"https://doi.org/10.26565/2312-4334-2023-3-72","url":null,"abstract":"The effect of plasma activation of reactive gas on the process of reactive magnetron synthesis of oxide coatings was theoretically and experimentally investigated using a radio-frequency inductively coupled plasma source, which creates a flow of activated reactive gas directed towards the surface on which the oxide coating is deposited. The reactive gas passes through a dense inductively coupled plasma located inside the plasma source, while argon is supplied through a separate channel near the magnetron. A theoretical model has been built allowing the calculation of spatial distributions of fluxes of metal atoms and molecules of activated reaction gas, as well as the stoichiometry area of the synthesized coatings. Calculations were performed on the example of aluminum oxide. It was found that the plasma activation of the reactive gas allows to increase the sticking coefficient of oxygen to the surface of the growing coating from values less than 0.1 for non-activated molecular oxygen to 0.9 when 500 W of RF power is introduced into the inductive discharge. In order to verify the developed model, experiments were conducted on depositing an aluminum oxide film on glass substrates located at different distances from the magnetron target, followed by measuring the distribution of film transparency along the substrate length and comparing it with the calculated distribution. A comparison of the calculation results with the experimental data shows a good agreement in the entire studied range of parameters. Based on the generalization of the obtained results, an empirical rule was formulated that the power ratio of the magnetron discharge and the plasma activator should be approximately 8:1.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"82 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135498251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-04DOI: 10.26565/2312-4334-2023-3-29
X.M. Iliyev, Sobir B. Isamov, Bobir O. Isakov, U.X. Qurbonova, S.A. Abduraxmonov
The paper is concerned with the study of silicon samples doped with gallium (Ga) and antimony (Sb) atoms. In particular, the elemental analysis, SEM imaging, and Raman spectrometry analysis of the samples are presented. The elemental analysis revealed that the relative concentrations of Ga (0.4) were almost equal to those of Sb (0.39) and both were formed on the surface of Si. The SEM imaging showed that GaSb microsized islands (diameter of 1 to 15 microns) and a density of ~106 cm-2 were being formed on the surface of Si in the course of the process of diffusion doping. Raman spectral analysis showed that a semiconductor with GaSb molecules self-assemble on Si surface.
{"title":"A Surface Study of Si Doped Simultaneously with Ga and Sb","authors":"X.M. Iliyev, Sobir B. Isamov, Bobir O. Isakov, U.X. Qurbonova, S.A. Abduraxmonov","doi":"10.26565/2312-4334-2023-3-29","DOIUrl":"https://doi.org/10.26565/2312-4334-2023-3-29","url":null,"abstract":"The paper is concerned with the study of silicon samples doped with gallium (Ga) and antimony (Sb) atoms. In particular, the elemental analysis, SEM imaging, and Raman spectrometry analysis of the samples are presented. The elemental analysis revealed that the relative concentrations of Ga (0.4) were almost equal to those of Sb (0.39) and both were formed on the surface of Si. The SEM imaging showed that GaSb microsized islands (diameter of 1 to 15 microns) and a density of ~106 cm-2 were being formed on the surface of Si in the course of the process of diffusion doping. Raman spectral analysis showed that a semiconductor with GaSb molecules self-assemble on Si surface.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135496789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-04DOI: 10.26565/2312-4334-2023-3-55
Azamat I. Japakov, Murod E. Vapaev, Ravshan M. Bedilov, Zakir T. Azamatov, Ikram Y. Davletov
The paper presents the results of a study of the charge and energy characteristics of multiply charged ions excited on the surface of a single-element and hydrogen-containing multi-component element targets under the influence of laser radiation with a power density (q=108-1012 W/cm2). It has been experimentally shown that, for all used values of q laser radiation, laser-induced plasma from gas-containing targets is characterized by a lower relative yield (dN/dE) of multi-charged ions with a charge number of Z>+3, compared to the plasma produced on the surface of the single element target. Moreover, the tendency to reduce dN/dE of multi-charged ions of the multi-element target, in comparison with the relative yield of ions from the plasma of the single-element target, is more significant and it depends on the charge of the excited ions. The increase in the charge and energy state, duration, and yield of ions of the heavy component, which occurs with an increase in the content of the light component in the target, has been established. This is explained by a decrease in the efficiency of recombination processes caused by an increase in the expansion velocity of a plasma plume due to a decrease in its average mass.
{"title":"Spectra of Multiply Charged Ions in Laser Plasma Formed from Gas-Containing Targets","authors":"Azamat I. Japakov, Murod E. Vapaev, Ravshan M. Bedilov, Zakir T. Azamatov, Ikram Y. Davletov","doi":"10.26565/2312-4334-2023-3-55","DOIUrl":"https://doi.org/10.26565/2312-4334-2023-3-55","url":null,"abstract":"The paper presents the results of a study of the charge and energy characteristics of multiply charged ions excited on the surface of a single-element and hydrogen-containing multi-component element targets under the influence of laser radiation with a power density (q=108-1012 W/cm2). It has been experimentally shown that, for all used values of q laser radiation, laser-induced plasma from gas-containing targets is characterized by a lower relative yield (dN/dE) of multi-charged ions with a charge number of Z>+3, compared to the plasma produced on the surface of the single element target. Moreover, the tendency to reduce dN/dE of multi-charged ions of the multi-element target, in comparison with the relative yield of ions from the plasma of the single-element target, is more significant and it depends on the charge of the excited ions. The increase in the charge and energy state, duration, and yield of ions of the heavy component, which occurs with an increase in the content of the light component in the target, has been established. This is explained by a decrease in the efficiency of recombination processes caused by an increase in the expansion velocity of a plasma plume due to a decrease in its average mass.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135496794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-04DOI: 10.26565/2312-4334-2023-3-67
Oleksandr P. Kulyk, Oksana V. Podshyvalova, Mykhailo Yu. Shevchenko, Victor I. Tkachenko, Iryna V. Hariachevska, Toru Aoki
A physical model is formulated for the motion of liquid inclusions in a crystal in the field of forces caused by the presence of radiation point defects. The model is based on a statistical approach to the processes of induced transitions of structural elements of a crystalline matrix at the interfacial boundary with its solution. From the energy principle, an analytical dependence of the velocity of a spherical azimuthally symmetric inclusion on its size is obtained, considering the threshold nature of the motion. It is shown that the theoretical dependence correlates well with experimental results obtained for inclusions of aqueous saturated solution in potassium chloride crystals irradiated by high-energy electrons. The proposed model of the radiation-induced motion of a liquid inclusion is dynamic and allows us to interpret the nature of inclusion velocity changes in the crystal over time to determine the characteristic energy parameters of point defects.
{"title":"Model of Radiation-Induced Motion of Liquid Inclusions in Crystal","authors":"Oleksandr P. Kulyk, Oksana V. Podshyvalova, Mykhailo Yu. Shevchenko, Victor I. Tkachenko, Iryna V. Hariachevska, Toru Aoki","doi":"10.26565/2312-4334-2023-3-67","DOIUrl":"https://doi.org/10.26565/2312-4334-2023-3-67","url":null,"abstract":"A physical model is formulated for the motion of liquid inclusions in a crystal in the field of forces caused by the presence of radiation point defects. The model is based on a statistical approach to the processes of induced transitions of structural elements of a crystalline matrix at the interfacial boundary with its solution. From the energy principle, an analytical dependence of the velocity of a spherical azimuthally symmetric inclusion on its size is obtained, considering the threshold nature of the motion. It is shown that the theoretical dependence correlates well with experimental results obtained for inclusions of aqueous saturated solution in potassium chloride crystals irradiated by high-energy electrons. The proposed model of the radiation-induced motion of a liquid inclusion is dynamic and allows us to interpret the nature of inclusion velocity changes in the crystal over time to determine the characteristic energy parameters of point defects.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135498252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-04DOI: 10.26565/2312-4334-2023-3-35
Rosure Borhanalden Abdulrahman, Hassan A. Kadhem, Abdul Hakim Sh. Mohammed, Issa Z. Hassan
Silicon nanocrystals have a vast range of potential applications, from improving the efficiency of solar cells and optoelectronic devices to biomedical imaging and drug delivery, wastewater treatment, and antibacterial activities. In this study a photochemical etching technique was used to create layers of porous silicon on a donor silicon wafer with orientation (111) and resistivity equal to 1‑10 ohm·cm. The process involved focusing sunlight onto the samples using a telephoto lens with a suitable focal length of 30cm and a diameter of 90 mm, which provided sufficient energy to complete the chemical etching. By using a constant etching time of 60 minutes and different concentrations of hydrofluoric acid (ranging from 25% to 40%), layers with varying properties were obtained. The resulting surfaces were studied using the atomic force microscope (AFM), revealing the formation of different nanostructures and particles with varying shapes, sizes, and thicknesses depending on the preparation conditions. The average size of the particles was found to be 90.43nm at a concentration of 40% acid, while decreasing to 48.7nm at a concentration of 25% HF acid.
{"title":"Study the Effect of Hydrofluoric (HF) Concentration on the Topography of the Porous Silicon Layer Prepared by Sunlight Photochemical Etching (SLPCE)","authors":"Rosure Borhanalden Abdulrahman, Hassan A. Kadhem, Abdul Hakim Sh. Mohammed, Issa Z. Hassan","doi":"10.26565/2312-4334-2023-3-35","DOIUrl":"https://doi.org/10.26565/2312-4334-2023-3-35","url":null,"abstract":"Silicon nanocrystals have a vast range of potential applications, from improving the efficiency of solar cells and optoelectronic devices to biomedical imaging and drug delivery, wastewater treatment, and antibacterial activities. In this study a photochemical etching technique was used to create layers of porous silicon on a donor silicon wafer with orientation (111) and resistivity equal to 1‑10 ohm·cm. The process involved focusing sunlight onto the samples using a telephoto lens with a suitable focal length of 30cm and a diameter of 90 mm, which provided sufficient energy to complete the chemical etching. By using a constant etching time of 60 minutes and different concentrations of hydrofluoric acid (ranging from 25% to 40%), layers with varying properties were obtained. The resulting surfaces were studied using the atomic force microscope (AFM), revealing the formation of different nanostructures and particles with varying shapes, sizes, and thicknesses depending on the preparation conditions. The average size of the particles was found to be 90.43nm at a concentration of 40% acid, while decreasing to 48.7nm at a concentration of 25% HF acid.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135498260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-04DOI: 10.26565/2312-4334-2023-3-38
Xalmurat M. Iliyev, Vladimir B. Odzhaev, Sobir B. Isamov, Bobir O. Isakov, Bayrambay K. Ismaylov, Kutub S. Ayupov, Shahzodbek I. Hamrokulov, Sarvinoz O. Khasanbaeva
The paper studies the properties of surface and near-surface region of a single crystalline silicon sample doped with atoms of Ga (AIII) and Sb (BV). n-type single-crystal Si wafers were chosen as substrates, and samples were size of 8×10×0.5 mm3. For diffusion into silicon, Ga and Sb impurities were used with a purity of 99.999 and 99.998, respectively. The authors propose that a new heterostructure might form in the near-surface region of silicon that could be engineered by applying a relatively cheap diffusion method. The experimental and analysis results show that the composition and absorption spectrum of silicon start manifest certain changes, and can be used in the future as a functional material for solar cells. The result showed that randomly located islands with an average diameter of 1–15 µm are formed on the substrate surface. X-ray diffraction analysis was carried out using a Rigaku diffractometer to study the crystallographic parameters of islands formed with the participation of Ga and Sb atoms on the silicon surface. The energy spectrum was studied on Nanofinder High End Raman spectrometer (LOTIS TII) in order to determine the presence of complexes of Ga and Sb atoms within islands formed as a result of diffusion. The optical emission spectra in the new structure were studied using a Lambda 950 spectrophotometer. The measurements were carried out at room temperature, i.e., at 300°K. Having studied the results of X-ray analysis, Raman spectroscopy, and optical spectroscopy, the authors have revealed that Ga and Sb atoms form new Si0.44(GaSb)0.56 and Si0.75(GaSb)0.25-type binary compounds on Si surface.
{"title":"X-Ray Diffraction and Raman Spectroscopy Analyses of GaSb-Enriched Si Surface Formed by Applying Diffusion Doping Technique","authors":"Xalmurat M. Iliyev, Vladimir B. Odzhaev, Sobir B. Isamov, Bobir O. Isakov, Bayrambay K. Ismaylov, Kutub S. Ayupov, Shahzodbek I. Hamrokulov, Sarvinoz O. Khasanbaeva","doi":"10.26565/2312-4334-2023-3-38","DOIUrl":"https://doi.org/10.26565/2312-4334-2023-3-38","url":null,"abstract":"The paper studies the properties of surface and near-surface region of a single crystalline silicon sample doped with atoms of Ga (AIII) and Sb (BV). n-type single-crystal Si wafers were chosen as substrates, and samples were size of 8×10×0.5 mm3. For diffusion into silicon, Ga and Sb impurities were used with a purity of 99.999 and 99.998, respectively. The authors propose that a new heterostructure might form in the near-surface region of silicon that could be engineered by applying a relatively cheap diffusion method. The experimental and analysis results show that the composition and absorption spectrum of silicon start manifest certain changes, and can be used in the future as a functional material for solar cells. The result showed that randomly located islands with an average diameter of 1–15 µm are formed on the substrate surface. X-ray diffraction analysis was carried out using a Rigaku diffractometer to study the crystallographic parameters of islands formed with the participation of Ga and Sb atoms on the silicon surface. The energy spectrum was studied on Nanofinder High End Raman spectrometer (LOTIS TII) in order to determine the presence of complexes of Ga and Sb atoms within islands formed as a result of diffusion. The optical emission spectra in the new structure were studied using a Lambda 950 spectrophotometer. The measurements were carried out at room temperature, i.e., at 300°K. Having studied the results of X-ray analysis, Raman spectroscopy, and optical spectroscopy, the authors have revealed that Ga and Sb atoms form new Si0.44(GaSb)0.56 and Si0.75(GaSb)0.25-type binary compounds on Si surface.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135498612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-04DOI: 10.26565/2312-4334-2023-3-53
Salma Akhtar, Keshab Borah, Shyamanta Chakraborty
The paper examines heat and mass transfer in MHD convective flow across a vertical porous plate in presence of radiation, heat sink, and dissipation of heat. A strong magnetic field is applied perpendicular to the plate and directed into the fluid area. The governing non-dimensional equations are solved using MATLAB built-in bvp4c solver technique. With the use of mathematical software, the findings are computed, and the effect of the various non-dimensional parameters entering into the problem on the velocity, temperature and concentration profiles are displayed in graphical formats. It has been noted that the application of the magnetic field slows down fluid velocity. Additionally, both the thermal radiation effect and the Prandtl number are fully applicable to the fluid temperature. It is significant to notice that the heat sink dramatically reduces fluid temperature and fluid velocity. The current work is utilized in many real life applications, such as chemical engineering, industrial processes, a system may contain multiple components, each of whose concentrations varies from one point to the next in a number of different circumstances.
{"title":"Effects of Radiation and Heat Dissipation on MHD Convective Flow in Presence of Heat Sink","authors":"Salma Akhtar, Keshab Borah, Shyamanta Chakraborty","doi":"10.26565/2312-4334-2023-3-53","DOIUrl":"https://doi.org/10.26565/2312-4334-2023-3-53","url":null,"abstract":"The paper examines heat and mass transfer in MHD convective flow across a vertical porous plate in presence of radiation, heat sink, and dissipation of heat. A strong magnetic field is applied perpendicular to the plate and directed into the fluid area. The governing non-dimensional equations are solved using MATLAB built-in bvp4c solver technique. With the use of mathematical software, the findings are computed, and the effect of the various non-dimensional parameters entering into the problem on the velocity, temperature and concentration profiles are displayed in graphical formats. It has been noted that the application of the magnetic field slows down fluid velocity. Additionally, both the thermal radiation effect and the Prandtl number are fully applicable to the fluid temperature. It is significant to notice that the heat sink dramatically reduces fluid temperature and fluid velocity. The current work is utilized in many real life applications, such as chemical engineering, industrial processes, a system may contain multiple components, each of whose concentrations varies from one point to the next in a number of different circumstances.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135496799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-04DOI: 10.26565/2312-4334-2023-3-03
V.R. Patil, P.A. Bolke, S.K. Waghmare, J.L. Pawde
In this article, we examine the LRS Bianchi type-I cosmological model in the framework of f(R, T) gravity, where R is the Ricci scalar and T is the stress energy momentum tensor in the presence of Domain wall. we used the special law of variation of Hubble’s parameter proposed by Berman (1983) to obtained the exact solution of field equation, corresponds to the model of the universe. The Energy conditions and physical behaviour of the universe has been obtained and their evolution has been discussed using some physical parameter and by means of their graphs. Also, we can use the Statefinder parameter for testing the validity of the model.
{"title":"Energy Conditions and Statefinder Diagnostic of Cosmological Model with Special Law of Hubble Parameter in f(R, T) Gravity","authors":"V.R. Patil, P.A. Bolke, S.K. Waghmare, J.L. Pawde","doi":"10.26565/2312-4334-2023-3-03","DOIUrl":"https://doi.org/10.26565/2312-4334-2023-3-03","url":null,"abstract":"In this article, we examine the LRS Bianchi type-I cosmological model in the framework of f(R, T) gravity, where R is the Ricci scalar and T is the stress energy momentum tensor in the presence of Domain wall. we used the special law of variation of Hubble’s parameter proposed by Berman (1983) to obtained the exact solution of field equation, corresponds to the model of the universe. The Energy conditions and physical behaviour of the universe has been obtained and their evolution has been discussed using some physical parameter and by means of their graphs. Also, we can use the Statefinder parameter for testing the validity of the model.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135498247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, the effect of Multi-Wall Carbon Nanotubes (MWCNTs) addition on the materials shielding properties against Gamma radiation with an energy of 662 keV from a 137Cs source is investigated. The linear attenuation coefficient of MWCNTs-based materials (gelatin-water mixture) with MWCNTs concentrations of 0%, 5%, and 10% is measured. To isolate the contribution of the MWCNTs unique structure to the shielding capabilities, samples with the same concentrations of activated carbon were fabricated and their linear attenuation coefficients were obtained. Also, the linear and the mass attenuation coefficients are obtained theoretically for the same concentrations using the XCOM program and compared with measured values. It is found that the addition of MWCNTs by 5% or 10% has increased the linear attenuation coefficient by around 5% when compared to the same concentrations of activated carbon. This increase in the shielding apabilities against gamma radiation can be related to the interaction of gamma radiation with the extraordinary geometry and structure of MWCNTs.
{"title":"The Effect of Multi-Wall Carbon Nanotubes Addition on the Shielding Properties Against Gamma Radiation","authors":"Moaz Altarawneh, Mutaz Aladailaha, Osama Al-Madanat","doi":"10.26565/2312-4334-2023-3-60","DOIUrl":"https://doi.org/10.26565/2312-4334-2023-3-60","url":null,"abstract":"In this work, the effect of Multi-Wall Carbon Nanotubes (MWCNTs) addition on the materials shielding properties against Gamma radiation with an energy of 662 keV from a 137Cs source is investigated. The linear attenuation coefficient of MWCNTs-based materials (gelatin-water mixture) with MWCNTs concentrations of 0%, 5%, and 10% is measured. To isolate the contribution of the MWCNTs unique structure to the shielding capabilities, samples with the same concentrations of activated carbon were fabricated and their linear attenuation coefficients were obtained. Also, the linear and the mass attenuation coefficients are obtained theoretically for the same concentrations using the XCOM program and compared with measured values. It is found that the addition of MWCNTs by 5% or 10% has increased the linear attenuation coefficient by around 5% when compared to the same concentrations of activated carbon. This increase in the shielding apabilities against gamma radiation can be related to the interaction of gamma radiation with the extraordinary geometry and structure of MWCNTs.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135498250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}