Abstract A new admixture is available, to reduce the sludge produced from the cleansing of production and transportation equipment in the fresh concrete industry. The result is agglomerations of hardening concrete, that might be utilised for aggregate. Utilisation depends on adequate properties. This paper reports from investigations on the physical and mechanical properties of the aggregate and discussions on the performance relative to natural and recycled aggregates and towards requirements for utilisation. The findings indicate substantial potential for utilisation, supporting the reduction of waste for deposit and development of the concrete industry towards a circular economy.
{"title":"From Waste to Resource – Utilising Residue from Ready-Made Concrete as New Aggregate","authors":"S. Adomako, Anette Heimdal, R. T. Thorstensen","doi":"10.2478/ncr-2021-0010","DOIUrl":"https://doi.org/10.2478/ncr-2021-0010","url":null,"abstract":"Abstract A new admixture is available, to reduce the sludge produced from the cleansing of production and transportation equipment in the fresh concrete industry. The result is agglomerations of hardening concrete, that might be utilised for aggregate. Utilisation depends on adequate properties. This paper reports from investigations on the physical and mechanical properties of the aggregate and discussions on the performance relative to natural and recycled aggregates and towards requirements for utilisation. The findings indicate substantial potential for utilisation, supporting the reduction of waste for deposit and development of the concrete industry towards a circular economy.","PeriodicalId":42762,"journal":{"name":"Nordic Concrete Research","volume":"11 1","pages":"1 - 10"},"PeriodicalIF":1.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86541090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Thickness (T), Length (L), Width (W) and size distribution of scaled concrete particles in frost testing were measured. T (mm) increases with particle size surprisingly similarly for different concrete qualities and frost test methods. 2T/(L+W) reduces as function of size and is lowest for the largest particles of the salt scaling test: 0.1 – 0.15 but increases if large aggregate particles scale. Particle size distributions from salt frost testing peak for particles of 1-2 mm. The particles are flakier compared to particles from freeze/thaw in water which also have flatter size distribution no matter type of concrete or degree of damage. Scaling in water is not so efficiently reduced by air voids despite protecting very efficiently against internal damage and scaling in salt frost testing. Comparisons with T predicted by the glue spall model (≈3/4 × ice thickness) and the air void dependent (≈3× critical air void spacing) model proposed by Fagerlund are difficult due to the size dependent flake thickness. Image analysis could well describe shape. Further studies of concrete flake thickness scaled at varying thickness of ice layers are proposed.
{"title":"Shape and Size of Particles Scaled from Concrete Surfaces during Salt Frost Testing and Rapid Freeze/thaw in Water","authors":"Marte Beheim Brun, A. Shpak, S. Jacobsen","doi":"10.2478/ncr-2021-0001","DOIUrl":"https://doi.org/10.2478/ncr-2021-0001","url":null,"abstract":"Abstract Thickness (T), Length (L), Width (W) and size distribution of scaled concrete particles in frost testing were measured. T (mm) increases with particle size surprisingly similarly for different concrete qualities and frost test methods. 2T/(L+W) reduces as function of size and is lowest for the largest particles of the salt scaling test: 0.1 – 0.15 but increases if large aggregate particles scale. Particle size distributions from salt frost testing peak for particles of 1-2 mm. The particles are flakier compared to particles from freeze/thaw in water which also have flatter size distribution no matter type of concrete or degree of damage. Scaling in water is not so efficiently reduced by air voids despite protecting very efficiently against internal damage and scaling in salt frost testing. Comparisons with T predicted by the glue spall model (≈3/4 × ice thickness) and the air void dependent (≈3× critical air void spacing) model proposed by Fagerlund are difficult due to the size dependent flake thickness. Image analysis could well describe shape. Further studies of concrete flake thickness scaled at varying thickness of ice layers are proposed.","PeriodicalId":42762,"journal":{"name":"Nordic Concrete Research","volume":"29 1","pages":"53 - 68"},"PeriodicalIF":1.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84153048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Predicting the stress increase of an unbonded tendon in a post-tensioned continuous concrete beam at ultimate capacity is more difficult than when bonded tendons are used. The failure mechanisms of the continuous beam are also different to that of the simple-span beam. The loading type, ductility of the support area and moment redistribution influence the behaviour of the continuous structures. In this research, the simplified nonlinear analysis was used for predicting the unbonded tendon stress increase at ultimate capacity in continuous two-span beams. The model is based on the moment-curvature relationships of the reinforced concrete cross-sections under different compressive forces and deformations of the continuous beam under loading. The results have been compared with the experimental results of recent studies found in the literature. In addition, 92 unbonded post-tensioned two-span beams with different reinforcements have been examined by using the model and compared to the results obtained from empirical equations from the literature. The results from the nonlinear analysis correspond well to the results from the other models up to the reinforcement ratio of 0.35. The calculated values of the maximum moment capacity at the centre support were close to the results from the test beams.
{"title":"Determination of the Stress Increase of the Unbonded Tendon in a Continuous Concrete Beam at Ultimate Capacity Using Nonlinear Analysis","authors":"T. Nakari, Anssi Laaksonen","doi":"10.2478/ncr-2021-0004","DOIUrl":"https://doi.org/10.2478/ncr-2021-0004","url":null,"abstract":"Abstract Predicting the stress increase of an unbonded tendon in a post-tensioned continuous concrete beam at ultimate capacity is more difficult than when bonded tendons are used. The failure mechanisms of the continuous beam are also different to that of the simple-span beam. The loading type, ductility of the support area and moment redistribution influence the behaviour of the continuous structures. In this research, the simplified nonlinear analysis was used for predicting the unbonded tendon stress increase at ultimate capacity in continuous two-span beams. The model is based on the moment-curvature relationships of the reinforced concrete cross-sections under different compressive forces and deformations of the continuous beam under loading. The results have been compared with the experimental results of recent studies found in the literature. In addition, 92 unbonded post-tensioned two-span beams with different reinforcements have been examined by using the model and compared to the results obtained from empirical equations from the literature. The results from the nonlinear analysis correspond well to the results from the other models up to the reinforcement ratio of 0.35. The calculated values of the maximum moment capacity at the centre support were close to the results from the test beams.","PeriodicalId":42762,"journal":{"name":"Nordic Concrete Research","volume":"53 1","pages":"109 - 128"},"PeriodicalIF":1.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84448434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Widely used crack width calculation models and allowable crack width limits have changed from time to time and differ from region to region. It can be identified that some crack width calculation models consist with limitations for parameters like cover thickness. The current Norwegian requirement for cover thickness is larger than these limitations. The applicability of existing crack width calculation models and the allowable crack width limits must be verified for structures with large cover thickness. The background of crack width calculation models in Eurocode, Model Code 2010, Japanese code, American code and British code have been examined. By comparing the experimental crack widths with the predictions of the aforementioned models, the existing codes can be identified as requiring modification. Considering the durability aspect, it can be identified a long-term study proving that the allowable crack width can be increased with the increase in cover thickness. When considering the aesthetic aspect, the authors suggest categorizing the structures based on their prestige level and deciding the allowable crack widths accordingly. The paper proposes potential solutions for future research on how to improve both crack width calculation methods and allowable crack width limits to be used effectively in structures with large cover thickness.
{"title":"Applicability of Existing Crack Controlling Criteria for Structures with Large Concrete Cover Thickness","authors":"C. Naotunna, S. Samarakoon, K. Fosså","doi":"10.2478/ncr-2021-0002","DOIUrl":"https://doi.org/10.2478/ncr-2021-0002","url":null,"abstract":"Abstract Widely used crack width calculation models and allowable crack width limits have changed from time to time and differ from region to region. It can be identified that some crack width calculation models consist with limitations for parameters like cover thickness. The current Norwegian requirement for cover thickness is larger than these limitations. The applicability of existing crack width calculation models and the allowable crack width limits must be verified for structures with large cover thickness. The background of crack width calculation models in Eurocode, Model Code 2010, Japanese code, American code and British code have been examined. By comparing the experimental crack widths with the predictions of the aforementioned models, the existing codes can be identified as requiring modification. Considering the durability aspect, it can be identified a long-term study proving that the allowable crack width can be increased with the increase in cover thickness. When considering the aesthetic aspect, the authors suggest categorizing the structures based on their prestige level and deciding the allowable crack widths accordingly. The paper proposes potential solutions for future research on how to improve both crack width calculation methods and allowable crack width limits to be used effectively in structures with large cover thickness.","PeriodicalId":42762,"journal":{"name":"Nordic Concrete Research","volume":"299 1","pages":"69 - 91"},"PeriodicalIF":1.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73092014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Nováková, T. Drozdyuk, K. Ohenoja, A. Ayzenshtadt, B. Arntsen, P. Perumal, Martin Skjerve Dyvesveen
Abstract The need for better natural resource use is currently increasingly recognised, and high emphasis is given to the circularity of building materials and the reduction of activities with negative environmental impact. Legislation, guidelines, and other documentation play an important role in improving demolition activities and construction and demolition waste (CDW) management. Good practices in CDW handling is not achievable without knowledge about CDW recovery techniques described in guidelines and other documents. Demolition activities in arctic regions could be more challenging due to harsh climate conditions, and therefore the cooperation between Russia, Norway and Finland was established to boost the uptake of good practices in demolition activities and CDW management. The main subject of this article is an overview of presently used demolition practices, CDW management, and verification of areas where practices with lower environmental impact and increase of material circularity could be utilised. Two fundamental documents, namely “EU Construction & Demolition Waste Management Protocol” and “Guidelines for the waste audits before demolition and renovation works of buildings” [1, 2], were published by the European Union (EU) in 2019 and serve as a foundation for changes in demolition activities and CDW management in EU and adventitiously also in the Russian Federation and Norway.
{"title":"A Comprehensive Summary of Available Legislation and Practices in Demolition and Construction & Demolition Waste Management in the Arctic Region","authors":"I. Nováková, T. Drozdyuk, K. Ohenoja, A. Ayzenshtadt, B. Arntsen, P. Perumal, Martin Skjerve Dyvesveen","doi":"10.2478/ncr-2021-0009","DOIUrl":"https://doi.org/10.2478/ncr-2021-0009","url":null,"abstract":"Abstract The need for better natural resource use is currently increasingly recognised, and high emphasis is given to the circularity of building materials and the reduction of activities with negative environmental impact. Legislation, guidelines, and other documentation play an important role in improving demolition activities and construction and demolition waste (CDW) management. Good practices in CDW handling is not achievable without knowledge about CDW recovery techniques described in guidelines and other documents. Demolition activities in arctic regions could be more challenging due to harsh climate conditions, and therefore the cooperation between Russia, Norway and Finland was established to boost the uptake of good practices in demolition activities and CDW management. The main subject of this article is an overview of presently used demolition practices, CDW management, and verification of areas where practices with lower environmental impact and increase of material circularity could be utilised. Two fundamental documents, namely “EU Construction & Demolition Waste Management Protocol” and “Guidelines for the waste audits before demolition and renovation works of buildings” [1, 2], were published by the European Union (EU) in 2019 and serve as a foundation for changes in demolition activities and CDW management in EU and adventitiously also in the Russian Federation and Norway.","PeriodicalId":42762,"journal":{"name":"Nordic Concrete Research","volume":"1 1","pages":"145 - 162"},"PeriodicalIF":1.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76765152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Ultra-high performance concrete might be a competitive alternative to normal concrete for some purposes. But despite research efforts during decades, utilisation is still not widespread. Reasons include limited competence and material availability. This paper presents one step of a research initiative aimed at facilitating the use of UHPC in Norway. The step presented here comprises the accumulated results from investigations on the influence steel fibres (content, type, and hybrid combination) have on material strength and deformation behaviour of locally produced UHPC, made with constituents found in southern Norway. 231 specimens were tested, spanning nine UHPC mixes. Digital Image Correlation (DIC) was successfully used to study crack propagation. Compressive strength of 166 MPa and E-modulus of 46 GPa were obtained, not being influenced by fibre content. The flexural tensile strength was found to be strongly dependent on variations in steel fibre properties and mix design. The highest flexural tensile strength was obtained for prisms with micro straight steel fibres alone, or in 50% combination with macro hooked-end fibres. The experimental results are considered in a theory-informed discussion. Suggestions are made on the use of steel fibres in locally produced UHPC, potentially lowering the cost by 30%.
{"title":"Locally Produced UHPC: The Influence of Type and Content of Steel Fibres","authors":"I. Lande, R. T. Thorstensen","doi":"10.2478/ncr-2021-0003","DOIUrl":"https://doi.org/10.2478/ncr-2021-0003","url":null,"abstract":"Abstract Ultra-high performance concrete might be a competitive alternative to normal concrete for some purposes. But despite research efforts during decades, utilisation is still not widespread. Reasons include limited competence and material availability. This paper presents one step of a research initiative aimed at facilitating the use of UHPC in Norway. The step presented here comprises the accumulated results from investigations on the influence steel fibres (content, type, and hybrid combination) have on material strength and deformation behaviour of locally produced UHPC, made with constituents found in southern Norway. 231 specimens were tested, spanning nine UHPC mixes. Digital Image Correlation (DIC) was successfully used to study crack propagation. Compressive strength of 166 MPa and E-modulus of 46 GPa were obtained, not being influenced by fibre content. The flexural tensile strength was found to be strongly dependent on variations in steel fibre properties and mix design. The highest flexural tensile strength was obtained for prisms with micro straight steel fibres alone, or in 50% combination with macro hooked-end fibres. The experimental results are considered in a theory-informed discussion. Suggestions are made on the use of steel fibres in locally produced UHPC, potentially lowering the cost by 30%.","PeriodicalId":42762,"journal":{"name":"Nordic Concrete Research","volume":"24 1","pages":"31 - 52"},"PeriodicalIF":1.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78980061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Construction business along with other businesses have set carbon neutrality goals in the following years. To reach these goals a lot needs to be done fairly quickly. The high impact of concrete production on carbon emissions has been known for years and solutions for this problem are studied in this paper through supplementary cementing materials. Ordinary Portland cement can be replaced partly but not completely with cement replacing materials since the strength properties are lost at replacement level higher than 80%. These replacing binders can be pulverized fly ash, blast furnace slag or silica fume. The use of the new low-carbon products can half the embodied carbon for the bearing frame of the building. The total area of a certain structure type is important since replacing its cement can have much higher impact on the total carbon footprint than replacing it for a single structure type that has fairly small area in the building.
{"title":"Decreasing Carbon Footprint of Block of Flats – Concrete Technology Possibilities","authors":"Elina Lahdensivu, J. Lahdensivu","doi":"10.2478/ncr-2021-0006","DOIUrl":"https://doi.org/10.2478/ncr-2021-0006","url":null,"abstract":"Abstract Construction business along with other businesses have set carbon neutrality goals in the following years. To reach these goals a lot needs to be done fairly quickly. The high impact of concrete production on carbon emissions has been known for years and solutions for this problem are studied in this paper through supplementary cementing materials. Ordinary Portland cement can be replaced partly but not completely with cement replacing materials since the strength properties are lost at replacement level higher than 80%. These replacing binders can be pulverized fly ash, blast furnace slag or silica fume. The use of the new low-carbon products can half the embodied carbon for the bearing frame of the building. The total area of a certain structure type is important since replacing its cement can have much higher impact on the total carbon footprint than replacing it for a single structure type that has fairly small area in the building.","PeriodicalId":42762,"journal":{"name":"Nordic Concrete Research","volume":"86 3 1","pages":"129 - 144"},"PeriodicalIF":1.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78145980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract According to Swedish experience the slab method in CEN/TS 12390-9 is successful in predicting the salt-frost resistance of Portland cement concrete. However, doubts have been raised whether the same can be said when used on concrete with supplementary cementitious material, e.g. fly ash or ground granulated blast furnace slag (GGBS). Test results from concrete mixes with up to 35 % fly ash 65 % GGBS, with two different Portland cements and a water-to-binder ratio of 0.45 are presented in this paper. The tests were carried out with the standard method and with five modifications concerning the pre-conditioning of the specimens before freeze-thaw cycling. The age of the specimens at sawing was increased, the time in 65 % RH was prolonged and exposure to 1 % CO2-environment was used. The results show that for air-entrained concrete with fly ash or GGBS both prolonging the exposure to 65 % RH and exposure to CO2 diminishes the salt-frost resistance. The influence increases with increasing amount of fly ash or GGBS. However, the type of cement also has a certain influence. The influence of exposure to CO2 on the salt-frost resistance of concrete without entrained air was totally different from the influence on concrete with entrained air.
{"title":"Salt-Frost Scaling of Concrete with Slag and Fly Ash - Influence of Carbonation and Prolonged Conditioning on Test Results","authors":"E. Helsing, P. Utgenannt","doi":"10.2478/ncr-2020-0013","DOIUrl":"https://doi.org/10.2478/ncr-2020-0013","url":null,"abstract":"Abstract According to Swedish experience the slab method in CEN/TS 12390-9 is successful in predicting the salt-frost resistance of Portland cement concrete. However, doubts have been raised whether the same can be said when used on concrete with supplementary cementitious material, e.g. fly ash or ground granulated blast furnace slag (GGBS). Test results from concrete mixes with up to 35 % fly ash 65 % GGBS, with two different Portland cements and a water-to-binder ratio of 0.45 are presented in this paper. The tests were carried out with the standard method and with five modifications concerning the pre-conditioning of the specimens before freeze-thaw cycling. The age of the specimens at sawing was increased, the time in 65 % RH was prolonged and exposure to 1 % CO2-environment was used. The results show that for air-entrained concrete with fly ash or GGBS both prolonging the exposure to 65 % RH and exposure to CO2 diminishes the salt-frost resistance. The influence increases with increasing amount of fly ash or GGBS. However, the type of cement also has a certain influence. The influence of exposure to CO2 on the salt-frost resistance of concrete without entrained air was totally different from the influence on concrete with entrained air.","PeriodicalId":42762,"journal":{"name":"Nordic Concrete Research","volume":"7 1","pages":"89 - 108"},"PeriodicalIF":1.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86974705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Wet sprayed concrete quality is affected by more production factors than cast concrete, particularly due to the propulsion through the nozzle and the flash set caused by the set accelerator. Practitioners often use the term “sprayability” to describe these factors. We propose a definition of “sprayability” that relates the application to the final properties of the hardened sprayed concrete and review factors affecting it: concrete constituents, proportioning, and application mechanics. These factors affect the hardening and the structure of the hardened sprayed concrete – the porosity, permeability and durability. We consider improving sustainability through proportioning with increased share of supplementary cementitious materials, calculate the placed composition and focus on factors that affect water transport, and hence durability. Due to the spray application and flash-set, irregular compaction voids dominate the macro pore structure of sprayed concrete. Studies of permeability of sprayed concrete have shown that it is possible to obtain low permeabilities given adequate composition and curing. Presumably these samples have been well-cured, uncracked and with non-percolating macro voids. Given observations of cracks in sprayed concrete linings and the macro voids, important further studies will be on the effect of accelerator, compaction porosity and cracking on permeability.
{"title":"Review of Sprayability of Wet Sprayed Concrete","authors":"Nicholas Trussell, S. Jacobsen","doi":"10.2478/ncr-2020-0016","DOIUrl":"https://doi.org/10.2478/ncr-2020-0016","url":null,"abstract":"Abstract Wet sprayed concrete quality is affected by more production factors than cast concrete, particularly due to the propulsion through the nozzle and the flash set caused by the set accelerator. Practitioners often use the term “sprayability” to describe these factors. We propose a definition of “sprayability” that relates the application to the final properties of the hardened sprayed concrete and review factors affecting it: concrete constituents, proportioning, and application mechanics. These factors affect the hardening and the structure of the hardened sprayed concrete – the porosity, permeability and durability. We consider improving sustainability through proportioning with increased share of supplementary cementitious materials, calculate the placed composition and focus on factors that affect water transport, and hence durability. Due to the spray application and flash-set, irregular compaction voids dominate the macro pore structure of sprayed concrete. Studies of permeability of sprayed concrete have shown that it is possible to obtain low permeabilities given adequate composition and curing. Presumably these samples have been well-cured, uncracked and with non-percolating macro voids. Given observations of cracks in sprayed concrete linings and the macro voids, important further studies will be on the effect of accelerator, compaction porosity and cracking on permeability.","PeriodicalId":42762,"journal":{"name":"Nordic Concrete Research","volume":"63 1","pages":"21 - 41"},"PeriodicalIF":1.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82566462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Air-entraining agents (AEA) are normally used to improve the frost resistance of concrete. However, it is not possible to accurately control the air void system in concrete with AEA. Thus, a significant loss of concrete strength is caused by over-dosing voids, and this increases the environmental impact from concrete structures. Superabsorbent polymer (SAP) can also be used to produce frost-resistant concrete. Compared to AEA, it can be used to precisely engineer the air void structure of concrete, promote cement hydration, and mitigate self-desiccation cracks. In this study, life cycle assessment methodology is applied to evaluate the overall environmental impact of frost-resistant concrete based on AEA and SAP, respectively. The results illustrate that frost-resistant concrete with SAP has a lower environmental impact than frost-resistant concrete with AEA if the strength and durability of concrete are considered in the defined functional unit. In addition, frost-resistant concrete with SAP reduces the environmental burdens of the vertical elements such as columns, but it increases the environmental load of the horizontal elements such as slabs, where the strength increase cannot be utilized. Moreover, the inventory data for AEA and SAP can affect the impact assessment results.
{"title":"Environmental Assessment of Frost-resistant Concrete with Superabsorbent Polymers","authors":"Gui Li, Marianne Tange Hasholt, O. Jensen","doi":"10.2478/ncr-2020-0011","DOIUrl":"https://doi.org/10.2478/ncr-2020-0011","url":null,"abstract":"Abstract Air-entraining agents (AEA) are normally used to improve the frost resistance of concrete. However, it is not possible to accurately control the air void system in concrete with AEA. Thus, a significant loss of concrete strength is caused by over-dosing voids, and this increases the environmental impact from concrete structures. Superabsorbent polymer (SAP) can also be used to produce frost-resistant concrete. Compared to AEA, it can be used to precisely engineer the air void structure of concrete, promote cement hydration, and mitigate self-desiccation cracks. In this study, life cycle assessment methodology is applied to evaluate the overall environmental impact of frost-resistant concrete based on AEA and SAP, respectively. The results illustrate that frost-resistant concrete with SAP has a lower environmental impact than frost-resistant concrete with AEA if the strength and durability of concrete are considered in the defined functional unit. In addition, frost-resistant concrete with SAP reduces the environmental burdens of the vertical elements such as columns, but it increases the environmental load of the horizontal elements such as slabs, where the strength increase cannot be utilized. Moreover, the inventory data for AEA and SAP can affect the impact assessment results.","PeriodicalId":42762,"journal":{"name":"Nordic Concrete Research","volume":"92 1","pages":"43 - 62"},"PeriodicalIF":1.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85102594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}