Abstract Calcined clays are gaining increasing interest as future supplementary cementitious materials for the production of blended cements. Besides the mineralogy, the right production conditions can affect the pozzolanic activity of calcined clays. In this paper, the pozzolanic reactivity of two calcined natural clays in dependence of burning temperature, residence time in the furnace, cooling conditions and particle size of the final product is investigated. The highest pozzolanic reactivity was found at calcination temperatures between 600 and 800°C. While different cooling conditions had no identified effect on reactivity, decreased particle size and residence time increased the reactivity.
{"title":"The Influence of Production Parameters on Pozzolanic Reactivity of Calcined Clays","authors":"Tobias Danner, H. Justnes","doi":"10.2478/ncr-2018-0011","DOIUrl":"https://doi.org/10.2478/ncr-2018-0011","url":null,"abstract":"Abstract Calcined clays are gaining increasing interest as future supplementary cementitious materials for the production of blended cements. Besides the mineralogy, the right production conditions can affect the pozzolanic activity of calcined clays. In this paper, the pozzolanic reactivity of two calcined natural clays in dependence of burning temperature, residence time in the furnace, cooling conditions and particle size of the final product is investigated. The highest pozzolanic reactivity was found at calcination temperatures between 600 and 800°C. While different cooling conditions had no identified effect on reactivity, decreased particle size and residence time increased the reactivity.","PeriodicalId":42762,"journal":{"name":"Nordic Concrete Research","volume":"1 1","pages":"1 - 12"},"PeriodicalIF":1.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76744790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Even though natural phenomena do not abide to borders, Finland has traditionally been considered an alkali-silica reaction (ASR) free country. This is due to exceptional quality of the mostly course crystalline igneous rocks. However, during the last few years dozens of cases of ASR have been reported. The scope of this study was to study the occurrence of ASR, and to find out the initiation time of the reaction in resent investigations of Finnish concrete structures. ASR is found occurring all over Finland. The reacting aggregates consist of rock types, which are considered relatively stable or low reacting in literature.
{"title":"Alkali-silica Reaction in Finnish Concrete Structures","authors":"J. Lahdensivu, P. Kekäläinen, Alina Lahdensivu","doi":"10.2478/ncr-2018-0013","DOIUrl":"https://doi.org/10.2478/ncr-2018-0013","url":null,"abstract":"Abstract Even though natural phenomena do not abide to borders, Finland has traditionally been considered an alkali-silica reaction (ASR) free country. This is due to exceptional quality of the mostly course crystalline igneous rocks. However, during the last few years dozens of cases of ASR have been reported. The scope of this study was to study the occurrence of ASR, and to find out the initiation time of the reaction in resent investigations of Finnish concrete structures. ASR is found occurring all over Finland. The reacting aggregates consist of rock types, which are considered relatively stable or low reacting in literature.","PeriodicalId":42762,"journal":{"name":"Nordic Concrete Research","volume":"96 1","pages":"31 - 44"},"PeriodicalIF":1.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72887679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract This project focused on how the cracking process in concrete is influenced by both the micro and meso structures of concrete. The aim was to increase knowledge pertaining to the effect of critical parameters on the cracking process and how this is related to the material’s macroscopic properties. A methodology based on the combination of different experimental methods and measuring techniques at different scales was developed. Crack propagation during tensile loading of small-scale specimens in a tensile stage was monitored by means of Digital Image Correlation (DIC) and Acoustic Emission (AE). After testing, crack patterns were studied using fluorescence microscopy.
{"title":"Meso Mechanical Study of Cracking Process in Concrete Subjected to Tensile Loading","authors":"M. Flansbjer, J. Lindqvist","doi":"10.2478/ncr-2018-0012","DOIUrl":"https://doi.org/10.2478/ncr-2018-0012","url":null,"abstract":"Abstract This project focused on how the cracking process in concrete is influenced by both the micro and meso structures of concrete. The aim was to increase knowledge pertaining to the effect of critical parameters on the cracking process and how this is related to the material’s macroscopic properties. A methodology based on the combination of different experimental methods and measuring techniques at different scales was developed. Crack propagation during tensile loading of small-scale specimens in a tensile stage was monitored by means of Digital Image Correlation (DIC) and Acoustic Emission (AE). After testing, crack patterns were studied using fluorescence microscopy.","PeriodicalId":42762,"journal":{"name":"Nordic Concrete Research","volume":"82 1","pages":"13 - 29"},"PeriodicalIF":1.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86106333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. B. Revert, K. De Weerdt, U. H. Jakobsen, M. Geiker
Abstract The paper summarizes preliminary results on characterization of the microstructure and phase assemblage of mortar and concrete samples containing Portland and Portland-fly ash cement carbonated at either natural conditions, 60% RH and 1% CO2, 90% RH and 5% CO2 or 60% RH and 100% CO2. Different characterization techniques were used: thermogravimetric analysis to study the solid phases, SEM-EDS point analysis to investigate the chemical composition of the solid phases, optical microscopy to investigate the microstructure, and cold water extraction to characterize the chemical composition of the pore solution. The combined results on microstructure and phase assemblage indicate that carbonation up to 5% CO2 appears representative for natural carbonation. Pore solution analysis revealed similar trends for the three accelerated carbonation conditions.
{"title":"Impact of Accelerated Carbonation on Microstructure and Phase Assemblage","authors":"A. B. Revert, K. De Weerdt, U. H. Jakobsen, M. Geiker","doi":"10.2478/ncr-2018-0018","DOIUrl":"https://doi.org/10.2478/ncr-2018-0018","url":null,"abstract":"Abstract The paper summarizes preliminary results on characterization of the microstructure and phase assemblage of mortar and concrete samples containing Portland and Portland-fly ash cement carbonated at either natural conditions, 60% RH and 1% CO2, 90% RH and 5% CO2 or 60% RH and 100% CO2. Different characterization techniques were used: thermogravimetric analysis to study the solid phases, SEM-EDS point analysis to investigate the chemical composition of the solid phases, optical microscopy to investigate the microstructure, and cold water extraction to characterize the chemical composition of the pore solution. The combined results on microstructure and phase assemblage indicate that carbonation up to 5% CO2 appears representative for natural carbonation. Pore solution analysis revealed similar trends for the three accelerated carbonation conditions.","PeriodicalId":42762,"journal":{"name":"Nordic Concrete Research","volume":"10 1","pages":"111 - 126"},"PeriodicalIF":1.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86571042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Well-known frost destruction mechanisms applicable to concrete not exposed to salt are, (1) hydraulic pressure during freezing, (2) growth of ice-bodies in capillaries during freezing. Theories behind these mechanisms are presented. A third mechanism, ice expansion during heating of frozen concrete, is put forward. The validity of a certain mechanisms is discussed by analyzing its ability to explain experimental observations.
{"title":"Frost Destruction of Concrete – A Study of the Validity of Different Mechanisms","authors":"G. Fagerlund","doi":"10.2478/ncr-2018-0003","DOIUrl":"https://doi.org/10.2478/ncr-2018-0003","url":null,"abstract":"Abstract Well-known frost destruction mechanisms applicable to concrete not exposed to salt are, (1) hydraulic pressure during freezing, (2) growth of ice-bodies in capillaries during freezing. Theories behind these mechanisms are presented. A third mechanism, ice expansion during heating of frozen concrete, is put forward. The validity of a certain mechanisms is discussed by analyzing its ability to explain experimental observations.","PeriodicalId":42762,"journal":{"name":"Nordic Concrete Research","volume":"58 1","pages":"35 - 54"},"PeriodicalIF":1.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74054113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Hydrated Portland cement paste exposed to a NaCl solution was acidified by adding HCl in small steps, gradually lowering the pH. The chloride binding of the cement paste changed as a function of the pH. For the range of pH from 13.2 to 12.2, decreasing pH resulted in a considerable increase in the chloride binding. At a pH of 11, the cement paste showed almost no chloride binding. In order to explain the changes in chloride binding upon lowering the pH, the phase assemblage was investigated with SEM-EDS, TGA and XRD and compared to a thermodynamic modelling.
{"title":"Towards the Understanding of the pH Dependency of the Chloride Binding of Portland Cement Pastes","authors":"A. Machner, Petter Hemstad, K. De Weerdt","doi":"10.2478/ncr-2018-0009","DOIUrl":"https://doi.org/10.2478/ncr-2018-0009","url":null,"abstract":"Abstract Hydrated Portland cement paste exposed to a NaCl solution was acidified by adding HCl in small steps, gradually lowering the pH. The chloride binding of the cement paste changed as a function of the pH. For the range of pH from 13.2 to 12.2, decreasing pH resulted in a considerable increase in the chloride binding. At a pH of 11, the cement paste showed almost no chloride binding. In order to explain the changes in chloride binding upon lowering the pH, the phase assemblage was investigated with SEM-EDS, TGA and XRD and compared to a thermodynamic modelling.","PeriodicalId":42762,"journal":{"name":"Nordic Concrete Research","volume":"22 1","pages":"143 - 162"},"PeriodicalIF":1.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87253104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract This paper presents results from investigations on the long-term influence of concrete surface and crack orientation on ingress in cracks. Five reinforced concrete structures from Norway exposed to either de-icing salts or seawater have been investigated. Concrete cores were taken with and without cracks from surfaces with vertical and horizontal orientation. Carbonation in cracks was found on all de-iced structures, and a crack on a completely horizontal surface appeared to facilitate chloride ingress. Ingress of substances from seawater was found in all cracks from marine exposure. However, the impact of cracks on chloride ingress was unclear. Horizontal cracks on vertical surfaces appeared to facilitate self-healing.
{"title":"Long-term Influence of Concrete Surface and Crack Orientation on Self-healing and Ingress in Cracks – Field Observations","authors":"Tobias Danner, M. Geiker","doi":"10.2478/ncr-2018-0001","DOIUrl":"https://doi.org/10.2478/ncr-2018-0001","url":null,"abstract":"Abstract This paper presents results from investigations on the long-term influence of concrete surface and crack orientation on ingress in cracks. Five reinforced concrete structures from Norway exposed to either de-icing salts or seawater have been investigated. Concrete cores were taken with and without cracks from surfaces with vertical and horizontal orientation. Carbonation in cracks was found on all de-iced structures, and a crack on a completely horizontal surface appeared to facilitate chloride ingress. Ingress of substances from seawater was found in all cracks from marine exposure. However, the impact of cracks on chloride ingress was unclear. Horizontal cracks on vertical surfaces appeared to facilitate self-healing.","PeriodicalId":42762,"journal":{"name":"Nordic Concrete Research","volume":"133 1","pages":"1 - 16"},"PeriodicalIF":1.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77209325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ya Peng, B. Pedersen, S. Ng, K. De Weerdt, S. Jacobsen
Abstract Bleeding and sedimentation quantify the stability of fresh cement paste, whereas the addition of fillers and water reducers affect the stability. The effect of various types of fillers and water reducers was investigated by measuring bleeding, hydrostatic pressure and electroacoustic zeta-potential. Depending on their characteristics and use, fillers can improve stability by reducing sedimentation rate and bleeding. The combined effects of fillers and water reducers on the sedimentation rates, quantified as time-dependent hydrostatic pressure changes (dp/dt) in fresh matrix, correspond to their effects on zeta-potentials. The influence of the water reducers on sedimentation and bleeding exceed that of filler type.
{"title":"Filler and Water Reducer Effects on Sedimentation, Bleeding and Zeta-Potential of Cement Paste","authors":"Ya Peng, B. Pedersen, S. Ng, K. De Weerdt, S. Jacobsen","doi":"10.2478/ncr-2018-0007","DOIUrl":"https://doi.org/10.2478/ncr-2018-0007","url":null,"abstract":"Abstract Bleeding and sedimentation quantify the stability of fresh cement paste, whereas the addition of fillers and water reducers affect the stability. The effect of various types of fillers and water reducers was investigated by measuring bleeding, hydrostatic pressure and electroacoustic zeta-potential. Depending on their characteristics and use, fillers can improve stability by reducing sedimentation rate and bleeding. The combined effects of fillers and water reducers on the sedimentation rates, quantified as time-dependent hydrostatic pressure changes (dp/dt) in fresh matrix, correspond to their effects on zeta-potentials. The influence of the water reducers on sedimentation and bleeding exceed that of filler type.","PeriodicalId":42762,"journal":{"name":"Nordic Concrete Research","volume":"1 1","pages":"107 - 125"},"PeriodicalIF":1.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83620419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The second largest cause of lung cancer is related to radon (222Rn) and its progenies in our environment. Building materials, such as concrete, contribute to the production of radon gas through the natural decay of 238U from its constituents. The Swedish Cement and Concrete Research Institute (CBI) has examined three concrete recipes where only an additive as well as fly ash were added as single constituents to a reference recipe and compared to a reference concrete. The inputs of an additive as well as a supplementary cementitious material (fly ash) were made as a mean to investigate their potential influence on the radon exhalation rates of the concrete. Measurements were performed with an ATMOS 33 ionizing pulsation chamber for at least five different occasions for each recipe during a 22 month period. The results indicate a reduction of the exhalation rate by approximately 30-35 % for each altered recipe. This means roughly 1.5-2 mSv per year decrease in effective dose to a human using an additive or a supplementary cementitious material such as fly ash in relation to the investigated standard concrete.
{"title":"Reduction of Radon Gas in Concrete Using Admixtures and Additives","authors":"M. Döse, J. Silfwerbrand","doi":"10.2478/ncr-2018-0002","DOIUrl":"https://doi.org/10.2478/ncr-2018-0002","url":null,"abstract":"Abstract The second largest cause of lung cancer is related to radon (222Rn) and its progenies in our environment. Building materials, such as concrete, contribute to the production of radon gas through the natural decay of 238U from its constituents. The Swedish Cement and Concrete Research Institute (CBI) has examined three concrete recipes where only an additive as well as fly ash were added as single constituents to a reference recipe and compared to a reference concrete. The inputs of an additive as well as a supplementary cementitious material (fly ash) were made as a mean to investigate their potential influence on the radon exhalation rates of the concrete. Measurements were performed with an ATMOS 33 ionizing pulsation chamber for at least five different occasions for each recipe during a 22 month period. The results indicate a reduction of the exhalation rate by approximately 30-35 % for each altered recipe. This means roughly 1.5-2 mSv per year decrease in effective dose to a human using an additive or a supplementary cementitious material such as fly ash in relation to the investigated standard concrete.","PeriodicalId":42762,"journal":{"name":"Nordic Concrete Research","volume":"57 1","pages":"17 - 34"},"PeriodicalIF":1.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84058757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In the planned Swedish repository for spent nuclear fuel, plugs are designed to close the deposition tunnels. The outer part of these plugs consists of a concrete dome made with self-compacting-concrete, designed to have low pH to reduce negative effects on the bentonite clay buffer. A full-scale test has been performed to evaluate the performance of the plug, to test the installation and to verify underlying design assumptions. In this paper, the behaviour of the concrete dome is evaluated based on measurements, from casting the concrete until it was subjected to 4 MPa hydrostatic water pressure.
{"title":"Full-scale Test of an Unreinforced Concrete Dome Plug for the Spent Nuclear Fuel Repository","authors":"R. Malm","doi":"10.2478/ncr-2018-0004","DOIUrl":"https://doi.org/10.2478/ncr-2018-0004","url":null,"abstract":"Abstract In the planned Swedish repository for spent nuclear fuel, plugs are designed to close the deposition tunnels. The outer part of these plugs consists of a concrete dome made with self-compacting-concrete, designed to have low pH to reduce negative effects on the bentonite clay buffer. A full-scale test has been performed to evaluate the performance of the plug, to test the installation and to verify underlying design assumptions. In this paper, the behaviour of the concrete dome is evaluated based on measurements, from casting the concrete until it was subjected to 4 MPa hydrostatic water pressure.","PeriodicalId":42762,"journal":{"name":"Nordic Concrete Research","volume":"6 1","pages":"55 - 75"},"PeriodicalIF":1.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84132387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}