Pub Date : 2021-11-12DOI: 10.1108/ijius-08-2021-0091
D. Vijaya Saradhi, Swetha Katragadda, H. Valiveti
PurposeA huge variety of devices accumulates as well distributes a large quantity of data either with the help of wired networks or wireless networks to implement a wide variety of application scenarios. The spectrum resources on the other hand become extremely unavailable with the development of communication devices and thereby making it difficult to transmit data on time.Design/methodology/approachThe spectrum resources on the other hand become extremely unavailable with the development of communication devices and thereby making it difficult to transmit data on time. Therefore, the technology of cognitive radio (CR) is considered as one of the efficient solutions for addressing the drawbacks of spectrum distribution whereas the secondary user (SU) performance is significantly influenced by the spatiotemporal instability of spectrum.FindingsAs a result, the technique of the hybrid filter detection network model (HFDNM) is suggested in this research work under various SU relationships in the networks of CR. Furthermore, a technique of hybrid filter detection was recommended in this work to enhance the performance of idle spectrum applications. When compared to other existing techniques, the suggested research work achieves enhanced efficiency with respect to both throughputs as well as delay.Originality/valueThe proposed HFDNM improved the transmission delay at 3 SUs with 0.004 s/message and 0.008 s/message when compared with existing NCNC and NNC methods in case of number of SUs and also improved 0.02 s/message and 0.08 s/message when compared with the existing methods of NCNC and NNC in case of channel loss probability at 0.3.
{"title":"Hybrid filter detection network model for secondary user transmission in cognitive radio networks","authors":"D. Vijaya Saradhi, Swetha Katragadda, H. Valiveti","doi":"10.1108/ijius-08-2021-0091","DOIUrl":"https://doi.org/10.1108/ijius-08-2021-0091","url":null,"abstract":"PurposeA huge variety of devices accumulates as well distributes a large quantity of data either with the help of wired networks or wireless networks to implement a wide variety of application scenarios. The spectrum resources on the other hand become extremely unavailable with the development of communication devices and thereby making it difficult to transmit data on time.Design/methodology/approachThe spectrum resources on the other hand become extremely unavailable with the development of communication devices and thereby making it difficult to transmit data on time. Therefore, the technology of cognitive radio (CR) is considered as one of the efficient solutions for addressing the drawbacks of spectrum distribution whereas the secondary user (SU) performance is significantly influenced by the spatiotemporal instability of spectrum.FindingsAs a result, the technique of the hybrid filter detection network model (HFDNM) is suggested in this research work under various SU relationships in the networks of CR. Furthermore, a technique of hybrid filter detection was recommended in this work to enhance the performance of idle spectrum applications. When compared to other existing techniques, the suggested research work achieves enhanced efficiency with respect to both throughputs as well as delay.Originality/valueThe proposed HFDNM improved the transmission delay at 3 SUs with 0.004 s/message and 0.008 s/message when compared with existing NCNC and NNC methods in case of number of SUs and also improved 0.02 s/message and 0.08 s/message when compared with the existing methods of NCNC and NNC in case of channel loss probability at 0.3.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47389504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-02DOI: 10.1108/ijius-07-2021-0065
Rama Rao Narvaneni, K. Suresh Babu
PurposeSoftware reliability growth models (SRGMs) are used to assess and predict reliability of a software system. Many of these models are effective in predicting future failures unless the software evolves.Design/methodology/approachThis objective of this paper is to identify the best path for rectifying the BFT (bug fixing time) and BFR (bug fixing rate). Moreover, the flexible software project has been examined while materializing the BFR. To enhance the BFR, the traceability of bug is lessened by the version tag virtue in every software deliverable component. The release time of software build is optimized with the utilization of mathematical optimization mechanisms like ‘software reliability growth’ and ‘non-homogeneous Poisson process methods.’FindingsIn current market scenario, this is most essential. The automation and variation of build is also resolved in this contribution. Here, the software, which is developed, is free from the bugs or defects and enhances the quality of software by increasing the BFR.Originality/valueIn current market scenario, this is most essential. The automation and variation of build is also resolved in this contribution. Here, the software, which is developed, is free from the bugs or defects and enhances the quality of software by increasing the BFR.
{"title":"Optimum bug fixing rate and bug fixing time detection by software reliability modelling","authors":"Rama Rao Narvaneni, K. Suresh Babu","doi":"10.1108/ijius-07-2021-0065","DOIUrl":"https://doi.org/10.1108/ijius-07-2021-0065","url":null,"abstract":"PurposeSoftware reliability growth models (SRGMs) are used to assess and predict reliability of a software system. Many of these models are effective in predicting future failures unless the software evolves.Design/methodology/approachThis objective of this paper is to identify the best path for rectifying the BFT (bug fixing time) and BFR (bug fixing rate). Moreover, the flexible software project has been examined while materializing the BFR. To enhance the BFR, the traceability of bug is lessened by the version tag virtue in every software deliverable component. The release time of software build is optimized with the utilization of mathematical optimization mechanisms like ‘software reliability growth’ and ‘non-homogeneous Poisson process methods.’FindingsIn current market scenario, this is most essential. The automation and variation of build is also resolved in this contribution. Here, the software, which is developed, is free from the bugs or defects and enhances the quality of software by increasing the BFR.Originality/valueIn current market scenario, this is most essential. The automation and variation of build is also resolved in this contribution. Here, the software, which is developed, is free from the bugs or defects and enhances the quality of software by increasing the BFR.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44371344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-28DOI: 10.1108/ijius-07-2021-0055
S. Khapre, Prabhishek Singh, A. Shankar, S. R. Nayak, M. Diwakar
PurposeThis paper aims to use the concept of machine learning to enable people and machines to interact more certainly to extend and expand human expertise and cognition.Design/methodology/approachIntelligent code reuse recommendations based on code big data analysis, mining and learning can effectively improve the efficiency and quality of software reuse, including common code units in a specific field and common code units that are not related to the field.FindingsFocusing on the topic of context-based intelligent code reuse recommendation, this paper expounds the research work in two aspects mainly in practical applications of smart decision support and cognitive adaptive systems: code reuse recommendation based on template mining and code reuse recommendation based on deep learning.Originality/valueOn this basis, the future development direction of intelligent code reuse recommendation based on context has prospected.
{"title":"Context-based intelligent recommendation by code reuse for smart decision support and cognitive adaptive systems","authors":"S. Khapre, Prabhishek Singh, A. Shankar, S. R. Nayak, M. Diwakar","doi":"10.1108/ijius-07-2021-0055","DOIUrl":"https://doi.org/10.1108/ijius-07-2021-0055","url":null,"abstract":"PurposeThis paper aims to use the concept of machine learning to enable people and machines to interact more certainly to extend and expand human expertise and cognition.Design/methodology/approachIntelligent code reuse recommendations based on code big data analysis, mining and learning can effectively improve the efficiency and quality of software reuse, including common code units in a specific field and common code units that are not related to the field.FindingsFocusing on the topic of context-based intelligent code reuse recommendation, this paper expounds the research work in two aspects mainly in practical applications of smart decision support and cognitive adaptive systems: code reuse recommendation based on template mining and code reuse recommendation based on deep learning.Originality/valueOn this basis, the future development direction of intelligent code reuse recommendation based on context has prospected.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46493408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-19DOI: 10.1108/ijius-06-2021-0051
S. Vamsee Krishna, P. Sudhakara Reddy, S. Chandra Mohan Reddy
PurposeThis paper attempted a novel approach for system-level modeling and simulation of sigma-delta modulator for low-frequency CMOS integrated analog to digital interfaces. Comparative analysis of various architectures topologies, circuit implementation techniques are described with analytical procedure for effective selection of topologies for targeted specifications.Design/methodology/approachVirtual instruments are presented in labview environment to analyze the correlation of circuit-level non-ideal effects with key design parameters over sampling ratio, coarse quantizer bits and loop filter order. A fourth-order single-loop sigma-delta modulator is designed and verified in MATLAB simulink environment with careful selection of integrator weights to meet stable desired performance.FindingsThe proposed designed achieved SNDR of 122 dB and 20 bit resolution satisfying high-resolution requirements of low-frequency biomedical signal processing applications. Even though the simulation performed at behavioral level, the results obtained are considered as accurate, by including all non-ideal and non-linear circuit errors in simulation process.Originality/valueVirtual instruments using labview environment used to analyze the correlation of circuit-level non-ideal effects with key design parameters over sampling ratio, coarse quantizer bits and loop filter order for accurate design.
{"title":"A novel system-level modeling and design approach for high performance single-loop sigma-delta (∑Δ) modulators","authors":"S. Vamsee Krishna, P. Sudhakara Reddy, S. Chandra Mohan Reddy","doi":"10.1108/ijius-06-2021-0051","DOIUrl":"https://doi.org/10.1108/ijius-06-2021-0051","url":null,"abstract":"PurposeThis paper attempted a novel approach for system-level modeling and simulation of sigma-delta modulator for low-frequency CMOS integrated analog to digital interfaces. Comparative analysis of various architectures topologies, circuit implementation techniques are described with analytical procedure for effective selection of topologies for targeted specifications.Design/methodology/approachVirtual instruments are presented in labview environment to analyze the correlation of circuit-level non-ideal effects with key design parameters over sampling ratio, coarse quantizer bits and loop filter order. A fourth-order single-loop sigma-delta modulator is designed and verified in MATLAB simulink environment with careful selection of integrator weights to meet stable desired performance.FindingsThe proposed designed achieved SNDR of 122 dB and 20 bit resolution satisfying high-resolution requirements of low-frequency biomedical signal processing applications. Even though the simulation performed at behavioral level, the results obtained are considered as accurate, by including all non-ideal and non-linear circuit errors in simulation process.Originality/valueVirtual instruments using labview environment used to analyze the correlation of circuit-level non-ideal effects with key design parameters over sampling ratio, coarse quantizer bits and loop filter order for accurate design.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42997372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-12DOI: 10.1108/ijius-07-2021-0061
A. Reyana, S. Kautish, A. S. Vibith, S. Goyal
PurposeIn the traffic monitoring system, the detection of stirring vehicles is monitored by fitting static cameras in the traffic scenarios. Background subtraction a commonly used method detaches poignant objects in the foreground from the background. The method applies a Gaussian Mixture Model, which can effortlessly be contaminated through slow-moving or momentarily stopped vehicles.Design/methodology/approachThis paper proposes the Enhanced Gaussian Mixture Model to overcome the addressed issue, efficiently detecting vehicles in complex traffic scenarios.FindingsThe model was evaluated with experiments conducted using real-world on-road travel videos. The evidence intimates that the proposed model excels with other approaches showing the accuracy of 0.9759 when compared with the existing Gaussian mixture model (GMM) model and avoids contamination of slow-moving or momentarily stopped vehicles.Originality/valueThe proposed method effectively combines, tracks and classifies the traffic vehicles, resolving the contamination problem that occurred by slow-moving or momentarily stopped vehicles.
{"title":"EGMM video surveillance for monitoring urban traffic scenario","authors":"A. Reyana, S. Kautish, A. S. Vibith, S. Goyal","doi":"10.1108/ijius-07-2021-0061","DOIUrl":"https://doi.org/10.1108/ijius-07-2021-0061","url":null,"abstract":"PurposeIn the traffic monitoring system, the detection of stirring vehicles is monitored by fitting static cameras in the traffic scenarios. Background subtraction a commonly used method detaches poignant objects in the foreground from the background. The method applies a Gaussian Mixture Model, which can effortlessly be contaminated through slow-moving or momentarily stopped vehicles.Design/methodology/approachThis paper proposes the Enhanced Gaussian Mixture Model to overcome the addressed issue, efficiently detecting vehicles in complex traffic scenarios.FindingsThe model was evaluated with experiments conducted using real-world on-road travel videos. The evidence intimates that the proposed model excels with other approaches showing the accuracy of 0.9759 when compared with the existing Gaussian mixture model (GMM) model and avoids contamination of slow-moving or momentarily stopped vehicles.Originality/valueThe proposed method effectively combines, tracks and classifies the traffic vehicles, resolving the contamination problem that occurred by slow-moving or momentarily stopped vehicles.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43650514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-11DOI: 10.1108/ijius-07-2021-0056
Y. Shobha, H. Rangaraju
PurposeThe suggested work examines the latest developments such as the techniques employed for allocation of power, browser techniques, modern analysis and bandwidth efficiency of nonorthogonal multiple accesses (NOMA) in the network of 5G. Furthermore, the proposed work also illustrates the performance of NOMA when it is combined with various techniques of wireless communication namely network coding, multiple-input multiple-output (MIMO), space-time coding, collective communications, as well as many more. In the case of the MIMO system, the proposed research work specifically deals with a less complex recursive linear minimum mean square error (LMMSE) multiuser detector along with NOMA (MIMO-NOMA); here the multiple-antenna base station (BS) and multiple single-antenna users interact with each other instantaneously. Although LMMSE is a linear detector with a low intricacy, it performs poorly in multiuser identification because of the incompatibility between LMMSE identification and multiuser decoding. Thus, to obtain a desirable iterative identification rate, the proposed research work presents matching constraints among the decoders and identifiers of MIMO-NOMA.Design/methodology/approachTo improve the performance in 5G technologies as well as in cellular communication, the NOMA technique is employed and contemplated as one of the best methodologies for accessing radio. The above-stated technique offers several advantages such as enhanced spectrum performance in contrast to the high-capacity orthogonal multiple access (OMA) approach that is also known as orthogonal frequency division multiple access (OFDMA). Code and power domain are some of the categories of the NOMA technique. The suggested research work mainly concentrates on the technique of NOMA, which is based on the power domain. This approach correspondingly makes use of superposition coding (SC) as well as successive interference cancellation (SIC) at source and recipient. For the fifth-generation applications, the network-level, as well as user-experienced data rate prerequisites, are successfully illustrated by various researchers.FindingsThe suggested combined methodology such as MIMO-NOMA demonstrates a synchronized iterative LMMSE system that can accomplish the optimized efficiency of symmetric MIMO NOMA with several users. To transmit the information from sender to the receiver, hybrid methodologies are confined to 2 × 2 as well as 4 × 4 antenna arrays, and thereby parameters such as PAPR, BER, SNR are analyzed and efficiency for various modulation strategies such as BPSK and QAMj (j should vary from 8,16,32,64) are computed.Originality/valueThe proposed hybrid MIMO-NOMA methodologies are synchronized in terms of iterative process for optimization of LMMSE that can accomplish the optimized efficiency of symmetric for several users under different noisy conditions. From the obtained simulated results, it is found, there are 18%, 23% 16%, and 8% improvement in terms of Bit Error R
{"title":"Design of novel approach for emerging power-domain superposition coding (SC)-using hybrid NOMA-OFDM for 5G communications","authors":"Y. Shobha, H. Rangaraju","doi":"10.1108/ijius-07-2021-0056","DOIUrl":"https://doi.org/10.1108/ijius-07-2021-0056","url":null,"abstract":"PurposeThe suggested work examines the latest developments such as the techniques employed for allocation of power, browser techniques, modern analysis and bandwidth efficiency of nonorthogonal multiple accesses (NOMA) in the network of 5G. Furthermore, the proposed work also illustrates the performance of NOMA when it is combined with various techniques of wireless communication namely network coding, multiple-input multiple-output (MIMO), space-time coding, collective communications, as well as many more. In the case of the MIMO system, the proposed research work specifically deals with a less complex recursive linear minimum mean square error (LMMSE) multiuser detector along with NOMA (MIMO-NOMA); here the multiple-antenna base station (BS) and multiple single-antenna users interact with each other instantaneously. Although LMMSE is a linear detector with a low intricacy, it performs poorly in multiuser identification because of the incompatibility between LMMSE identification and multiuser decoding. Thus, to obtain a desirable iterative identification rate, the proposed research work presents matching constraints among the decoders and identifiers of MIMO-NOMA.Design/methodology/approachTo improve the performance in 5G technologies as well as in cellular communication, the NOMA technique is employed and contemplated as one of the best methodologies for accessing radio. The above-stated technique offers several advantages such as enhanced spectrum performance in contrast to the high-capacity orthogonal multiple access (OMA) approach that is also known as orthogonal frequency division multiple access (OFDMA). Code and power domain are some of the categories of the NOMA technique. The suggested research work mainly concentrates on the technique of NOMA, which is based on the power domain. This approach correspondingly makes use of superposition coding (SC) as well as successive interference cancellation (SIC) at source and recipient. For the fifth-generation applications, the network-level, as well as user-experienced data rate prerequisites, are successfully illustrated by various researchers.FindingsThe suggested combined methodology such as MIMO-NOMA demonstrates a synchronized iterative LMMSE system that can accomplish the optimized efficiency of symmetric MIMO NOMA with several users. To transmit the information from sender to the receiver, hybrid methodologies are confined to 2 × 2 as well as 4 × 4 antenna arrays, and thereby parameters such as PAPR, BER, SNR are analyzed and efficiency for various modulation strategies such as BPSK and QAMj (j should vary from 8,16,32,64) are computed.Originality/valueThe proposed hybrid MIMO-NOMA methodologies are synchronized in terms of iterative process for optimization of LMMSE that can accomplish the optimized efficiency of symmetric for several users under different noisy conditions. From the obtained simulated results, it is found, there are 18%, 23% 16%, and 8% improvement in terms of Bit Error R","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48563953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-04DOI: 10.1108/ijius-06-2020-0023
Chittaranjan Paital, Saroj Kumar, M. Muni, D. Parhi, P. R. Dhal
PurposeSmooth and autonomous navigation of mobile robot in a cluttered environment is the main purpose of proposed technique. That includes localization and path planning of mobile robot. These are important aspects of the mobile robot during autonomous navigation in any workspace. Navigation of mobile robots includes reaching the target from the start point by avoiding obstacles in a static or dynamic environment. Several techniques have already been proposed by the researchers concerning navigational problems of the mobile robot still no one confirms the navigating path is optimal.Design/methodology/approachTherefore, the modified grey wolf optimization (GWO) controller is designed for autonomous navigation, which is one of the intelligent techniques for autonomous navigation of wheeled mobile robot (WMR). GWO is a nature-inspired algorithm, which mainly mimics the social hierarchy and hunting behavior of wolf in nature. It is modified to define the optimal positions and better control over the robot. The motion from the source to target in the highly cluttered environment by negotiating obstacles. The controller is authenticated by the approach of V-REP simulation software platform coupled with real-time experiment in the laboratory by using Khepera-III robot.FindingsDuring experiments, it is observed that the proposed technique is much efficient in motion control and path planning as the robot reaches its target position without any collision during its movement. Further the simulation through V-REP and real-time experimental results are recorded and compared against each corresponding results, and it can be seen that the results have good agreement as the deviation in the results is approximately 5% which is an acceptable range of deviation in motion planning. Both the results such as path length and time taken to reach the target is recorded and shown in respective tables.Originality/valueAfter literature survey, it may be said that most of the approach is implemented on either mathematical convergence or in mobile robot, but real-time experimental authentication is not obtained. With a lack of clear evidence regarding use of MGWO (modified grey wolf optimization) controller for navigation of mobile robots in both the environment, such as in simulation platform and real-time experimental platforms, this work would serve as a guiding link for use of similar approaches in other forms of robots.
{"title":"Navigation of a wheeled mobile robotic agent using modified grey wolf optimization controller","authors":"Chittaranjan Paital, Saroj Kumar, M. Muni, D. Parhi, P. R. Dhal","doi":"10.1108/ijius-06-2020-0023","DOIUrl":"https://doi.org/10.1108/ijius-06-2020-0023","url":null,"abstract":"PurposeSmooth and autonomous navigation of mobile robot in a cluttered environment is the main purpose of proposed technique. That includes localization and path planning of mobile robot. These are important aspects of the mobile robot during autonomous navigation in any workspace. Navigation of mobile robots includes reaching the target from the start point by avoiding obstacles in a static or dynamic environment. Several techniques have already been proposed by the researchers concerning navigational problems of the mobile robot still no one confirms the navigating path is optimal.Design/methodology/approachTherefore, the modified grey wolf optimization (GWO) controller is designed for autonomous navigation, which is one of the intelligent techniques for autonomous navigation of wheeled mobile robot (WMR). GWO is a nature-inspired algorithm, which mainly mimics the social hierarchy and hunting behavior of wolf in nature. It is modified to define the optimal positions and better control over the robot. The motion from the source to target in the highly cluttered environment by negotiating obstacles. The controller is authenticated by the approach of V-REP simulation software platform coupled with real-time experiment in the laboratory by using Khepera-III robot.FindingsDuring experiments, it is observed that the proposed technique is much efficient in motion control and path planning as the robot reaches its target position without any collision during its movement. Further the simulation through V-REP and real-time experimental results are recorded and compared against each corresponding results, and it can be seen that the results have good agreement as the deviation in the results is approximately 5% which is an acceptable range of deviation in motion planning. Both the results such as path length and time taken to reach the target is recorded and shown in respective tables.Originality/valueAfter literature survey, it may be said that most of the approach is implemented on either mathematical convergence or in mobile robot, but real-time experimental authentication is not obtained. With a lack of clear evidence regarding use of MGWO (modified grey wolf optimization) controller for navigation of mobile robots in both the environment, such as in simulation platform and real-time experimental platforms, this work would serve as a guiding link for use of similar approaches in other forms of robots.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48576487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-27DOI: 10.1108/ijius-06-2021-0040
S. S. Sonawane, S. Kolhe
PurposeThe purpose of this paper is to handle the anaphors through anaphora resolution in aspect-oriented sentiment analysis. Sentiment analysis is one of the predictive analytics of social media. In particular, the social media platform Twitter is an open platform to post the opinion by subscribers on contextual issues, events, products, individuals and organizations.Design/methodology/approachThe sentiment polarity assessment is not deterministic to conclude the opinion of the target audience unless the polarity is assessed under diversified aspects. Hence, the aspect-oriented sentiment polarity assessment is a crucial objective of the opinion assessment over social media. However, the aspect-oriented sentiment polarity assessment often influences by the curse of anaphora resolution.FindingsFocusing on these limitations, a scale to estimate the aspects oriented sentiment polarity under anaphors influence has been portrayed in this article. To assess the aspect-based sentiment polarity of the tweets, the anaphors of the tweets have been considered to assess the weightage of the tweets toward the sentiment polarity.Originality/valueThe experimental study presents the performance of the proposed model by comparing it with the contemporary models, which are estimating the sentiment polarity tweets under anaphors impact.
{"title":"Scale to estimate the aspect-oriented sentiment polarity under anaphors influence (SPAI)","authors":"S. S. Sonawane, S. Kolhe","doi":"10.1108/ijius-06-2021-0040","DOIUrl":"https://doi.org/10.1108/ijius-06-2021-0040","url":null,"abstract":"PurposeThe purpose of this paper is to handle the anaphors through anaphora resolution in aspect-oriented sentiment analysis. Sentiment analysis is one of the predictive analytics of social media. In particular, the social media platform Twitter is an open platform to post the opinion by subscribers on contextual issues, events, products, individuals and organizations.Design/methodology/approachThe sentiment polarity assessment is not deterministic to conclude the opinion of the target audience unless the polarity is assessed under diversified aspects. Hence, the aspect-oriented sentiment polarity assessment is a crucial objective of the opinion assessment over social media. However, the aspect-oriented sentiment polarity assessment often influences by the curse of anaphora resolution.FindingsFocusing on these limitations, a scale to estimate the aspects oriented sentiment polarity under anaphors influence has been portrayed in this article. To assess the aspect-based sentiment polarity of the tweets, the anaphors of the tweets have been considered to assess the weightage of the tweets toward the sentiment polarity.Originality/valueThe experimental study presents the performance of the proposed model by comparing it with the contemporary models, which are estimating the sentiment polarity tweets under anaphors impact.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41395278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-21DOI: 10.1108/ijius-05-2021-0028
Satyanarayana Pamarthi, R. Narmadha
PurposeNowadays, more interest is found among the researchers in MANETs in practical and theoretical areas and their performance under various environments. WSNs have begun to combine with the IoT via the sensing capability of Internet-connected devices and the Internet access ability of sensor nodes. It is essential to shelter the network from attacks over the Internet by keeping the secure router.Design/methodology/approachThis paper plans to frame an effective literature review on diverse intrusion detection and prevention systems in Wireless Sensor Networks (WSNs) and Mobile Ad hoc NETworks (MANETs) highly suitable for security in Internet of Things (IoT) applications. The literature review is focused on various types of attacks concentrated in each contribution and the adoption of prevention and mitigation models are observed. In addition, the types of the dataset used, types of attacks concentrated, types of tools used for implementation, and performance measures analyzed in each contribution are analyzed. Finally, an attempt is made to conclude the review with several future research directions in designing and implementing IDS for MANETs that preserve the security aspects of IoT.FindingsIt observed the different attack types focused on every contribution and the adoption of prevention and mitigation models. Additionally, the used dataset types, the focused attack types, the tool types used for implementation, and the performance measures were investigated in every contribution.Originality/valueThis paper presents a literature review on diverse contributions of attack detection and prevention, and the stand of different machine learning and deep learning models along with the analysis of types of the dataset used, attacks concentrated, tools used for implementation and performance measures on the network security for IoT applications.
{"title":"Literature review on network security in Wireless Mobile Ad-hoc Network for IoT applications: network attacks and detection mechanisms","authors":"Satyanarayana Pamarthi, R. Narmadha","doi":"10.1108/ijius-05-2021-0028","DOIUrl":"https://doi.org/10.1108/ijius-05-2021-0028","url":null,"abstract":"PurposeNowadays, more interest is found among the researchers in MANETs in practical and theoretical areas and their performance under various environments. WSNs have begun to combine with the IoT via the sensing capability of Internet-connected devices and the Internet access ability of sensor nodes. It is essential to shelter the network from attacks over the Internet by keeping the secure router.Design/methodology/approachThis paper plans to frame an effective literature review on diverse intrusion detection and prevention systems in Wireless Sensor Networks (WSNs) and Mobile Ad hoc NETworks (MANETs) highly suitable for security in Internet of Things (IoT) applications. The literature review is focused on various types of attacks concentrated in each contribution and the adoption of prevention and mitigation models are observed. In addition, the types of the dataset used, types of attacks concentrated, types of tools used for implementation, and performance measures analyzed in each contribution are analyzed. Finally, an attempt is made to conclude the review with several future research directions in designing and implementing IDS for MANETs that preserve the security aspects of IoT.FindingsIt observed the different attack types focused on every contribution and the adoption of prevention and mitigation models. Additionally, the used dataset types, the focused attack types, the tool types used for implementation, and the performance measures were investigated in every contribution.Originality/valueThis paper presents a literature review on diverse contributions of attack detection and prevention, and the stand of different machine learning and deep learning models along with the analysis of types of the dataset used, attacks concentrated, tools used for implementation and performance measures on the network security for IoT applications.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45495636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-08DOI: 10.1108/ijius-05-2021-0032
Senthil Kumar Angappan, Tezera Robe, Sisay Muleta, Bekele Worku M
PurposeCloud computing services gained huge attention in recent years and many organizations started moving their business data traditional server to the cloud storage providers. However, increased data storage introduces challenges like inefficient usage of resources in the cloud storage, in order to meet the demands of users and maintain the service level agreement with the clients, the cloud server has to allocate the physical machine to the virtual machines as requested, but the random resource allocations procedures lead to inefficient utilization of resources.Design/methodology/approachThis thesis focuses on resource allocation for reasonable utilization of resources. The overall framework comprises of cloudlets, broker, cloud information system, virtual machines, virtual machine manager, and data center. Existing first fit and best fit algorithms consider the minimization of the number of bins but do not consider leftover bins.FindingsThe proposed algorithm effectively utilizes the resources compared to first, best and worst fit algorithms. The effect of this utilization efficiency can be seen in metrics where central processing unit (CPU), bandwidth (BW), random access memory (RAM) and power consumption outperformed very well than other algorithms by saving 15 kHz of CPU, 92.6kbps of BW, 6GB of RAM and saved 3kW of power compared to first and best fit algorithms.Originality/valueThe proposed multi-objective bin packing algorithm is better for packing VMs on physical servers in order to better utilize different parameters such as memory availability, CPU speed, power and bandwidth availability in the physical machine.
{"title":"Distributed cloud resources allocation for fair utilization using multi-objective bin packing algorithm","authors":"Senthil Kumar Angappan, Tezera Robe, Sisay Muleta, Bekele Worku M","doi":"10.1108/ijius-05-2021-0032","DOIUrl":"https://doi.org/10.1108/ijius-05-2021-0032","url":null,"abstract":"PurposeCloud computing services gained huge attention in recent years and many organizations started moving their business data traditional server to the cloud storage providers. However, increased data storage introduces challenges like inefficient usage of resources in the cloud storage, in order to meet the demands of users and maintain the service level agreement with the clients, the cloud server has to allocate the physical machine to the virtual machines as requested, but the random resource allocations procedures lead to inefficient utilization of resources.Design/methodology/approachThis thesis focuses on resource allocation for reasonable utilization of resources. The overall framework comprises of cloudlets, broker, cloud information system, virtual machines, virtual machine manager, and data center. Existing first fit and best fit algorithms consider the minimization of the number of bins but do not consider leftover bins.FindingsThe proposed algorithm effectively utilizes the resources compared to first, best and worst fit algorithms. The effect of this utilization efficiency can be seen in metrics where central processing unit (CPU), bandwidth (BW), random access memory (RAM) and power consumption outperformed very well than other algorithms by saving 15 kHz of CPU, 92.6kbps of BW, 6GB of RAM and saved 3kW of power compared to first and best fit algorithms.Originality/valueThe proposed multi-objective bin packing algorithm is better for packing VMs on physical servers in order to better utilize different parameters such as memory availability, CPU speed, power and bandwidth availability in the physical machine.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49015787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}