首页 > 最新文献

Applied Computing Review最新文献

英文 中文
Dynamic Controllability of Parameterized CSTNUs 参数化CSTNUs的动态可控性
IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-03-27 DOI: 10.1145/3555776.3577618
M. Franceschetti, Roberto Posenato, Carlo Combi, Johann Eder
A Conditional Simple Temporal Network with Uncertainty (CSTNU) models temporal constraint satisfaction problems in which the environment sets uncontrollable timepoints and conditions. The executor observes and reacts to such uncontrollable assignments as time advances with the CSTNU execution. However, there exist scenarios in which the occurrence of some future timepoints must be fixed as soon as the execution starts. We call these timepoints parameters. For a correct execution, parameters must assume values that guarantee the possibility of satisfying all temporal constraints, whatever the environment decides the execution time for uncontrollable timepoints and the truth value of conditions, i.e., dynamic controllability (DC). Here, we formalize the extension of the CSTNU with parameters. Furthermore, we define a set of rules to check the DC of such extended CSTNU. These rules additionally solve the problem inverse to checking DC: computing restrictions on parameter values that yield DC guarantees. The proposed rules can be composed into a sound and complete procedure.
一种具有不确定性的条件简单时间网络(CSTNU)对环境设置不可控时间点和条件的时间约束满足问题进行建模。随着CSTNU执行时间的推移,执行者观察并对这些不可控的分配作出反应。但是,在某些情况下,必须在执行开始时立即确定某些未来时间点的出现。我们称这些时间点为参数。为了正确执行,无论环境如何决定不可控时间点的执行时间和条件的真值,即动态可控性(DC),参数必须具有保证满足所有时间约束的可能性的值。在这里,我们用参数形式化了CSTNU的扩展。此外,我们还定义了一套规则来检验这种扩展的CSTNU的DC。这些规则还解决了与检查DC相反的问题:计算产生DC保证的参数值的限制。建议的规则可以组成一个健全完整的程序。
{"title":"Dynamic Controllability of Parameterized CSTNUs","authors":"M. Franceschetti, Roberto Posenato, Carlo Combi, Johann Eder","doi":"10.1145/3555776.3577618","DOIUrl":"https://doi.org/10.1145/3555776.3577618","url":null,"abstract":"A Conditional Simple Temporal Network with Uncertainty (CSTNU) models temporal constraint satisfaction problems in which the environment sets uncontrollable timepoints and conditions. The executor observes and reacts to such uncontrollable assignments as time advances with the CSTNU execution. However, there exist scenarios in which the occurrence of some future timepoints must be fixed as soon as the execution starts. We call these timepoints parameters. For a correct execution, parameters must assume values that guarantee the possibility of satisfying all temporal constraints, whatever the environment decides the execution time for uncontrollable timepoints and the truth value of conditions, i.e., dynamic controllability (DC). Here, we formalize the extension of the CSTNU with parameters. Furthermore, we define a set of rules to check the DC of such extended CSTNU. These rules additionally solve the problem inverse to checking DC: computing restrictions on parameter values that yield DC guarantees. The proposed rules can be composed into a sound and complete procedure.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"52 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76157391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The not-so-easy task of taking heavy-lift ML models to the edge: a performance-watt perspective 将重型ML模型带到边缘的不太容易的任务:性能瓦特的角度
IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-03-27 DOI: 10.1145/3555776.3577742
Lucas Pereira, B. Guterres, Kauê Sbrissa, Amanda Mendes, Francisca Vermeulen, L. Lain, Marié Smith, Javier Martinez, Paulo L. J. Drews-Jr, Nelson Duarte, Vinicus Oliveira, S. Botelho, M. Pias
Edge computing is a new development paradigm that brings computational power to the network edge through novel intelligent end-user services. It allows latency-sensitive applications to be placed where the data is created, thus reducing communication overhead and improving security, mobility and power consumption. There is a plethora of applications benefiting from this type of processing. Of particular interest is emerging edge-based image classification at the microscopic level. The scale and magnitude of the objects to segment, detect and classify are very challenging, with data collected using order of magnitude in magnification. The required data processing is intense, and the wish list of end-users in this space includes tools and solutions that fit into a desk-based device. Taking heavy-lift classification models initially built in the cloud to desk-based image analysis devices is a hard job for application developers. This work looks at the performance limitations and energy consumption footprint in embedding deep learning classification models in a representative edge computing device. Particularly, the dataset and heavy-lift models explored in the case study are phytoplankton images to detect Harmful Algae Blooms (HAB) in aquaculture at early stages. The work takes a deep learning model trained for phytoplankton classification and deploys it at the edge. The embedded model, deployed in a base form alongside optimised options, is submitted to a series of system stress experiments. The performance and power consumption profiling help understand system limitations and their impact on the microscopic grade image classification task.
边缘计算是一种新的发展模式,通过新颖的智能终端用户服务将计算能力带到网络边缘。它允许将对延迟敏感的应用程序放在创建数据的位置,从而减少通信开销,提高安全性、移动性和功耗。有大量的应用程序受益于这种类型的处理。特别令人感兴趣的是在微观水平上新兴的基于边缘的图像分类。要分割、检测和分类的物体的规模和大小是非常具有挑战性的,数据收集使用的是数量级的放大。所需的数据处理非常密集,该领域的最终用户的愿望清单包括适合基于桌面的设备的工具和解决方案。对于应用程序开发人员来说,将最初在云中构建的重型分类模型应用到基于桌面的图像分析设备上是一项艰巨的工作。这项工作着眼于在代表性边缘计算设备中嵌入深度学习分类模型的性能限制和能耗足迹。特别是,案例研究中探索的数据集和重型模型是浮游植物图像,用于在早期阶段检测水产养殖中的有害藻华(HAB)。这项工作采用了一个经过浮游植物分类训练的深度学习模型,并将其部署在边缘。嵌入式模型以基本形式与优化选项一起部署,并提交给一系列系统压力实验。性能和功耗分析有助于了解系统限制及其对微观级图像分类任务的影响。
{"title":"The not-so-easy task of taking heavy-lift ML models to the edge: a performance-watt perspective","authors":"Lucas Pereira, B. Guterres, Kauê Sbrissa, Amanda Mendes, Francisca Vermeulen, L. Lain, Marié Smith, Javier Martinez, Paulo L. J. Drews-Jr, Nelson Duarte, Vinicus Oliveira, S. Botelho, M. Pias","doi":"10.1145/3555776.3577742","DOIUrl":"https://doi.org/10.1145/3555776.3577742","url":null,"abstract":"Edge computing is a new development paradigm that brings computational power to the network edge through novel intelligent end-user services. It allows latency-sensitive applications to be placed where the data is created, thus reducing communication overhead and improving security, mobility and power consumption. There is a plethora of applications benefiting from this type of processing. Of particular interest is emerging edge-based image classification at the microscopic level. The scale and magnitude of the objects to segment, detect and classify are very challenging, with data collected using order of magnitude in magnification. The required data processing is intense, and the wish list of end-users in this space includes tools and solutions that fit into a desk-based device. Taking heavy-lift classification models initially built in the cloud to desk-based image analysis devices is a hard job for application developers. This work looks at the performance limitations and energy consumption footprint in embedding deep learning classification models in a representative edge computing device. Particularly, the dataset and heavy-lift models explored in the case study are phytoplankton images to detect Harmful Algae Blooms (HAB) in aquaculture at early stages. The work takes a deep learning model trained for phytoplankton classification and deploys it at the edge. The embedded model, deployed in a base form alongside optimised options, is submitted to a series of system stress experiments. The performance and power consumption profiling help understand system limitations and their impact on the microscopic grade image classification task.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"9 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75864732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting and Measuring the Polarization Effects of Adversarial Botnets on Twitter Twitter上对抗性僵尸网络极化效应的检测和测量
IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-03-27 DOI: 10.1145/3555776.3577730
Yeonjung Lee, M. Ozer, S. Corman, H. Davulcu
In this paper we use a Twitter dataset collected between December 8, 2021 and February 18, 2022 towards the 2022 Russian invasion of Ukraine to design a data processing pipeline featuring a high accuracy Graph Convolutional Network (GCN) based political camp classifier, a botnet detection algorithm and a robust measure of botnet effects. Our experiments reveal that while the pro-Russian botnet contributes significantly to network polarization, the pro-Ukrainian botnet contributes with moderating effects. In order to understand the factors leading to different effects, we analyze the interactions between the botnets and the barrier-crossing vs. barrier-bound users on their own camps. We observe that, where as the pro-Russian botnet amplifies barrier-bound partisan users on their own camp majority of the time, the pro-Ukrainian botnet amplifies barrier-crossing users on their own camp alongside themselves majority of the time.
在本文中,我们使用2021年12月8日至2022年2月18日期间收集的Twitter数据集,针对2022年俄罗斯入侵乌克兰设计了一个数据处理管道,该管道具有基于高精度图卷积网络(GCN)的政治阵营分类器,僵尸网络检测算法和僵尸网络效应的鲁棒度量。我们的实验表明,亲俄僵尸网络对网络极化有显著贡献,而亲乌克兰僵尸网络对网络极化有调节作用。为了了解导致不同影响的因素,我们分析了僵尸网络与跨越障碍的用户与自己阵营中的障碍限制用户之间的相互作用。我们观察到,亲俄罗斯的僵尸网络在大多数时候放大了自己阵营中跨越障碍的党派用户,亲乌克兰的僵尸网络在大多数时候放大了自己阵营中跨越障碍的用户。
{"title":"Detecting and Measuring the Polarization Effects of Adversarial Botnets on Twitter","authors":"Yeonjung Lee, M. Ozer, S. Corman, H. Davulcu","doi":"10.1145/3555776.3577730","DOIUrl":"https://doi.org/10.1145/3555776.3577730","url":null,"abstract":"In this paper we use a Twitter dataset collected between December 8, 2021 and February 18, 2022 towards the 2022 Russian invasion of Ukraine to design a data processing pipeline featuring a high accuracy Graph Convolutional Network (GCN) based political camp classifier, a botnet detection algorithm and a robust measure of botnet effects. Our experiments reveal that while the pro-Russian botnet contributes significantly to network polarization, the pro-Ukrainian botnet contributes with moderating effects. In order to understand the factors leading to different effects, we analyze the interactions between the botnets and the barrier-crossing vs. barrier-bound users on their own camps. We observe that, where as the pro-Russian botnet amplifies barrier-bound partisan users on their own camp majority of the time, the pro-Ukrainian botnet amplifies barrier-crossing users on their own camp alongside themselves majority of the time.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"50 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85730015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
G-HIN2Vec: Distributed heterogeneous graph representations for cardholder transactions G-HIN2Vec:持卡人交易的分布式异构图形表示
IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-03-27 DOI: 10.1145/3555776.3577740
Farouk Damoun, H. Seba, Jean Hilger, R. State
Graph related tasks, such as graph classification and clustering, have been substantially improved with the advent of graph neural networks (GNNs). However, existing graph embedding models focus on homogeneous graphs that ignore the heterogeneity of the graphs. Therefore, using homogeneous graph embedding models on heterogeneous graphs discards the rich semantics of graphs and achieves average performance, especially by utilizing unlabeled information. However, limited work has been done on whole heterogeneous graph embedding as a supervised task. In light of this, we investigate unsupervised distributed representations learning on heterogeneous graphs and propose a novel model named G-HIN2Vec, Graph-Level Heterogeneous Information Network to Vector. Inspired by recent advances of unsupervised learning in natural language processing, G-HIN2Vec utilizes negative sampling technique as an unlabeled approach and learns graph embedding matrix from different pre-defined meta-paths. We conduct a variety of experiments on three main graph downstream applications on different socio-demographic cardholder features, graph regression, graph clustering, and graph classification, such as gender classification, age, and income prediction, which shows superior performance of our proposed GNN model on real-world financial credit card data.
随着图神经网络(gnn)的出现,与图相关的任务,如图分类和聚类,已经得到了很大的改进。然而,现有的图嵌入模型侧重于同构图,忽略了图的异质性。因此,在异构图上使用同构图嵌入模型抛弃了图的丰富语义,实现了平均性能,特别是利用了未标记的信息。然而,将全异构图嵌入作为一种监督任务进行研究的工作有限。鉴于此,我们研究了异构图上的无监督分布式表示学习,并提出了一种新的模型G-HIN2Vec(图级异构信息网络到向量)。受自然语言处理中无监督学习的最新进展的启发,G-HIN2Vec利用负采样技术作为一种无标记方法,从不同的预定义元路径中学习图嵌入矩阵。我们针对不同社会人口持卡人特征、图回归、图聚类和图分类(如性别分类、年龄和收入预测)三种主要的图下游应用进行了各种实验,结果表明我们提出的GNN模型在真实金融信用卡数据上具有优越的性能。
{"title":"G-HIN2Vec: Distributed heterogeneous graph representations for cardholder transactions","authors":"Farouk Damoun, H. Seba, Jean Hilger, R. State","doi":"10.1145/3555776.3577740","DOIUrl":"https://doi.org/10.1145/3555776.3577740","url":null,"abstract":"Graph related tasks, such as graph classification and clustering, have been substantially improved with the advent of graph neural networks (GNNs). However, existing graph embedding models focus on homogeneous graphs that ignore the heterogeneity of the graphs. Therefore, using homogeneous graph embedding models on heterogeneous graphs discards the rich semantics of graphs and achieves average performance, especially by utilizing unlabeled information. However, limited work has been done on whole heterogeneous graph embedding as a supervised task. In light of this, we investigate unsupervised distributed representations learning on heterogeneous graphs and propose a novel model named G-HIN2Vec, Graph-Level Heterogeneous Information Network to Vector. Inspired by recent advances of unsupervised learning in natural language processing, G-HIN2Vec utilizes negative sampling technique as an unlabeled approach and learns graph embedding matrix from different pre-defined meta-paths. We conduct a variety of experiments on three main graph downstream applications on different socio-demographic cardholder features, graph regression, graph clustering, and graph classification, such as gender classification, age, and income prediction, which shows superior performance of our proposed GNN model on real-world financial credit card data.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"129 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78581158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Study on Fuchsia and Linux Device Driver Architecture Fuchsia与Linux设备驱动架构的比较研究
IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-03-27 DOI: 10.1145/3555776.3577828
Taejoon Song, Youngjin Kim
In this paper, we study device driver architectures on two different operating systems, Fuchsia and Linux. Fuchsia is a relatively new operating system developed by Google and it is based on a microkernel named Zircon, while Linux-based operating system is based on a monolithic kernel. This paper examines technical details of device driver on Fuchsia and Linux operating systems with the focus on different kernel designs. We also quantitatively evaluate the performance of device drivers on both operating systems by measuring I/O throughput in a real device.
在本文中,我们研究了Fuchsia和Linux两种不同操作系统上的设备驱动架构。Fuchsia是谷歌开发的一个相对较新的操作系统,它基于一个名为Zircon的微内核,而基于linux的操作系统是基于一个单片内核。本文研究了Fuchsia和Linux操作系统上设备驱动程序的技术细节,重点关注不同的内核设计。我们还通过测量实际设备中的I/O吞吐量来定量评估两个操作系统上设备驱动程序的性能。
{"title":"Comparative Study on Fuchsia and Linux Device Driver Architecture","authors":"Taejoon Song, Youngjin Kim","doi":"10.1145/3555776.3577828","DOIUrl":"https://doi.org/10.1145/3555776.3577828","url":null,"abstract":"In this paper, we study device driver architectures on two different operating systems, Fuchsia and Linux. Fuchsia is a relatively new operating system developed by Google and it is based on a microkernel named Zircon, while Linux-based operating system is based on a monolithic kernel. This paper examines technical details of device driver on Fuchsia and Linux operating systems with the focus on different kernel designs. We also quantitatively evaluate the performance of device drivers on both operating systems by measuring I/O throughput in a real device.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"20 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78792967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CEM: an Ontology for Crime Events in Newspaper Articles 报纸文章中犯罪事件的本体
IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-03-27 DOI: 10.1145/3555776.3577862
Federica Rollo, Laura Po, Alessandro Castellucci
The adoption of semantic technologies for the representation of crime events can help law enforcement agencies (LEAs) in crime prevention and investigation. Moreover, online newspapers and social networks are valuable sources for crime intelligence gathering. In this paper, we propose a new lightweight ontology to model crime events as they are usually described in online news articles. The Crime Event Model (CEM) can integrate specific data about crimes, i.e., where and when they occurred, who is involved (author, victim, and other subjects involved), which is the reason for the occurrence, and details about the source of information (e.g., the news article). Extracting structured data from multiple online sources and interconnecting them in a Knowledge Graph using CEM allow events relationships extraction, patterns and trends identification, and event recommendation. The CEM ontology is available at https://w3id.org/CEMontology.
采用语义技术表示犯罪事件可以帮助执法机构预防和调查犯罪。此外,在线报纸和社交网络是收集犯罪情报的宝贵来源。在本文中,我们提出了一种新的轻量级本体来建模犯罪事件,因为它们通常在在线新闻文章中描述。犯罪事件模型(CEM)可以集成有关犯罪的具体数据,即,犯罪发生的地点和时间,涉及的对象(作者、受害者和涉及的其他主体),发生的原因,以及有关信息来源的详细信息(例如,新闻文章)。从多个在线资源中提取结构化数据,并使用CEM将它们连接到知识图中,从而可以提取事件关系、识别模式和趋势以及推荐事件。CEM本体可在https://w3id.org/CEMontology上获得。
{"title":"CEM: an Ontology for Crime Events in Newspaper Articles","authors":"Federica Rollo, Laura Po, Alessandro Castellucci","doi":"10.1145/3555776.3577862","DOIUrl":"https://doi.org/10.1145/3555776.3577862","url":null,"abstract":"The adoption of semantic technologies for the representation of crime events can help law enforcement agencies (LEAs) in crime prevention and investigation. Moreover, online newspapers and social networks are valuable sources for crime intelligence gathering. In this paper, we propose a new lightweight ontology to model crime events as they are usually described in online news articles. The Crime Event Model (CEM) can integrate specific data about crimes, i.e., where and when they occurred, who is involved (author, victim, and other subjects involved), which is the reason for the occurrence, and details about the source of information (e.g., the news article). Extracting structured data from multiple online sources and interconnecting them in a Knowledge Graph using CEM allow events relationships extraction, patterns and trends identification, and event recommendation. The CEM ontology is available at https://w3id.org/CEMontology.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"10 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78904472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
NFT Trust Survey 信托调查
IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-03-27 DOI: 10.1145/3555776.3577824
Jean-Marc Seigneur, Suzana Moreno
Non-Fungible Tokens (NFT) have gained popularity since 2021, reaching a total market valuation of several billion US dollars, especially in art. This paper highlights the findings of our statistically representative survey of more than 1850 Americans, e.g., 5.7% have already bought an NFT. Unfortunately, that trust has been misplaced on many occasions due to technical and legal issues of most created NFTs. We detail those issues and evaluate them in the case of the most well-known NFT marketplace, i.e., OpenSea.
自2021年以来,不可替代代币(NFT)开始流行,市场总估值达到数十亿美元,尤其是在艺术领域。本文强调了我们对1850多名美国人进行的具有统计代表性的调查结果,例如,5.7%的人已经购买了NFT。不幸的是,由于大多数已创建的nft的技术和法律问题,这种信任在很多情况下都被放错了地方。我们详细介绍了这些问题,并以最知名的NFT市场OpenSea为例进行了评估。
{"title":"NFT Trust Survey","authors":"Jean-Marc Seigneur, Suzana Moreno","doi":"10.1145/3555776.3577824","DOIUrl":"https://doi.org/10.1145/3555776.3577824","url":null,"abstract":"Non-Fungible Tokens (NFT) have gained popularity since 2021, reaching a total market valuation of several billion US dollars, especially in art. This paper highlights the findings of our statistically representative survey of more than 1850 Americans, e.g., 5.7% have already bought an NFT. Unfortunately, that trust has been misplaced on many occasions due to technical and legal issues of most created NFTs. We detail those issues and evaluate them in the case of the most well-known NFT marketplace, i.e., OpenSea.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"113 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79323879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stateful Adaptive Streams with Approximate Computing and Elastic Scaling 具有近似计算和弹性缩放的有状态自适应流
IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-03-27 DOI: 10.1145/3555776.3577858
João Francisco, Miguel E. Coimbra, P. Neto, Felix Freitag, L. Veiga
The model of approximate computing can be used to increase performance or optimize resource usage in stream and graph processing. It can be used to satisfy performance requirements (e.g., throughput, lag) in stream processing by reducing the effort that applications need to process datasets. There are currently multiple stream processing platforms, and most of them do not natively support approximate results. A recent one, Stateful Functions, is an API that uses Flink to enable developers to easily build stream and graph processing applications. It also retains Flink's features like stateful computations, fault-tolerance, scalability, control events and its graph processing library Gelly. Herein we present Approxate, an extension over this platform to support approximate results. It can also support more efficient stream and graph processing by allocating available resources adaptively, driven by user-defined requirements on throughput, lag, and latency. This extension enables flexibility in computational trade-offs such as trading accuracy for performance. The user can choose which metrics should be guaranteed at the cost of others, and/or the accuracy. Approxate incorporates approximate computing (using load shedding) with adaptive accuracy and resource manegement in state-of-the-art stream processing platforms, which are not targeted in other relevant related work. It does not require significant modifications to application code, and minimizes imbalance in data source representation when dropping events.
近似计算模型可用于提高流和图形处理的性能或优化资源使用。它可以通过减少应用程序处理数据集所需的工作量来满足流处理中的性能要求(例如,吞吐量、延迟)。目前有多种流处理平台,其中大多数都不支持近似结果。最近的一个API是Stateful Functions,它使用Flink使开发人员能够轻松地构建流和图形处理应用程序。它还保留了Flink的特性,如有状态计算、容错、可扩展性、控制事件和图形处理库Gelly。在这里,我们提出了近似,在这个平台上的扩展,以支持近似结果。它还可以根据用户定义的吞吐量、延迟和延迟需求,自适应地分配可用资源,从而支持更高效的流和图形处理。这个扩展使计算权衡的灵活性,如交易精度的性能。用户可以选择以牺牲其他指标和/或准确性为代价来保证哪些指标。在最先进的流处理平台中,approximate结合了具有自适应精度和资源管理的近似计算(使用负载减少),这在其他相关工作中不是针对的。它不需要对应用程序代码进行重大修改,并且在删除事件时最大限度地减少数据源表示中的不平衡。
{"title":"Stateful Adaptive Streams with Approximate Computing and Elastic Scaling","authors":"João Francisco, Miguel E. Coimbra, P. Neto, Felix Freitag, L. Veiga","doi":"10.1145/3555776.3577858","DOIUrl":"https://doi.org/10.1145/3555776.3577858","url":null,"abstract":"The model of approximate computing can be used to increase performance or optimize resource usage in stream and graph processing. It can be used to satisfy performance requirements (e.g., throughput, lag) in stream processing by reducing the effort that applications need to process datasets. There are currently multiple stream processing platforms, and most of them do not natively support approximate results. A recent one, Stateful Functions, is an API that uses Flink to enable developers to easily build stream and graph processing applications. It also retains Flink's features like stateful computations, fault-tolerance, scalability, control events and its graph processing library Gelly. Herein we present Approxate, an extension over this platform to support approximate results. It can also support more efficient stream and graph processing by allocating available resources adaptively, driven by user-defined requirements on throughput, lag, and latency. This extension enables flexibility in computational trade-offs such as trading accuracy for performance. The user can choose which metrics should be guaranteed at the cost of others, and/or the accuracy. Approxate incorporates approximate computing (using load shedding) with adaptive accuracy and resource manegement in state-of-the-art stream processing platforms, which are not targeted in other relevant related work. It does not require significant modifications to application code, and minimizes imbalance in data source representation when dropping events.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"6 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78035215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards Deployment of Mobile Robot driven Preference Learning for User-State-Specific Thermal Control in A Real-World Smart Space 在现实世界的智能空间中,移动机器人驱动的偏好学习用于用户状态特定的热控制
IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-03-27 DOI: 10.1145/3555776.3577760
Geon Kim, Hyunju Kim, Dongman Lee
Indoor Environment Quality (IEQ) is one of the most important goals for smart spaces. Thermal comfort is typically considered the most emphasized factor in IEQ that depends on personalized thermal preference. In this paper, we explore technical challenges to deploying a robot-driven personalized thermal control system that uses a mobile robot for learning user-state-specific preference efficiently. We conduct a few experiments that give a clue to overcome such challenges (i.e. low image recognition) when the system is deployed in a real world. We present future directions to improve robot-driven preference learning from the exploration.
室内环境质量(IEQ)是智能空间最重要的目标之一。热舒适通常被认为是IEQ中最重要的因素,它取决于个性化的热偏好。在本文中,我们探讨了部署机器人驱动的个性化热控制系统的技术挑战,该系统使用移动机器人有效地学习用户特定状态的偏好。当系统部署在现实世界中时,我们进行了一些实验,为克服这些挑战(即低图像识别)提供了线索。我们从探索中提出了改进机器人驱动偏好学习的未来方向。
{"title":"Towards Deployment of Mobile Robot driven Preference Learning for User-State-Specific Thermal Control in A Real-World Smart Space","authors":"Geon Kim, Hyunju Kim, Dongman Lee","doi":"10.1145/3555776.3577760","DOIUrl":"https://doi.org/10.1145/3555776.3577760","url":null,"abstract":"Indoor Environment Quality (IEQ) is one of the most important goals for smart spaces. Thermal comfort is typically considered the most emphasized factor in IEQ that depends on personalized thermal preference. In this paper, we explore technical challenges to deploying a robot-driven personalized thermal control system that uses a mobile robot for learning user-state-specific preference efficiently. We conduct a few experiments that give a clue to overcome such challenges (i.e. low image recognition) when the system is deployed in a real world. We present future directions to improve robot-driven preference learning from the exploration.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"75 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86059371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Acala: Aggregate Monitoring for Geo-Distributed Cluster Federations Acala:地理分布式集群联合的聚合监控
IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-03-27 DOI: 10.1145/3555776.3577716
Chih-Kai Huang, G. Pierre
Distributed monitoring is an essential functionality to allow large cluster federations to efficiently schedule applications on a set of available geo-distributed resources. However, periodically reporting the precise status of each available server is both unnecessary to allow accurate scheduling and unscalable when the number of servers grows. This paper proposes Acala, a monitoring framework for geo-distributed cluster federations which aims to provide the management cluster with aggregate information about the entire cluster instead of individual servers. Our evaluations, based on actual deployment under controlled environment in the geo-distributed Grid'5000 testbed, show that Acala reduces the cross-cluster network traffic by up to 99% and the scrape duration by up to 55%.
分布式监控是一项基本功能,它允许大型集群联合在一组可用的地理分布式资源上有效地调度应用程序。但是,定期报告每个可用服务器的精确状态对于实现精确的调度是不必要的,而且当服务器数量增加时也无法进行扩展。本文提出了Acala,一个用于地理分布式集群联合的监控框架,旨在为管理集群提供关于整个集群而不是单个服务器的汇总信息。我们的评估基于地理分布式网格5000测试平台在受控环境下的实际部署,表明Acala将跨集群网络流量减少了99%,将刮取时间减少了55%。
{"title":"Acala: Aggregate Monitoring for Geo-Distributed Cluster Federations","authors":"Chih-Kai Huang, G. Pierre","doi":"10.1145/3555776.3577716","DOIUrl":"https://doi.org/10.1145/3555776.3577716","url":null,"abstract":"Distributed monitoring is an essential functionality to allow large cluster federations to efficiently schedule applications on a set of available geo-distributed resources. However, periodically reporting the precise status of each available server is both unnecessary to allow accurate scheduling and unscalable when the number of servers grows. This paper proposes Acala, a monitoring framework for geo-distributed cluster federations which aims to provide the management cluster with aggregate information about the entire cluster instead of individual servers. Our evaluations, based on actual deployment under controlled environment in the geo-distributed Grid'5000 testbed, show that Acala reduces the cross-cluster network traffic by up to 99% and the scrape duration by up to 55%.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"126 12","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72444214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Applied Computing Review
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1