F. Lejeune, F. Ichou, Etienne Camenen, B. Colsch, Florence Mauger, C. Peltier, I. Moszer, Emmanuel Gilson, Morgane Pierre-Jean, Edith Le Floch, Victor Sabarly, A. Tenenhaus, J. Deleuze, C. Ewenczyk, M. Vidailhet, F. Mochel
Parkinson’s disease (PD) is the second most common neurodegenerative disease clinically characterized by classical motor symptoms and a range of associated non-motor symptoms. Due to the heterogeneity of symptoms and variability in patient prognosis, the discovery of blood biomarkers is of utmost importance to identify the biological mechanisms underlying the different clinical manifestations of PD, monitor its progression and develop personalized treatment strategies. Whereas studies often rely on motor symptoms alone or composite scores, our study focused on finding relevant molecular markers associated with three clinical models describing either motor, cognitive or emotional symptoms. An integrative multiblock approach was performed using regularized generalized canonical correlation analysis to determine specific associations between lipidomics, transcriptomics and clinical data in 48 PD patients. We identified omics signatures confirming that clinical manifestations of PD in our cohort could be classified according to motor, cognition or emotion models. We found that immune-related genes and triglycerides were well-correlated with motor variables, while cognitive variables were linked to triglycerides as well as genes involved in neuronal growth, synaptic plasticity and mitochondrial fatty acid oxidation. Furthermore, emotion variables were associated with phosphatidylcholines, cholesteryl esters and genes related to endoplasmic reticulum stress and cell regulation.
{"title":"A Multimodal Omics Exploration of the Motor and Non-Motor Symptoms of Parkinson’s Disease","authors":"F. Lejeune, F. Ichou, Etienne Camenen, B. Colsch, Florence Mauger, C. Peltier, I. Moszer, Emmanuel Gilson, Morgane Pierre-Jean, Edith Le Floch, Victor Sabarly, A. Tenenhaus, J. Deleuze, C. Ewenczyk, M. Vidailhet, F. Mochel","doi":"10.3390/ijtm2010009","DOIUrl":"https://doi.org/10.3390/ijtm2010009","url":null,"abstract":"Parkinson’s disease (PD) is the second most common neurodegenerative disease clinically characterized by classical motor symptoms and a range of associated non-motor symptoms. Due to the heterogeneity of symptoms and variability in patient prognosis, the discovery of blood biomarkers is of utmost importance to identify the biological mechanisms underlying the different clinical manifestations of PD, monitor its progression and develop personalized treatment strategies. Whereas studies often rely on motor symptoms alone or composite scores, our study focused on finding relevant molecular markers associated with three clinical models describing either motor, cognitive or emotional symptoms. An integrative multiblock approach was performed using regularized generalized canonical correlation analysis to determine specific associations between lipidomics, transcriptomics and clinical data in 48 PD patients. We identified omics signatures confirming that clinical manifestations of PD in our cohort could be classified according to motor, cognition or emotion models. We found that immune-related genes and triglycerides were well-correlated with motor variables, while cognitive variables were linked to triglycerides as well as genes involved in neuronal growth, synaptic plasticity and mitochondrial fatty acid oxidation. Furthermore, emotion variables were associated with phosphatidylcholines, cholesteryl esters and genes related to endoplasmic reticulum stress and cell regulation.","PeriodicalId":43005,"journal":{"name":"Journal of International Translational Medicine","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81370429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julie Pires da Silva, A. Pietra, A. N. Baybayon-Grandgeorge, Anastacia M. Garcia
There are growing numbers of infants and children living with single-ventricle congenital heart disease (SV). However, cardiac dysfunction and, ultimately, heart failure (HF) are common in the SV population and the ability to predict the progression to HF in SV patients has been limited, primarily due to an incomplete understanding of the disease pathogenesis. Here, we tested the hypothesis that non-invasive circulating metabolomic profiles can serve as novel biomarkers in the SV population. We performed systematic metabolomic and pathway analyses on a subset of pediatric SV non-failing (SVNF) and failing (SVHF) serum samples, compared with samples from biventricular non-failing (BVNF) controls. We determined that serum metabolite panels were sufficient to discriminate SVHF subjects from BVNF subjects, as well as SVHF subjects from SVNF subjects. Many of the identified significantly dysregulated metabolites were amino acids, energetic intermediates and nucleotides. Specifically, we identified pyruvate, palmitoylcarnitine, 2-oxoglutarate and GTP as promising circulating biomarkers that could be used for SV risk stratification, monitoring response to therapy and even as novel targets of therapeutic intervention in a population with few other options.
{"title":"Serum Metabolic Profiling Identifies Key Differences between Patients with Single-Ventricle Heart Disease and Healthy Controls","authors":"Julie Pires da Silva, A. Pietra, A. N. Baybayon-Grandgeorge, Anastacia M. Garcia","doi":"10.3390/ijtm2010008","DOIUrl":"https://doi.org/10.3390/ijtm2010008","url":null,"abstract":"There are growing numbers of infants and children living with single-ventricle congenital heart disease (SV). However, cardiac dysfunction and, ultimately, heart failure (HF) are common in the SV population and the ability to predict the progression to HF in SV patients has been limited, primarily due to an incomplete understanding of the disease pathogenesis. Here, we tested the hypothesis that non-invasive circulating metabolomic profiles can serve as novel biomarkers in the SV population. We performed systematic metabolomic and pathway analyses on a subset of pediatric SV non-failing (SVNF) and failing (SVHF) serum samples, compared with samples from biventricular non-failing (BVNF) controls. We determined that serum metabolite panels were sufficient to discriminate SVHF subjects from BVNF subjects, as well as SVHF subjects from SVNF subjects. Many of the identified significantly dysregulated metabolites were amino acids, energetic intermediates and nucleotides. Specifically, we identified pyruvate, palmitoylcarnitine, 2-oxoglutarate and GTP as promising circulating biomarkers that could be used for SV risk stratification, monitoring response to therapy and even as novel targets of therapeutic intervention in a population with few other options.","PeriodicalId":43005,"journal":{"name":"Journal of International Translational Medicine","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87637330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Covali, D. Socolov, Ioana Păvăleanu, M. Akad, L. Boiculese, R. Socolov
Background: Critical COVID-19 patients account for 1.7 to 13% of all pregnant COVID-19 patients. Methods: Patients admitted to the COVID-19 intensive care unit of Elena Doamna Obstetrics and Gynecology University Hospital in Iasi between 1 January and 1 December 2021, with critical forms of the disease, were included and retrospectively studied. The patients’ age range was 25–44 years in the Alpha group (n = 12) and 27–52 years in the Delta group (n = 9). Results: Most critically ill pregnant COVID-19 patients in the Alpha group delivered when admitted to the intensive care unit, while less than half of those in the Delta group delivered when admitted; the rest were released home and continued their pregnancy normally. There was a significant difference regarding the number of patients released to home care and the number of days after admission when delivery occurred (p = 0.02 and 0.022, respectively). Conclusions: There was no significant difference in maternal and fetal outcomes between the two groups, except for the number of patients released to home care and the number of days after admission when delivery occurred. There was no correlation between any Brixia scores (H, L, A, E) and any maternal or fetal outcomes in both groups.
{"title":"Brixia Score in Outcomes of Alpha versus Delta Variant of Infection in Pregnant Critical COVID-19 Patients","authors":"R. Covali, D. Socolov, Ioana Păvăleanu, M. Akad, L. Boiculese, R. Socolov","doi":"10.3390/ijtm2010007","DOIUrl":"https://doi.org/10.3390/ijtm2010007","url":null,"abstract":"Background: Critical COVID-19 patients account for 1.7 to 13% of all pregnant COVID-19 patients. Methods: Patients admitted to the COVID-19 intensive care unit of Elena Doamna Obstetrics and Gynecology University Hospital in Iasi between 1 January and 1 December 2021, with critical forms of the disease, were included and retrospectively studied. The patients’ age range was 25–44 years in the Alpha group (n = 12) and 27–52 years in the Delta group (n = 9). Results: Most critically ill pregnant COVID-19 patients in the Alpha group delivered when admitted to the intensive care unit, while less than half of those in the Delta group delivered when admitted; the rest were released home and continued their pregnancy normally. There was a significant difference regarding the number of patients released to home care and the number of days after admission when delivery occurred (p = 0.02 and 0.022, respectively). Conclusions: There was no significant difference in maternal and fetal outcomes between the two groups, except for the number of patients released to home care and the number of days after admission when delivery occurred. There was no correlation between any Brixia scores (H, L, A, E) and any maternal or fetal outcomes in both groups.","PeriodicalId":43005,"journal":{"name":"Journal of International Translational Medicine","volume":"67 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74994070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Urinary tract infections (UTIs) are among the most common infective disease in the adult population. UTI diagnosis is based essentially on the presence of lower urinary tract symptoms (e.g., dysuria, urgency, and frequency) and the evidence of bacteriuria (by dipstick testing and/or urine culture). UTI diagnosis is not always easy because symptoms can be vague, or patient basal conditions can interfere negatively with the diagnostic process, whereas urine culture is still ongoing. In those cases, the differential diagnosis among UTIs and asymptomatic bacteriuria (ABU) may be challenging, while the clinician has to decide whether to start an antibiotic treatment shortly. The purpose of the present review is to analyze the biomarkers that could help in UTI diagnosis. Some biomarkers, such as procalcitonin, interleukin-6, neutrophil gelatinase-associated lipocalin, chemokines, lactoferrin, and bone morphogenetic protein-2, seem promising in UTI diagnosis, while other biomarkers failed to show any utility. Whereas a single biomarker was not enough, a combination of biomarkers could have more chances to help in the diagnosis.
{"title":"Asymptomatic Bacteriuria or Urinary Tract Infection? New and Old Biomarkers","authors":"F. Martino, G. Novara","doi":"10.3390/ijtm2010006","DOIUrl":"https://doi.org/10.3390/ijtm2010006","url":null,"abstract":"Urinary tract infections (UTIs) are among the most common infective disease in the adult population. UTI diagnosis is based essentially on the presence of lower urinary tract symptoms (e.g., dysuria, urgency, and frequency) and the evidence of bacteriuria (by dipstick testing and/or urine culture). UTI diagnosis is not always easy because symptoms can be vague, or patient basal conditions can interfere negatively with the diagnostic process, whereas urine culture is still ongoing. In those cases, the differential diagnosis among UTIs and asymptomatic bacteriuria (ABU) may be challenging, while the clinician has to decide whether to start an antibiotic treatment shortly. The purpose of the present review is to analyze the biomarkers that could help in UTI diagnosis. Some biomarkers, such as procalcitonin, interleukin-6, neutrophil gelatinase-associated lipocalin, chemokines, lactoferrin, and bone morphogenetic protein-2, seem promising in UTI diagnosis, while other biomarkers failed to show any utility. Whereas a single biomarker was not enough, a combination of biomarkers could have more chances to help in the diagnosis.","PeriodicalId":43005,"journal":{"name":"Journal of International Translational Medicine","volume":"15 2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78461584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rigorous peer-reviews are the basis of high-quality academic publishing [...]
严格的同行评议是高质量学术出版的基础[…]
{"title":"Acknowledgment to Reviewers of IJTM in 2021","authors":"","doi":"10.3390/ijtm2010005","DOIUrl":"https://doi.org/10.3390/ijtm2010005","url":null,"abstract":"Rigorous peer-reviews are the basis of high-quality academic publishing [...]","PeriodicalId":43005,"journal":{"name":"Journal of International Translational Medicine","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87198816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jorge Camacho, M. Muñoz, V. Genovés, J. L. Herraiz, Ignacio Ortega, Adrián Belarra, Ricardo González, David Sánchez, R.C. Giacchetta, Á. Trueba-Vicente, Y. Tung-Chen
During the COVID-19 pandemic, lung ultrasound has been revealed as a powerful technique for diagnosis and follow-up of pneumonia, the principal complication of SARS-CoV-2 infection. Nevertheless, being a relatively new and unknown technique, the lack of trained personnel has limited its application worldwide. Computer-aided diagnosis could possibly help to reduce the learning curve for less experienced physicians, and to extend such a new technique such as lung ultrasound more quickly. This work presents the preliminary results of the ULTRACOV (Ultrasound in Coronavirus disease) study, aimed to explore the feasibility of a real-time image processing algorithm for automatic calculation of the lung ultrasound score (LUS). A total of 28 patients positive on COVID-19 were recruited and scanned in 12 thorax zones following the lung score protocol, saving a 3 s video at each probe position. Those videos were evaluated by an experienced physician and by a custom developed automated detection algorithm, looking for A-Lines, B-Lines, consolidations, and pleural effusions. The agreement between the findings of the expert and the algorithm was 88.0% for B-Lines, 93.4% for consolidations and 99.7% for pleural effusion detection, and 72.8% for the individual video score. The standard deviation of the patient lung score difference between the expert and the algorithm was ±2.2 points over 36. The exam average time with the ULTRACOV prototype was 5.3 min, while with a conventional scanner was 12.6 min. Conclusion: A good agreement between the algorithm output and an experienced physician was observed, which is a first step on the feasibility of developing a real-time aided-diagnosis lung ultrasound equipment. Additionally, the examination time was reduced to less than half with regard to a conventional ultrasound exam. Acquiring a complete lung ultrasound exam within a few minutes is possible using fairly simple ultrasound machines that are enhanced with artificial intelligence, such as the one we propose. This step is critical to democratize the use of lung ultrasound in these difficult times.
{"title":"Artificial Intelligence and Democratization of the Use of Lung Ultrasound in COVID-19: On the Feasibility of Automatic Calculation of Lung Ultrasound Score","authors":"Jorge Camacho, M. Muñoz, V. Genovés, J. L. Herraiz, Ignacio Ortega, Adrián Belarra, Ricardo González, David Sánchez, R.C. Giacchetta, Á. Trueba-Vicente, Y. Tung-Chen","doi":"10.3390/ijtm2010002","DOIUrl":"https://doi.org/10.3390/ijtm2010002","url":null,"abstract":"During the COVID-19 pandemic, lung ultrasound has been revealed as a powerful technique for diagnosis and follow-up of pneumonia, the principal complication of SARS-CoV-2 infection. Nevertheless, being a relatively new and unknown technique, the lack of trained personnel has limited its application worldwide. Computer-aided diagnosis could possibly help to reduce the learning curve for less experienced physicians, and to extend such a new technique such as lung ultrasound more quickly. This work presents the preliminary results of the ULTRACOV (Ultrasound in Coronavirus disease) study, aimed to explore the feasibility of a real-time image processing algorithm for automatic calculation of the lung ultrasound score (LUS). A total of 28 patients positive on COVID-19 were recruited and scanned in 12 thorax zones following the lung score protocol, saving a 3 s video at each probe position. Those videos were evaluated by an experienced physician and by a custom developed automated detection algorithm, looking for A-Lines, B-Lines, consolidations, and pleural effusions. The agreement between the findings of the expert and the algorithm was 88.0% for B-Lines, 93.4% for consolidations and 99.7% for pleural effusion detection, and 72.8% for the individual video score. The standard deviation of the patient lung score difference between the expert and the algorithm was ±2.2 points over 36. The exam average time with the ULTRACOV prototype was 5.3 min, while with a conventional scanner was 12.6 min. Conclusion: A good agreement between the algorithm output and an experienced physician was observed, which is a first step on the feasibility of developing a real-time aided-diagnosis lung ultrasound equipment. Additionally, the examination time was reduced to less than half with regard to a conventional ultrasound exam. Acquiring a complete lung ultrasound exam within a few minutes is possible using fairly simple ultrasound machines that are enhanced with artificial intelligence, such as the one we propose. This step is critical to democratize the use of lung ultrasound in these difficult times.","PeriodicalId":43005,"journal":{"name":"Journal of International Translational Medicine","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91305152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Cantó, Javier Martínez, Giuliana Perini-Villanueva, María Miranda, Eloy Bejarano
Diabetes mellitus is a chronic disease often accompanied by diabetic retinopathy (DR), one of the most common diabetic complications. DR is an eye condition that causes vision deficiency and often leads to blindness. DR develops when blood vessels damage the retina, the light-sensitive tissue at the back of the eye. Before changes in retinal blood vessel permeability, different molecular and anatomical modifications take place in the retina, including early neural changes. This review will summarize the current status of knowledge regarding pathophysiological mechanisms underlying DR, with a special focus on early neural modifications associated with DR. We describe hyperglycemia-associated molecular and cellular alterations linked to the initiation and progression of DR. We also discuss retinal neurodegeneration as a shared feature in different in vitro and in vivo models of DR. Given how ubiquitous diabetes is and how severe the effects of DR are, we also examine the current pharmacological and genetic approaches for combatting this disease.
{"title":"Early Neural Changes as Underlying Pathophysiological Mechanism in Diabetic Retinopathy","authors":"A. Cantó, Javier Martínez, Giuliana Perini-Villanueva, María Miranda, Eloy Bejarano","doi":"10.3390/ijtm2010001","DOIUrl":"https://doi.org/10.3390/ijtm2010001","url":null,"abstract":"Diabetes mellitus is a chronic disease often accompanied by diabetic retinopathy (DR), one of the most common diabetic complications. DR is an eye condition that causes vision deficiency and often leads to blindness. DR develops when blood vessels damage the retina, the light-sensitive tissue at the back of the eye. Before changes in retinal blood vessel permeability, different molecular and anatomical modifications take place in the retina, including early neural changes. This review will summarize the current status of knowledge regarding pathophysiological mechanisms underlying DR, with a special focus on early neural modifications associated with DR. We describe hyperglycemia-associated molecular and cellular alterations linked to the initiation and progression of DR. We also discuss retinal neurodegeneration as a shared feature in different in vitro and in vivo models of DR. Given how ubiquitous diabetes is and how severe the effects of DR are, we also examine the current pharmacological and genetic approaches for combatting this disease.","PeriodicalId":43005,"journal":{"name":"Journal of International Translational Medicine","volume":"271 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76782158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elahe Soltani-Fard, Sina Taghvimi, Zahra Abedi Kichi, C. Weber, Zahra Shabaninejad, Mortaza Taheri‐Anganeh, Seyyed Hossein Khatami, P. Mousavi, A. Movahedpour, L. Natarelli
Non-coding RNAs (ncRNAs) are functional RNA molecules that comprise about 80% of both mammals and prokaryotes genomes. Recent studies have identified a large number of small regulatory RNAs in Escherichia coli and other bacteria. In prokaryotes, RNA regulators are a diverse group of molecules that modulate a wide range of physiological responses through a variety of mechanisms. Similar to eukaryotes, bacterial microRNAs are an important class of ncRNAs that play an important role in the development and secretion of proteins and in the regulation of gene expression. Similarly, riboswitches are cis-regulatory structured RNA elements capable of directly controlling the expression of downstream genes in response to small molecule ligands. As a result, riboswitches detect and respond to the availability of various metabolic changes within cells. The most extensive and most widely studied set of small RNA regulators act through base pairing with RNAs. These types of RNAs are vital for prokaryotic life, activating or suppressing important physiological processes by modifying transcription or translation. The majority of these small RNAs control responses to changes in environmental conditions. Finally, clustered regularly interspaced short palindromic repeat (CRISPR) RNAs, a newly discovered RNA regulator group, contains short regions of homology to bacteriophage and plasmid sequences that bacteria use to splice phage DNA as a defense mechanism. The detailed mechanism is still unknown but devoted to target homologous foreign DNAs. Here, we review the known mechanisms and roles of non-coding regulatory RNAs, with particular attention to riboswitches and their functions, briefly introducing translational applications of CRISPR RNAs in mammals.
{"title":"Insights into the Function of Regulatory RNAs in Bacteria and Archaea","authors":"Elahe Soltani-Fard, Sina Taghvimi, Zahra Abedi Kichi, C. Weber, Zahra Shabaninejad, Mortaza Taheri‐Anganeh, Seyyed Hossein Khatami, P. Mousavi, A. Movahedpour, L. Natarelli","doi":"10.3390/ijtm1030024","DOIUrl":"https://doi.org/10.3390/ijtm1030024","url":null,"abstract":"Non-coding RNAs (ncRNAs) are functional RNA molecules that comprise about 80% of both mammals and prokaryotes genomes. Recent studies have identified a large number of small regulatory RNAs in Escherichia coli and other bacteria. In prokaryotes, RNA regulators are a diverse group of molecules that modulate a wide range of physiological responses through a variety of mechanisms. Similar to eukaryotes, bacterial microRNAs are an important class of ncRNAs that play an important role in the development and secretion of proteins and in the regulation of gene expression. Similarly, riboswitches are cis-regulatory structured RNA elements capable of directly controlling the expression of downstream genes in response to small molecule ligands. As a result, riboswitches detect and respond to the availability of various metabolic changes within cells. The most extensive and most widely studied set of small RNA regulators act through base pairing with RNAs. These types of RNAs are vital for prokaryotic life, activating or suppressing important physiological processes by modifying transcription or translation. The majority of these small RNAs control responses to changes in environmental conditions. Finally, clustered regularly interspaced short palindromic repeat (CRISPR) RNAs, a newly discovered RNA regulator group, contains short regions of homology to bacteriophage and plasmid sequences that bacteria use to splice phage DNA as a defense mechanism. The detailed mechanism is still unknown but devoted to target homologous foreign DNAs. Here, we review the known mechanisms and roles of non-coding regulatory RNAs, with particular attention to riboswitches and their functions, briefly introducing translational applications of CRISPR RNAs in mammals.","PeriodicalId":43005,"journal":{"name":"Journal of International Translational Medicine","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74693413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glycogen is present in all tissues, but it is primarily stored in the liver and in muscle. As a branched chain carbohydrate, it is broken down by phosphorylase and debrancher enzymes, which are cytoplasmic. It is also degraded by a lysosomal α-glucosidase (GAA) also known as acid α-glucosidase and lysosomal acid α-glucosidase. The deficiency of GAA in patients is known as Pompe disease, and the phenotypes as infantile, juvenile and later onset forms. Pompe disease is treated by enzyme replacement therapy (ERT) with a recombinant form of rhGAA. Following ERT in Pompe mice and human patients there is residual carbohydrate material present in the cytoplasm of cells. The goal of this work is to improve ERT and attempt to identify and treat the residual cytoplasmic carbohydrate. Initial experiments were to determine if rhGAA can completely degrade glycogen. The enzyme cannot completely degrade glycogen. There is a residual glycosylated protein as well as a soluble glycosylated protein, which is a terminal degradation product of glycogen and as such serves as a biomarker for lysosomal glycogen degradation. The glycosylated protein has a very unusual carbohydrate composition for a glycosylated protein: m-inositol, s-inositol and sorbitol as the major carbohydrates, as well as mannitol, mannose, glucose and galactose. This work describes the residual material which likely contains the same protein as the soluble glycosylated protein. The biomarker is present in serum of control and Pompe patients on ERT, but it is not present in the serum of Pompe mice not on ERT. Pompe mice not on ERT have another glycosylated protein in their serum which may be a biomarker for Pompe disease. This protein has multiple glycosylation sites, each with different carbohydrate components. These glycosylated proteins as well as the complexity of glycogen structure are discussed, as well as future directions to try to improve the outcome of ERT for Pompe patients by being able to monitor the efficacy of ERT in the short term and possibly to adjust the timing and dose of enzyme infusions.
{"title":"The Action of Recombinant Human Lysosomal α-Glucosidase (rhGAA) on Human Liver Glycogen: Pathway to Complete Degradation","authors":"A. Murray","doi":"10.3390/ijtm1030023","DOIUrl":"https://doi.org/10.3390/ijtm1030023","url":null,"abstract":"Glycogen is present in all tissues, but it is primarily stored in the liver and in muscle. As a branched chain carbohydrate, it is broken down by phosphorylase and debrancher enzymes, which are cytoplasmic. It is also degraded by a lysosomal α-glucosidase (GAA) also known as acid α-glucosidase and lysosomal acid α-glucosidase. The deficiency of GAA in patients is known as Pompe disease, and the phenotypes as infantile, juvenile and later onset forms. Pompe disease is treated by enzyme replacement therapy (ERT) with a recombinant form of rhGAA. Following ERT in Pompe mice and human patients there is residual carbohydrate material present in the cytoplasm of cells. The goal of this work is to improve ERT and attempt to identify and treat the residual cytoplasmic carbohydrate. Initial experiments were to determine if rhGAA can completely degrade glycogen. The enzyme cannot completely degrade glycogen. There is a residual glycosylated protein as well as a soluble glycosylated protein, which is a terminal degradation product of glycogen and as such serves as a biomarker for lysosomal glycogen degradation. The glycosylated protein has a very unusual carbohydrate composition for a glycosylated protein: m-inositol, s-inositol and sorbitol as the major carbohydrates, as well as mannitol, mannose, glucose and galactose. This work describes the residual material which likely contains the same protein as the soluble glycosylated protein. The biomarker is present in serum of control and Pompe patients on ERT, but it is not present in the serum of Pompe mice not on ERT. Pompe mice not on ERT have another glycosylated protein in their serum which may be a biomarker for Pompe disease. This protein has multiple glycosylation sites, each with different carbohydrate components. These glycosylated proteins as well as the complexity of glycogen structure are discussed, as well as future directions to try to improve the outcome of ERT for Pompe patients by being able to monitor the efficacy of ERT in the short term and possibly to adjust the timing and dose of enzyme infusions.","PeriodicalId":43005,"journal":{"name":"Journal of International Translational Medicine","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87131767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cristina Arce, Diana Vicente, F. Montó, L. González, Cristina Núñez, V. M. Víctor, F. Jiménez-Altayó, P. D’Ocon
Nitric oxide (NO) is a proangiogenic factor acting through the soluble guanylate cyclase (sGC) pathway. However, angiogenic growth increases energy demand, which may be hampered by NO inhibition of cytochrome c oxidase (CcO). Then, NO activity would be the balanced result of sGC activation (pro-angiogenic) and CcO inhibition (anti-angiogenic). NO activity in a rat and eNOS−/− mice aortic ring angiogenic model and in a tube formation assay (human aortic endothelial cells) were analyzed in parallel with mitochondrial O2 consumption. Studies were performed with NO donor (DETA-NO), sGC inhibitor (ODQ), and NOS or nNOS inhibitors (L-NAME or SMTC, respectively). Experiments were performed under different O2 concentrations (0–21%). Key findings were: (i) eNOS-derived NO inhibits angiogenic growth by a mechanism independent on sGC pathway and related to inhibition of mitochondrial O2 consumption; (ii) NO inhibition of the angiogenic growth is more evident in hypoxic vessels; (iii) in the absence of eNOS-derived NO, the modulation of angiogenic growth, related to hypoxia, disappears. Therefore, NO, but not lower O2 levels, decreases the angiogenic response in hypoxia through competitive inhibition of CcO. This anti-angiogenic activity could be a promising target to impair pathological angiogenesis in hypoxic conditions, as it occurs in tumors or ischemic diseases.
{"title":"Hypoxia Increases Nitric Oxide-Dependent Inhibition of Angiogenic Growth","authors":"Cristina Arce, Diana Vicente, F. Montó, L. González, Cristina Núñez, V. M. Víctor, F. Jiménez-Altayó, P. D’Ocon","doi":"10.3390/ijtm1030022","DOIUrl":"https://doi.org/10.3390/ijtm1030022","url":null,"abstract":"Nitric oxide (NO) is a proangiogenic factor acting through the soluble guanylate cyclase (sGC) pathway. However, angiogenic growth increases energy demand, which may be hampered by NO inhibition of cytochrome c oxidase (CcO). Then, NO activity would be the balanced result of sGC activation (pro-angiogenic) and CcO inhibition (anti-angiogenic). NO activity in a rat and eNOS−/− mice aortic ring angiogenic model and in a tube formation assay (human aortic endothelial cells) were analyzed in parallel with mitochondrial O2 consumption. Studies were performed with NO donor (DETA-NO), sGC inhibitor (ODQ), and NOS or nNOS inhibitors (L-NAME or SMTC, respectively). Experiments were performed under different O2 concentrations (0–21%). Key findings were: (i) eNOS-derived NO inhibits angiogenic growth by a mechanism independent on sGC pathway and related to inhibition of mitochondrial O2 consumption; (ii) NO inhibition of the angiogenic growth is more evident in hypoxic vessels; (iii) in the absence of eNOS-derived NO, the modulation of angiogenic growth, related to hypoxia, disappears. Therefore, NO, but not lower O2 levels, decreases the angiogenic response in hypoxia through competitive inhibition of CcO. This anti-angiogenic activity could be a promising target to impair pathological angiogenesis in hypoxic conditions, as it occurs in tumors or ischemic diseases.","PeriodicalId":43005,"journal":{"name":"Journal of International Translational Medicine","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86387736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}