In the light of the rapid development of science and technology, the lingering question is – what does academia lack? The answer may be “effective integration”. Scientific problems are complicated and often interdisciplinary, which implies that in-depth collaboration among experts in various fields is vital. Interdisciplinary research is the essence of social development, innovation and gaining a broader perspective in problem solving. The mission of interdisciplinary integration is to break down barriers, reorient insights, and to produce significant breakthroughs in academic research.
{"title":"The Significance of Interdisciplinary Integration in Academic Research and Application","authors":"P. Saw, Shanping Jiang","doi":"10.15212/bioi-2020-0005","DOIUrl":"https://doi.org/10.15212/bioi-2020-0005","url":null,"abstract":"In the light of the rapid development of science and technology, the lingering question is – what does academia lack? The answer may be “effective integration”. Scientific problems are complicated and often interdisciplinary, which implies that in-depth collaboration among experts in various fields is vital. Interdisciplinary research is the essence of social development, innovation and gaining a broader perspective in problem solving. The mission of interdisciplinary integration is to break down barriers, reorient insights, and to produce significant breakthroughs in academic research.","PeriodicalId":431549,"journal":{"name":"BIO Integration","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126642619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuhao Chen, Meng Du, Jinsui Yu, L. Rao, Xiaoyuan Chen, Zhiyi Chen
Abstract Cancer is a common cause of mortality in the world. For cancer treatment modalities such as chemotherapy, photothermal therapy and immunotherapy, the concentration of therapeutic agents in tumor tissue is the key factor which determines therapeutic efficiency. In view of this, developing targeted drug delivery systems are of great significance in selectively delivering drugs to tumor regions. Various types of nanomaterials have been widely used as drug carriers. However, the low tumor-targeting ability of nanomaterials limits their clinical application. It is difficult for nanomaterials to penetrate the tumor tissue through passive diffusion due to the elevated tumoral interstitial fluid pressure. As a biological carrier, bacteria can specifically colonize and proliferate inside tumors and inhibit tumor growth, making it an ideal candidate as delivery vehicles. In addition, synthetic biology techniques have been applied to enable bacteria to controllably express various functional proteins and achieve targeted delivery of therapeutic agents. Nanobiohybrids constructed by the combination of bacteria and nanomaterials have an abundance of advantages, including tumor targeting ability, genetic modifiability, programmed product synthesis, and multimodal therapy. Nowadays, many different types of bacteria-based nanobiohybrids have been used in multiple targeted tumor therapies. In this review, firstly we summarized the development of nanomaterial-mediated cancer therapy. The mechanism and advantages of the bacteria in tumor therapy are described. Especially, we will focus on introducing different therapeutic strategies of nanobiohybrid systems which combine bacteria with nanomaterials in cancer therapy. It is demonstrated that the bacteria-based nanobiohybrids have the potential to provide a targeted and effective approach for cancer treatment.
{"title":"Nanobiohybrids: A Synergistic Integration of Bacteria and Nanomaterials in Cancer Therapy","authors":"Yuhao Chen, Meng Du, Jinsui Yu, L. Rao, Xiaoyuan Chen, Zhiyi Chen","doi":"10.15212/bioi-2020-0008","DOIUrl":"https://doi.org/10.15212/bioi-2020-0008","url":null,"abstract":"Abstract Cancer is a common cause of mortality in the world. For cancer treatment modalities such as chemotherapy, photothermal therapy and immunotherapy, the concentration of therapeutic agents in tumor tissue is the key factor which determines therapeutic efficiency. In\u0000 view of this, developing targeted drug delivery systems are of great significance in selectively delivering drugs to tumor regions. Various types of nanomaterials have been widely used as drug carriers. However, the low tumor-targeting ability of nanomaterials limits their clinical application.\u0000 It is difficult for nanomaterials to penetrate the tumor tissue through passive diffusion due to the elevated tumoral interstitial fluid pressure. As a biological carrier, bacteria can specifically colonize and proliferate inside tumors and inhibit tumor growth, making it an ideal candidate\u0000 as delivery vehicles. In addition, synthetic biology techniques have been applied to enable bacteria to controllably express various functional proteins and achieve targeted delivery of therapeutic agents. Nanobiohybrids constructed by the combination of bacteria and nanomaterials have an\u0000 abundance of advantages, including tumor targeting ability, genetic modifiability, programmed product synthesis, and multimodal therapy. Nowadays, many different types of bacteria-based nanobiohybrids have been used in multiple targeted tumor therapies. In this review, firstly we summarized\u0000 the development of nanomaterial-mediated cancer therapy. The mechanism and advantages of the bacteria in tumor therapy are described. Especially, we will focus on introducing different therapeutic strategies of nanobiohybrid systems which combine bacteria with nanomaterials in cancer therapy.\u0000 It is demonstrated that the bacteria-based nanobiohybrids have the potential to provide a targeted and effective approach for cancer treatment.","PeriodicalId":431549,"journal":{"name":"BIO Integration","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122731891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dinghong Yang, Xiaoyun Xiao, Haohu Wang, Huan Wu, W. Qin, Xiaofeng Guan, Q. Jiang, B. Luo
Background: Benign or malignant breast lesions with typical ultrasonic characteristics could be easily and correctly diagnosed with two-dimensional ultrasound (2D US). However, diagnosis of atypical lesions remains a challenge. Most atypical lesions have different ultrasonographic features with probe direction variation. Thus, the interpretation of ultrasonographic features based on static images empirically collected by sonographers might be inaccurate. We aimed to investigate the section discrepancy and diagnostic performance of breast lesions in 2D US by dynamic videos versus static images.Methods: Static images and dynamic videos based on two perpendicular planes of 468 breast lesions were collected and evaluated. The Breast Imaging and Reporting Data System (BI-RADS®) US lexicon was used. Category 3 was used as the cut-off point, and section discrepancy was defined as two perpendicular planes showing different BI-RADS categories (3 versus 4A, 4B, 4C, and 5).Results: This retrospective study included 315 benign and 153 malignant lesions. There were 53 and 50 lesions with section discrepancy during static and dynamic observations, respectively. The proportion of benign lesions with section discrepancy was significantly higher than that of malignant lesions (P < 0.05) either in dynamic or static observation, and the contingency coefficient was 0.2 between section discrepancy and histopathology. Duct changes were more clearly depicted in dynamic videos than in static images (P < 0.05) both in malignant and benign lesions. Calcification and architectural distortion were more sensitively detected by dynamic videos than with static images (P < 0.05) in malignant lesions. The interpretation of “margin” significantly differed in benign lesions between static images and dynamic videos (P < 0.05). The areas under the curve of static image-horizontal, static image-sagittal, dynamic video-horizontal, and dynamic video-sagittal were 0.807, 0.820, 0.837, and 0.846, respectively. The specificities of dynamic videos were higher than those of static images (P < 0.05).Conclusion: Breast lesions have section discrepancy in 2D US. Observations based on dynamic videos could more accurately reflect lesion features and increase the specificity of US in the differentiation of atypical breast lesions.
{"title":"Section Discrepancy and Diagnostic Performance of Breast Lesions in Two-dimensional Ultrasound by Dynamic Videos versus Static Images","authors":"Dinghong Yang, Xiaoyun Xiao, Haohu Wang, Huan Wu, W. Qin, Xiaofeng Guan, Q. Jiang, B. Luo","doi":"10.15212/bioi-2021-0021","DOIUrl":"https://doi.org/10.15212/bioi-2021-0021","url":null,"abstract":"\u0000 Background: Benign or malignant breast lesions with typical ultrasonic characteristics could be easily and correctly diagnosed with two-dimensional ultrasound (2D US). However, diagnosis of atypical lesions remains a challenge. Most atypical lesions have different ultrasonographic features with probe direction variation. Thus, the interpretation of ultrasonographic features based on static images empirically collected by sonographers might be inaccurate. We aimed to investigate the section discrepancy and diagnostic performance of breast lesions in 2D US by dynamic videos versus static images.Methods: Static images and dynamic videos based on two perpendicular planes of 468 breast lesions were collected and evaluated. The Breast Imaging and Reporting Data System (BI-RADS®) US lexicon was used. Category 3 was used as the cut-off point, and section discrepancy was defined as two perpendicular planes showing different BI-RADS categories (3 versus 4A, 4B, 4C, and 5).Results: This retrospective study included 315 benign and 153 malignant lesions. There were 53 and 50 lesions with section discrepancy during static and dynamic observations, respectively. The proportion of benign lesions with section discrepancy was significantly higher than that of malignant lesions (P < 0.05) either in dynamic or static observation, and the contingency coefficient was 0.2 between section discrepancy and histopathology. Duct changes were more clearly depicted in dynamic videos than in static images (P < 0.05) both in malignant and benign lesions. Calcification and architectural distortion were more sensitively detected by dynamic videos than with static images (P < 0.05) in malignant lesions. The interpretation of “margin” significantly differed in benign lesions between static images and dynamic videos (P < 0.05). The areas under the curve of static image-horizontal, static image-sagittal, dynamic video-horizontal, and dynamic video-sagittal were 0.807, 0.820, 0.837, and 0.846, respectively. The specificities of dynamic videos were higher than those of static images (P < 0.05).Conclusion: Breast lesions have section discrepancy in 2D US. Observations based on dynamic videos could more accurately reflect lesion features and increase the specificity of US in the differentiation of atypical breast lesions.\u0000","PeriodicalId":431549,"journal":{"name":"BIO Integration","volume":"237 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122518239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nanotechnology is associated with the development of particles in the nano-size range that can be used in a wide range of applications in the medical field. It has gained more importance in the pharmaceutical research field particularly in drug delivery, as it results in enhanced therapeutic drug performance, improved drug solubility, targeted drug delivery to the specific sites, minimized side effects, and prolonged drug retention time in the targeted site. To date, the application of nanotechnology continues to offer several benefits in the treatment of various chronic diseases and results in remarkable improvements in treatment outcomes. The use of nano-based delivery systems such as liposomes, micelles, and nanoparticles in pulmonary drug delivery have shown to be a promising strategy in achieving drug deposition and maintained controlled drug release in the lungs. They have been widely used to minimize the risks of drug toxicity in vivo. In this review, recent advances in the application of nano- and micro-based delivery systems in pulmonary drug delivery for the treatment of various pulmonary diseases, such as lung cancer, asthma, and chronic obstructive pulmonary disease, are highlighted. Limitations in the application of these drug delivery systems and some key strategies in improving their formulation properties to overcome challenges encountered in drug delivery are also discussed.
{"title":"Progress in the Application of Nano- and Micro-based Drug Delivery Systems in Pulmonary Drug Delivery","authors":"Rejoice Thubelihle Ndebele, Qing Yao, Yannan Shi, Yuan-Yuan Zhai, Helin Xu, Cui-tao Lu, Ying-zheng Zhao","doi":"10.15212/bioi-2021-0028","DOIUrl":"https://doi.org/10.15212/bioi-2021-0028","url":null,"abstract":"\u0000 Nanotechnology is associated with the development of particles in the nano-size range that can be used in a wide range of applications in the medical field. It has gained more importance in the pharmaceutical research field particularly in drug delivery, as it results in enhanced therapeutic drug performance, improved drug solubility, targeted drug delivery to the specific sites, minimized side effects, and prolonged drug retention time in the targeted site. To date, the application of nanotechnology continues to offer several benefits in the treatment of various chronic diseases and results in remarkable improvements in treatment outcomes. The use of nano-based delivery systems such as liposomes, micelles, and nanoparticles in pulmonary drug delivery have shown to be a promising strategy in achieving drug deposition and maintained controlled drug release in the lungs. They have been widely used to minimize the risks of drug toxicity in vivo. In this review, recent advances in the application of nano- and micro-based delivery systems in pulmonary drug delivery for the treatment of various pulmonary diseases, such as lung cancer, asthma, and chronic obstructive pulmonary disease, are highlighted. Limitations in the application of these drug delivery systems and some key strategies in improving their formulation properties to overcome challenges encountered in drug delivery are also discussed.\u0000","PeriodicalId":431549,"journal":{"name":"BIO Integration","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129599319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingdun Xie, Zhenhua Qi, Xiaoling Luo, Fang Yan, W. Xing, W. Zeng, Dongtai Chen, Qiang Li
Background: N6-Methyladenosine (m6A) RNA methylation of eukaryotic mRNA is involved in the progression of various tumors. We aimed to investigate m6A-related genes and m6A regulators in hepatocellular carcinoma (HCC) and their association with prognosis in HCC.Methods: We downloaded liver cancer sample data from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium database. A total of 21 m6A regulators and 1258 m6A-related genes were then analyzed by consensus clustering, Spearman’s correlation, GO, KEGG, LASSO Cox regression, and univariate Cox regression analyses. Finally, we constructed a risk prognostic model.Results: We obtained 192 candidate m6A-related genes and 3 m6A regulators, including YTHDF1, YTHDF2, and YTHDC1. The expression of these genes and regulators differed significantly in different stages of HCC. Based on Cox regression analysis, 19 of 98 m6A-related prognostic genes were obtained to construct a risk score model. The 1- and 3-year area under the curves (AUCs) among HCC patients were greater than 0.7. Finally, based on analysis of mutation differences between high- and low-risk score groups, we determined that TP53 had the highest mutation frequency in the high-risk HCC patient group, whereas titin (TTN) had the highest mutation frequency in the low-risk HCC patient group.Conclusion: This study comprehensively analyzed m6A regulators and m6A-related genes through an integrated bioinformatic analysis, including expression, clustering, protein–protein interaction, and prognosis, thus providing novel insights into the roles of m6A regulators and m6A-related genes in HCC.
{"title":"Integration Analysis of m6A Regulators and m6A-Related Genes in Hepatocellular Carcinoma","authors":"Jingdun Xie, Zhenhua Qi, Xiaoling Luo, Fang Yan, W. Xing, W. Zeng, Dongtai Chen, Qiang Li","doi":"10.15212/BIOI-2021-0002","DOIUrl":"https://doi.org/10.15212/BIOI-2021-0002","url":null,"abstract":"\u0000 Background: N6-Methyladenosine (m6A) RNA methylation of eukaryotic mRNA is involved in the progression of various tumors. We aimed to investigate m6A-related genes and m6A regulators in hepatocellular carcinoma (HCC) and their association with prognosis in HCC.Methods: We downloaded liver cancer sample data from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium database. A total of 21 m6A regulators and 1258 m6A-related genes were then analyzed by consensus clustering, Spearman’s correlation, GO, KEGG, LASSO Cox regression, and univariate Cox regression analyses. Finally, we constructed a risk prognostic model.Results: We obtained 192 candidate m6A-related genes and 3 m6A regulators, including YTHDF1, YTHDF2, and YTHDC1. The expression of these genes and regulators differed significantly in different stages of HCC. Based on Cox regression analysis, 19 of 98 m6A-related prognostic genes were obtained to construct a risk score model. The 1- and 3-year area under the curves (AUCs) among HCC patients were greater than 0.7. Finally, based on analysis of mutation differences between high- and low-risk score groups, we determined that TP53 had the highest mutation frequency in the high-risk HCC patient group, whereas titin (TTN) had the highest mutation frequency in the low-risk HCC patient group.Conclusion: This study comprehensively analyzed m6A regulators and m6A-related genes through an integrated bioinformatic analysis, including expression, clustering, protein–protein interaction, and prognosis, thus providing novel insights into the roles of m6A regulators and m6A-related genes in HCC.\u0000","PeriodicalId":431549,"journal":{"name":"BIO Integration","volume":"95 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128766850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}