首页 > 最新文献

2006 International Conference on Advances in Space Technologies最新文献

英文 中文
A Study for Prediction of Minerals in Rock Images using Back Propagation Neural Networks 基于反向传播神经网络的岩石图像矿物预测研究
Pub Date : 2006-09-01 DOI: 10.1109/ICAST.2006.313824
I. Bajwa, M. A. Choudhary
This paper presents a novel approach for the segmentation of ground based images of rocks using back propagation neural network architecture. The designed system actually identifies the possible minerals by analyzing the surface color of the rocks. The rocks in Balochistan are very hard and defined. Such rocks are typically full of minerals. The rocks in the province of Balochistan are peculiar in their shape and surface colour. Usually, these colours are developed due to the reaction of the particles of the minerals with air. The upper layer of dust upon these rocks can be really useful in identifying the possible minerals concealing inside the rocks. The designed mechanism uses conventional artificial neural networks to identify various coloured parts of the rocks which are further classified into different minerals using histograms. The BPNN helps to learn to solve the task through a dynamic adaptation of its classification context. The designed system is trained by providing it the basic information related to the physical features of various mineral and types of rocks. The designed system highlights the various parts of the images by using various colours for various minerals
提出了一种基于反向传播神经网络结构的岩石地面图像分割新方法。设计的系统实际上通过分析岩石的表面颜色来识别可能的矿物。俾路支省的岩石非常坚硬。这种岩石通常富含矿物质。俾路支省的岩石在形状和表面颜色上都很奇特。通常,这些颜色是由于矿物颗粒与空气反应而形成的。这些岩石上的上层灰尘对于识别隐藏在岩石内部的可能的矿物非常有用。设计的机制使用传统的人工神经网络来识别岩石的各种颜色部分,并使用直方图进一步分类为不同的矿物。BPNN通过对其分类上下文的动态适应来帮助学习解决任务。通过提供与各种矿物和岩石类型的物理特征有关的基本信息来训练所设计的系统。设计的系统通过对不同的矿物使用不同的颜色来突出图像的不同部分
{"title":"A Study for Prediction of Minerals in Rock Images using Back Propagation Neural Networks","authors":"I. Bajwa, M. A. Choudhary","doi":"10.1109/ICAST.2006.313824","DOIUrl":"https://doi.org/10.1109/ICAST.2006.313824","url":null,"abstract":"This paper presents a novel approach for the segmentation of ground based images of rocks using back propagation neural network architecture. The designed system actually identifies the possible minerals by analyzing the surface color of the rocks. The rocks in Balochistan are very hard and defined. Such rocks are typically full of minerals. The rocks in the province of Balochistan are peculiar in their shape and surface colour. Usually, these colours are developed due to the reaction of the particles of the minerals with air. The upper layer of dust upon these rocks can be really useful in identifying the possible minerals concealing inside the rocks. The designed mechanism uses conventional artificial neural networks to identify various coloured parts of the rocks which are further classified into different minerals using histograms. The BPNN helps to learn to solve the task through a dynamic adaptation of its classification context. The designed system is trained by providing it the basic information related to the physical features of various mineral and types of rocks. The designed system highlights the various parts of the images by using various colours for various minerals","PeriodicalId":433021,"journal":{"name":"2006 International Conference on Advances in Space Technologies","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116776356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
2006 International Conference on Advances in Space Technologies
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1