Electronic ticket (eticket) provider services are growing fast in Indonesia, makingthe competition between companies increasingly intense. Moreover, most of them have the sameservice or feature for serving their customers. To get back the feedback of their customers, manycompanies use social media (Facebook and Twitter) for marketing activity or communicatingdirectly with their customers. The development of current technology allows the company totake data from social media. Thus, many companies take social media data for analyses. Thisstudy proposed developing a data warehouse to analyze data in social media such as likes,comments, and sentiment. Since the sentiment is not provided directly from social media data,this study uses lexicon based classification to categorize the sentiment of users’ comments. Thisdata warehouse provides business intelligence to see the performance of the company based ontheir social media data. The data warehouse is built using three travel companies in Indonesia.As a result, this data warehouse provides the comparison of the performance based on the socialmedia data.
{"title":"Business intelligence for social media interaction in the travel industry in Indonesia","authors":"M. Yulianto, A. S. Girsang, R. Y. Rumagit","doi":"10.37380/JISIB.V8I2.323","DOIUrl":"https://doi.org/10.37380/JISIB.V8I2.323","url":null,"abstract":"Electronic ticket (eticket) provider services are growing fast in Indonesia, makingthe competition between companies increasingly intense. Moreover, most of them have the sameservice or feature for serving their customers. To get back the feedback of their customers, manycompanies use social media (Facebook and Twitter) for marketing activity or communicatingdirectly with their customers. The development of current technology allows the company totake data from social media. Thus, many companies take social media data for analyses. Thisstudy proposed developing a data warehouse to analyze data in social media such as likes,comments, and sentiment. Since the sentiment is not provided directly from social media data,this study uses lexicon based classification to categorize the sentiment of users’ comments. Thisdata warehouse provides business intelligence to see the performance of the company based ontheir social media data. The data warehouse is built using three travel companies in Indonesia.As a result, this data warehouse provides the comparison of the performance based on the socialmedia data.","PeriodicalId":43580,"journal":{"name":"Journal of Intelligence Studies in Business","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2018-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43972463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}