Pub Date : 2023-09-05DOI: 10.20965/ijat.2023.p0477
Yukitoshi Ihara, Souma Kajino, Yuto Inoue
ISO 10791-7, which specifies the machining accuracy test standard for machining centers, and ISO 10791-6, which specifies the interpolation motion test standard, were revised in 2014 to include five-axis machining centers (5-axis MCs). In addition, cone frustum test, which has been used as the National Aerospace Standard (NAS), was revised and introduced in these ISO standards. However, prior to the establishment of these standards, an aircraft manufacturing company in China proposed S-shaped machining test to measure the accuracy of the test piece of an aircraft. This was adopted as an informative annex of ISO 10791-7 in 2020. Furthermore, in 2019, China proposed a method related to S-shaped machining test and a method of 8-shaped interpolation motion test. Since the S-shaped test requires high acceleration and deceleration in some sections, the test results depend on the performance of the computer-aided manufacturing (CAM) software; therefore, it is not efficient in determining the accuracy of the machine tools. In contrast, in the 8-shaped motion test, the tip of the spindle moves based on a sine curve; consequently, high acceleration/deceleration does not occur. Since the tip of the cutting tool is fixed, a device called R-test is used to measure the position of the center of reference ball using three displacement sensors. In this study, we have discussed the feasibility and problems of the 8-shaped motion test. First, the motion of the machine in the figure “8” motion test is clarified. Next, the definition of the parameters necessary to create the NC programs is outlined. In addition, we have proposed a method in which suitable conditions are set for simultaneous 5-axis feed on a 5-axis MC. Finally, the results of an actual test are applied to the 5-axis MC to confirm that no major problems exist.
ISO 10791-7规定了加工中心的加工精度测试标准,ISO 10791-6规定了插补运动测试标准,在2014年进行了修订,包括五轴加工中心(5轴MCs)。此外,作为国家航空航天标准(NAS)使用的锥锥测试也在这些ISO标准中进行了修订和引入。然而,在这些标准建立之前,中国一家飞机制造公司提出了s形加工试验,以衡量飞机试件的精度。该标准已于2020年作为ISO 10791-7的信息附件通过。此外,2019年,中国提出了s形加工试验相关方法和8形插补运动试验方法。由于s型试验在某些路段需要高加减速,因此试验结果取决于计算机辅助制造(CAM)软件的性能;因此,在确定机床的精度时效率不高。而在8形运动试验中,主轴尖端沿正弦曲线运动;因此,不会发生高加速/减速。由于切削刀具的尖端是固定的,因此使用一个称为R-test的装置使用三个位移传感器来测量参考球中心的位置。在本研究中,我们讨论了八字运动测试的可行性和存在的问题。首先,对图“8”运动试验中机器的运动进行澄清。接下来,概述了创建NC程序所需的参数的定义。此外,我们提出了一种方法,在5轴MC上设置合适的条件进行5轴同时进给。最后,将实际测试结果应用于5轴MC,确认没有出现重大问题。
{"title":"Feasibility of 8-Shaped Motion Test for Five-Axis Machining Center","authors":"Yukitoshi Ihara, Souma Kajino, Yuto Inoue","doi":"10.20965/ijat.2023.p0477","DOIUrl":"https://doi.org/10.20965/ijat.2023.p0477","url":null,"abstract":"ISO 10791-7, which specifies the machining accuracy test standard for machining centers, and ISO 10791-6, which specifies the interpolation motion test standard, were revised in 2014 to include five-axis machining centers (5-axis MCs). In addition, cone frustum test, which has been used as the National Aerospace Standard (NAS), was revised and introduced in these ISO standards. However, prior to the establishment of these standards, an aircraft manufacturing company in China proposed S-shaped machining test to measure the accuracy of the test piece of an aircraft. This was adopted as an informative annex of ISO 10791-7 in 2020. Furthermore, in 2019, China proposed a method related to S-shaped machining test and a method of 8-shaped interpolation motion test. Since the S-shaped test requires high acceleration and deceleration in some sections, the test results depend on the performance of the computer-aided manufacturing (CAM) software; therefore, it is not efficient in determining the accuracy of the machine tools. In contrast, in the 8-shaped motion test, the tip of the spindle moves based on a sine curve; consequently, high acceleration/deceleration does not occur. Since the tip of the cutting tool is fixed, a device called R-test is used to measure the position of the center of reference ball using three displacement sensors. In this study, we have discussed the feasibility and problems of the 8-shaped motion test. First, the motion of the machine in the figure “8” motion test is clarified. Next, the definition of the parameters necessary to create the NC programs is outlined. In addition, we have proposed a method in which suitable conditions are set for simultaneous 5-axis feed on a 5-axis MC. Finally, the results of an actual test are applied to the 5-axis MC to confirm that no major problems exist.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135254640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05DOI: 10.20965/ijat.2023.p0504
Soichi Ibaraki, Kandai Kawano
Robot links are typically subjected to larger thermal deformations than machine-tool structures. In this study, the thermal effect on the two-dimensional (2D) positioning error of a planar robot arm over its entire workspace was investigated. It was experimentally verified that the Denavit–Hartenberg (DH) parameters, namely the link lengths and angular offset of the rotary axis, could be the key contributors to the thermal variation in the 2D positioning error. The experiment revealed that the variation in the angular positioning deviations of the rotary axes was marginal. This paper presents an on-machine test to identify the link lengths and the angular offset by probing an artifact bar of a pre-calibrated length. To compensate for the thermal influence, it is effective to identify the DH parameters by periodically performing the proposed test.
{"title":"On Thermal Positioning Error of a Planar Robot Arm over Entire Workspace","authors":"Soichi Ibaraki, Kandai Kawano","doi":"10.20965/ijat.2023.p0504","DOIUrl":"https://doi.org/10.20965/ijat.2023.p0504","url":null,"abstract":"Robot links are typically subjected to larger thermal deformations than machine-tool structures. In this study, the thermal effect on the two-dimensional (2D) positioning error of a planar robot arm over its entire workspace was investigated. It was experimentally verified that the Denavit–Hartenberg (DH) parameters, namely the link lengths and angular offset of the rotary axis, could be the key contributors to the thermal variation in the 2D positioning error. The experiment revealed that the variation in the angular positioning deviations of the rotary axes was marginal. This paper presents an on-machine test to identify the link lengths and the angular offset by probing an artifact bar of a pre-calibrated length. To compensate for the thermal influence, it is effective to identify the DH parameters by periodically performing the proposed test.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135254636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The temperature control performance of a developed temperature feedback control system was experimentally investigated. The control system was based on a real-time temperature control of a cooling fluid. In particular, this study focused on the temperature control performance of a built-in motor spindle that used the developed temperature fedback control system. The built-in motor used in the study had water cooling jackets. The temperature of the built-in motor spindle was measured and feedback into the developed temperature feedback control system. Temperature control accuracy of the built-in motor spindle under steady state was then assessed. Furthermore, the effects of the time-variant changes in spindle rotation and ambient temperature on the performance of the temperature control system was investigated. The results of the experiments show that the temperature control accuracy of the built-in motor spindle under steady state condition was ±0.03°C. The temperature control performance of the built-in motor spindle under changes in the rotational speed of the spindle was examined. The experimental results show that the temperature change of the spindle could be suppressed to a maximum of approximately 0.3°C under transient state during sudden change in spindle speed. In addition, the effects of the changes in ambient and cooling water temperatures, which simulated actual environmental operating conditions, on the spindle temperature were investigated. The results show that the change in the spindle temperature could be suppressed by approximately less than ±0.1°C. These experimental results indicate that the developed temperature feedback control system achieved high temperature control accuracy and high response for the built-in motor spindle. In particular, the developed control system successfully controlled the time-variant change in the generated heat, thereby improving the thermal stability of the machine tool spindle.
{"title":"Temperature Control Performance of a Built-In Motor Spindle by Developed Temperature Feedback Control System","authors":"Shumon Wakiya, Ryota Ishida, Jumpei Kusuyama, Yohichi Nakao","doi":"10.20965/ijat.2023.p0512","DOIUrl":"https://doi.org/10.20965/ijat.2023.p0512","url":null,"abstract":"The temperature control performance of a developed temperature feedback control system was experimentally investigated. The control system was based on a real-time temperature control of a cooling fluid. In particular, this study focused on the temperature control performance of a built-in motor spindle that used the developed temperature fedback control system. The built-in motor used in the study had water cooling jackets. The temperature of the built-in motor spindle was measured and feedback into the developed temperature feedback control system. Temperature control accuracy of the built-in motor spindle under steady state was then assessed. Furthermore, the effects of the time-variant changes in spindle rotation and ambient temperature on the performance of the temperature control system was investigated. The results of the experiments show that the temperature control accuracy of the built-in motor spindle under steady state condition was ±0.03°C. The temperature control performance of the built-in motor spindle under changes in the rotational speed of the spindle was examined. The experimental results show that the temperature change of the spindle could be suppressed to a maximum of approximately 0.3°C under transient state during sudden change in spindle speed. In addition, the effects of the changes in ambient and cooling water temperatures, which simulated actual environmental operating conditions, on the spindle temperature were investigated. The results show that the change in the spindle temperature could be suppressed by approximately less than ±0.1°C. These experimental results indicate that the developed temperature feedback control system achieved high temperature control accuracy and high response for the built-in motor spindle. In particular, the developed control system successfully controlled the time-variant change in the generated heat, thereby improving the thermal stability of the machine tool spindle.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":"9 40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135254641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The objective of this study was to determine the effect of vibration behavior on workpiece surface properties in low-frequency vibration cutting. The effects of the parameters that determine vibration behavior on surface roughness were quantitatively evaluated through a comparison with other cutting conditions. Furthermore, by clarifying how the surface properties of the workpiece, such as roughness, roundness, and cross-sectional curves, change depending on the vibration behavior, a search for optimal conditions for low-frequency vibration cutting was conducted. The best surface properties were obtained under the condition of spindle rotation per vibration E =4.5. By using a value close to the minimum possible spindle rotation R =0.5 when the workpiece is retracted, it is expected to be effective in suppressing the variation in surface roughness at each phase angle; this variation is characteristic of low-frequency vibration cutting. Workpieces machined under low-frequency vibration conditions such as ( E =2.5, R =1.0) and ( E =3.5, R =1.0) were found to form characteristic surface patterns on the workpiece surface owing to a phenomenon in which the depth of the cut to the workpiece changes.
本研究的目的是确定低频振动切削中振动行为对工件表面性能的影响。通过与其他切削条件的比较,定量评价了决定振动行为的参数对表面粗糙度的影响。此外,通过阐明工件表面特性(如粗糙度、圆度和横截面曲线)如何随振动行为而变化,对低频振动切削的最佳条件进行了搜索。当主轴每振动转数E =4.5时,表面性能最佳。当工件缩回时,使用接近最小可能的主轴旋转R =0.5的值,可以有效地抑制各相角处表面粗糙度的变化;这种变化是低频振动切削的特征。在(E =2.5, R =1.0)和(E =3.5, R =1.0)等低频振动条件下加工的工件,由于对工件的切割深度发生变化,在工件表面形成特征表面图案。
{"title":"Effect of Vibration Behavior in Low-Frequency Vibration Cutting on Surface Properties of Workpiece","authors":"Hiroyuki Kodama, Shota Matsuno, Naoyuki Shibata, Kazuhito Ohashi","doi":"10.20965/ijat.2023.p0434","DOIUrl":"https://doi.org/10.20965/ijat.2023.p0434","url":null,"abstract":"The objective of this study was to determine the effect of vibration behavior on workpiece surface properties in low-frequency vibration cutting. The effects of the parameters that determine vibration behavior on surface roughness were quantitatively evaluated through a comparison with other cutting conditions. Furthermore, by clarifying how the surface properties of the workpiece, such as roughness, roundness, and cross-sectional curves, change depending on the vibration behavior, a search for optimal conditions for low-frequency vibration cutting was conducted. The best surface properties were obtained under the condition of spindle rotation per vibration E =4.5. By using a value close to the minimum possible spindle rotation R =0.5 when the workpiece is retracted, it is expected to be effective in suppressing the variation in surface roughness at each phase angle; this variation is characteristic of low-frequency vibration cutting. Workpieces machined under low-frequency vibration conditions such as ( E =2.5, R =1.0) and ( E =3.5, R =1.0) were found to form characteristic surface patterns on the workpiece surface owing to a phenomenon in which the depth of the cut to the workpiece changes.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135254823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05DOI: 10.20965/ijat.2023.p0469
Hiroshi Sawano, Yasuhiro Kodama
Additive manufacturing (AM) has become a major manufacturing technology in recent years. In the fused deposition modeling (FDM) method, two-layered parts with a shell structure and an internal structure with gaps are often manufactured. When cutting is applied to such parts, the internal structure is exposed and the surface texture and strength deteriorate. Therefore, it is necessary to remanufacture the parts to correct the shape or fill the inside with resin for additional machining. However, if parts are remanufactured or filled with resin, the amount of material used increases, along with the processing cost and environmental load. If the characteristics of additional machining can be improved, the amount of material used, the processing cost, and environmental load can be reduced. Therefore, in this study, we proposed a shell forming method to form a shell structure by processing the surface of the exposed internal structure with a rod. Shell forming experiments were then conducted to evaluate the characteristics of the method. It was found that the shell thickness can be increased by increasing the shell forming depth, and the difference from the theoretical shell thickness grows larger when the shell forming depth increases. Increasing the rotation speed of the rod was effective in increasing the shell thickness. In addition, as a result of the additional cutting experiment on an AM part, it was confirmed that the properties of the additional cutting surface can be improved using the proposed method.
{"title":"Shell Forming for Improving Additional Cutting Properties of Additively Manufactured Parts","authors":"Hiroshi Sawano, Yasuhiro Kodama","doi":"10.20965/ijat.2023.p0469","DOIUrl":"https://doi.org/10.20965/ijat.2023.p0469","url":null,"abstract":"Additive manufacturing (AM) has become a major manufacturing technology in recent years. In the fused deposition modeling (FDM) method, two-layered parts with a shell structure and an internal structure with gaps are often manufactured. When cutting is applied to such parts, the internal structure is exposed and the surface texture and strength deteriorate. Therefore, it is necessary to remanufacture the parts to correct the shape or fill the inside with resin for additional machining. However, if parts are remanufactured or filled with resin, the amount of material used increases, along with the processing cost and environmental load. If the characteristics of additional machining can be improved, the amount of material used, the processing cost, and environmental load can be reduced. Therefore, in this study, we proposed a shell forming method to form a shell structure by processing the surface of the exposed internal structure with a rod. Shell forming experiments were then conducted to evaluate the characteristics of the method. It was found that the shell thickness can be increased by increasing the shell forming depth, and the difference from the theoretical shell thickness grows larger when the shell forming depth increases. Increasing the rotation speed of the rod was effective in increasing the shell thickness. In addition, as a result of the additional cutting experiment on an AM part, it was confirmed that the properties of the additional cutting surface can be improved using the proposed method.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135254637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05DOI: 10.20965/ijat.2023.p0529
Fengmin Ji, Kentaro Imai, Weimin Lin
In this study, the effects of critical depth of cut and wheel wear were investigated to realize efficient precision grinding of CVD-SiC by ductile mode grinding at low cost. To compare the results under experimental conditions, Vickers indentation tests and grinding experiments were conducted. As a result of the Vickers indentation test at an applied load of 0.015 N, the minimum indentation load in this study, the indentation depth was 1.3 μm, and cracks were observed at the corners of the indentation isotropically. Additionally, the pile-up was observed around the indentation, suggesting that plastic deformation due to shear flow was relatively large. Grinding experiments were conducted using grinding wheels with different grain sizes. All the grinding conditions in this study resulted in a surface with a mixture of brittle and ductile modes. The proportion of ductile modes was larger, and the surface roughness Ra was smaller when a grindstone with a smaller grain size was used. Additionally, the effect of wear was investigated. As wear progressed, the number of protruding grains decreased, resulting in a smaller surface roughness. These results indicate that the amount of protruding abrasive grains must be controlled to achieve stable ductile mode grinding.
{"title":"A Study of Depth of Cut and Wear in Precision Grinding of CVD-SiC","authors":"Fengmin Ji, Kentaro Imai, Weimin Lin","doi":"10.20965/ijat.2023.p0529","DOIUrl":"https://doi.org/10.20965/ijat.2023.p0529","url":null,"abstract":"In this study, the effects of critical depth of cut and wheel wear were investigated to realize efficient precision grinding of CVD-SiC by ductile mode grinding at low cost. To compare the results under experimental conditions, Vickers indentation tests and grinding experiments were conducted. As a result of the Vickers indentation test at an applied load of 0.015 N, the minimum indentation load in this study, the indentation depth was 1.3 μm, and cracks were observed at the corners of the indentation isotropically. Additionally, the pile-up was observed around the indentation, suggesting that plastic deformation due to shear flow was relatively large. Grinding experiments were conducted using grinding wheels with different grain sizes. All the grinding conditions in this study resulted in a surface with a mixture of brittle and ductile modes. The proportion of ductile modes was larger, and the surface roughness Ra was smaller when a grindstone with a smaller grain size was used. Additionally, the effect of wear was investigated. As wear progressed, the number of protruding grains decreased, resulting in a smaller surface roughness. These results indicate that the amount of protruding abrasive grains must be controlled to achieve stable ductile mode grinding.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135254639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05DOI: 10.20965/ijat.2023.p0458
Hibiki Yamazaki, Jiang Zhu, Tomohisa Tanaka
Burnishing is a surface finishing process to produce a smooth surface. Since it can improve the mechanical properties of the material, such as surface hardness, wear resistance, and fatigue strength, in one process, it has been widely used in industry to enhance the surface quality of mechanical parts. However, due to the high burnishing force, it is difficult to use the process of thin materials, because such materials can easily be deformed in the process. In this research, a novel double-sided burnishing (DSB) tool that can process the thin plate material from both sides is designed and fabricated. The developed DSB tool symmetrically moves the burnishing tips on both sides with a single output to facilitate position control. The burnishing forces from the two sides cancel each other, and the moment that causes bending deformation is suppressed during the processing. Different thin plate metallic materials are processed using the developed tool, it is confirmed that deformation during burnishing is suppressed. By investigating the surface properties of the processed specimen, it is found that surface roughness, surface hardness, tensile strength, and fatigue strength can be improved by using the developed DSB tool. This makes it possible to process complicated, thin-walled parts, such as engine and turbine blades, which are supposed to have great potential applications in the automobile and aerospace industries.
{"title":"Study on the Surface Enhancement of Thin-Walled Metallic Materials Using a Novel Double-Side Burnishing Tool","authors":"Hibiki Yamazaki, Jiang Zhu, Tomohisa Tanaka","doi":"10.20965/ijat.2023.p0458","DOIUrl":"https://doi.org/10.20965/ijat.2023.p0458","url":null,"abstract":"Burnishing is a surface finishing process to produce a smooth surface. Since it can improve the mechanical properties of the material, such as surface hardness, wear resistance, and fatigue strength, in one process, it has been widely used in industry to enhance the surface quality of mechanical parts. However, due to the high burnishing force, it is difficult to use the process of thin materials, because such materials can easily be deformed in the process. In this research, a novel double-sided burnishing (DSB) tool that can process the thin plate material from both sides is designed and fabricated. The developed DSB tool symmetrically moves the burnishing tips on both sides with a single output to facilitate position control. The burnishing forces from the two sides cancel each other, and the moment that causes bending deformation is suppressed during the processing. Different thin plate metallic materials are processed using the developed tool, it is confirmed that deformation during burnishing is suppressed. By investigating the surface properties of the processed specimen, it is found that surface roughness, surface hardness, tensile strength, and fatigue strength can be improved by using the developed DSB tool. This makes it possible to process complicated, thin-walled parts, such as engine and turbine blades, which are supposed to have great potential applications in the automobile and aerospace industries.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135254824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effects of the ambient temperature and relative humidity on crack propagation behavior during wheel scribing were investigated. A chamber was built to allow dynamic observation of crack propagation behavior in a controlled atmosphere. A developed miniature scriber was installed in the chamber, and the crack propagation behavior was observed from lateral and back sides during wheel scribing under various atmospheric conditions. As a result, the median crack propagation rate increased with relative humidity. We speculated that this was caused by the stress corrosion of glass. Although stress corrosion is considered to be more reactive at higher temperatures, the results of scribing at different temperatures showed that higher temperatures did not necessarily increase median crack propagation. This is due to the formation of lateral cracks before the median cracks have fully propagated. These results suggest that the interaction between multiple cracks should be considered when discussing the effects of temperature and humidity in wheel scribing.
{"title":"Effects of Temperature and Relative Humidity on Crack Propagation Behavior During Wheel Scribing of Alkali-Free Glass Sheet","authors":"Ryota Someno, Kentaro Imai, Yuichiro Matsumoto, Souta Matsusaka, Sho Itoh, Hirofumi Hidai, Akira Chiba, Noboru Morita","doi":"10.20965/ijat.2023.p0521","DOIUrl":"https://doi.org/10.20965/ijat.2023.p0521","url":null,"abstract":"The effects of the ambient temperature and relative humidity on crack propagation behavior during wheel scribing were investigated. A chamber was built to allow dynamic observation of crack propagation behavior in a controlled atmosphere. A developed miniature scriber was installed in the chamber, and the crack propagation behavior was observed from lateral and back sides during wheel scribing under various atmospheric conditions. As a result, the median crack propagation rate increased with relative humidity. We speculated that this was caused by the stress corrosion of glass. Although stress corrosion is considered to be more reactive at higher temperatures, the results of scribing at different temperatures showed that higher temperatures did not necessarily increase median crack propagation. This is due to the formation of lateral cracks before the median cracks have fully propagated. These results suggest that the interaction between multiple cracks should be considered when discussing the effects of temperature and humidity in wheel scribing.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135254634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05DOI: 10.20965/ijat.2023.p0449
Haruhiko Suwa, Kazuya Oda, Koji Murakami
The different flexibility and diversity requirements for respective manufacturing units have made modern cutting tool management much more crucial and complicated, as a greater variety of tools and more frequent tool changes are required to enhance production efficiency and avoid unplanned manufacturing downtime. Developing in-process anomalous change detection methods has been identified as an essential challenge. Machine learning techniques have been widely applied in tool condition monitoring and anomalous change detection. As anomaly data is rare in manufacturing processes, supervised machine learning approaches (such as regression and classification) are not applied to the anomalous change detection problem. Rather, self-supervised machine learning (a representative type of unsupervised machine learning) is applied. This study describes a variational autoencoder (VAE) neural network and proposes a VAE-based method for tool condition monitoring and change detection in a drilling process using the temperature near a drill edge. The proposed VAE evaluates the drill tool condition based on the reconstruction error between the input temperature and its estimate per a drill unit process through the trained network. Computational simulations demonstrate that the proposed VAE network model can avoid overfitting to the anomaly data and that its expressive power is greater than that of the conventional autoencoder model.
{"title":"Anomalous Change Detection in Drilling Process Using Variational Autoencoder with Temperature Near Drill Edge","authors":"Haruhiko Suwa, Kazuya Oda, Koji Murakami","doi":"10.20965/ijat.2023.p0449","DOIUrl":"https://doi.org/10.20965/ijat.2023.p0449","url":null,"abstract":"The different flexibility and diversity requirements for respective manufacturing units have made modern cutting tool management much more crucial and complicated, as a greater variety of tools and more frequent tool changes are required to enhance production efficiency and avoid unplanned manufacturing downtime. Developing in-process anomalous change detection methods has been identified as an essential challenge. Machine learning techniques have been widely applied in tool condition monitoring and anomalous change detection. As anomaly data is rare in manufacturing processes, supervised machine learning approaches (such as regression and classification) are not applied to the anomalous change detection problem. Rather, self-supervised machine learning (a representative type of unsupervised machine learning) is applied. This study describes a variational autoencoder (VAE) neural network and proposes a VAE-based method for tool condition monitoring and change detection in a drilling process using the temperature near a drill edge. The proposed VAE evaluates the drill tool condition based on the reconstruction error between the input temperature and its estimate per a drill unit process through the trained network. Computational simulations demonstrate that the proposed VAE network model can avoid overfitting to the anomaly data and that its expressive power is greater than that of the conventional autoencoder model.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135254822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abrasive processing technologies support both the creation of new products and progressive production processes as finishing processing in various industries, such as the automotive, telecommunications, semiconductor, healthcare, energy, and aerospace industries. In this era of major changes, known as the Fourth Industrial Revolution, advanced abrasive processing technologies that produce cutting-edge devices, machinery, and equipment for a smart society are needed. The subjects related to abrasive processing are extremely diverse, including function generation processing and ICT fusion processing, in addition to the continuing basic subjects, including high-efficiency processing, difficult-to-cut material processing, ultra/high-precision processing, etc. The field of abrasive processing has recently been expanding from removal processing to additional types of processing, such as additive manufacturing. As a result, its importance is increasing as a technology indispensable for advanced industries such as healthcare and the production of power semiconductors, cutting-edge semiconductors, etc. On the other hand, new abrasive processing technologies, such as grinding wheel surface property analysis and highly efficient surface finishing methods, have developed along with the advancement of the elemental technologies that support abrasive processing using the latest measurement methods and ultra-precision technology. Furthermore, new research, such as work on energy-assisted or reaction-assisted grinding, has been conducted through the fusion of the materials science and physical chemistry fields. This special issue contains seven papers that cover the following topics. - Abrasive jet processing - Analysis of the surface profile of a grinding wheel - Drilling of glass with a diamond tool - Reaction-assisted grinding - Barrel finishing - High-speed polishing We deeply appreciate the authors for their careful work and thank the reviewers for their incisive efforts in producing this special issue. We hope that it will help readers understand the latest research on abrasive processing, encouraging and providing hints for further research on abrasive processing technologies.
{"title":"Special Issue on Advanced Abrasive Processing Technologies","authors":"Minoru Ota, Hirofumi Suzuki, Kazuhito Ohashi, Takazo Yamada","doi":"10.20965/ijat.2023.p0003","DOIUrl":"https://doi.org/10.20965/ijat.2023.p0003","url":null,"abstract":"Abrasive processing technologies support both the creation of new products and progressive production processes as finishing processing in various industries, such as the automotive, telecommunications, semiconductor, healthcare, energy, and aerospace industries. In this era of major changes, known as the Fourth Industrial Revolution, advanced abrasive processing technologies that produce cutting-edge devices, machinery, and equipment for a smart society are needed. The subjects related to abrasive processing are extremely diverse, including function generation processing and ICT fusion processing, in addition to the continuing basic subjects, including high-efficiency processing, difficult-to-cut material processing, ultra/high-precision processing, etc. The field of abrasive processing has recently been expanding from removal processing to additional types of processing, such as additive manufacturing. As a result, its importance is increasing as a technology indispensable for advanced industries such as healthcare and the production of power semiconductors, cutting-edge semiconductors, etc. On the other hand, new abrasive processing technologies, such as grinding wheel surface property analysis and highly efficient surface finishing methods, have developed along with the advancement of the elemental technologies that support abrasive processing using the latest measurement methods and ultra-precision technology. Furthermore, new research, such as work on energy-assisted or reaction-assisted grinding, has been conducted through the fusion of the materials science and physical chemistry fields. This special issue contains seven papers that cover the following topics. - Abrasive jet processing - Analysis of the surface profile of a grinding wheel - Drilling of glass with a diamond tool - Reaction-assisted grinding - Barrel finishing - High-speed polishing We deeply appreciate the authors for their careful work and thank the reviewers for their incisive efforts in producing this special issue. We hope that it will help readers understand the latest research on abrasive processing, encouraging and providing hints for further research on abrasive processing technologies.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":"103 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135367441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}