首页 > 最新文献

Trends in Biochemical Sciences最新文献

英文 中文
Mapping rRNA, tRNA, and mRNA modifications in ribosomes at high resolution 高分辨率绘制核糖体中的rRNA、tRNA和mRNA修饰。
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-11-01 DOI: 10.1016/j.tibs.2025.08.007
Łukasz Koziej , Sebastian Glatt
Chemical modifications of rRNA, tRNA, and mRNA play key roles in protein synthesis by affecting the structure of these RNAs, by modulating decoding, and by influencing ribosomal efficiency. Recent advances in sequencing-based detection methods have expanded our ability to map these moieties across RNA molecules in diverse cellular states. In parallel, X-ray crystallography and the advent of high-resolution cryogenic electron microscopy have facilitated the direct visualization of RNA modifications within ribosomes. This review integrates recent structural studies with functional insights to shed light on the roles of RNA modifications in translation. Thereby, we seek to summarize current knowledge about the molecular roles of RNA modifications in gene expression and protein synthesis.
rRNA、tRNA和mRNA的化学修饰通过影响这些rna的结构、调节解码和影响核糖体效率在蛋白质合成中发挥关键作用。基于测序的检测方法的最新进展扩展了我们在不同细胞状态下绘制RNA分子中这些片段的能力。与此同时,x射线晶体学和高分辨率低温电子显微镜的出现促进了核糖体内RNA修饰的直接可视化。这篇综述整合了最近的结构研究和功能见解,以阐明RNA修饰在翻译中的作用。因此,我们试图总结目前关于RNA修饰在基因表达和蛋白质合成中的分子作用的知识。
{"title":"Mapping rRNA, tRNA, and mRNA modifications in ribosomes at high resolution","authors":"Łukasz Koziej ,&nbsp;Sebastian Glatt","doi":"10.1016/j.tibs.2025.08.007","DOIUrl":"10.1016/j.tibs.2025.08.007","url":null,"abstract":"<div><div>Chemical modifications of rRNA, tRNA, and mRNA play key roles in protein synthesis by affecting the structure of these RNAs, by modulating decoding, and by influencing ribosomal efficiency. Recent advances in sequencing-based detection methods have expanded our ability to map these moieties across RNA molecules in diverse cellular states. In parallel, X-ray crystallography and the advent of high-resolution cryogenic electron microscopy have facilitated the direct visualization of RNA modifications within ribosomes. This review integrates recent structural studies with functional insights to shed light on the roles of RNA modifications in translation. Thereby, we seek to summarize current knowledge about the molecular roles of RNA modifications in gene expression and protein synthesis.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"50 11","pages":"Pages 1027-1041"},"PeriodicalIF":11.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145079207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular design drives nanoarchitecture in self-assembling antimicrobial peptides 分子设计驱动自组装抗菌肽的纳米结构。
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-11-01 DOI: 10.1016/j.tibs.2025.08.003
Thuanny Borba Rios , Mariana Rocha Maximiano , Nelson Gomes de Oliveira Junior , Alessandro S. Nascimento , Octávio Luiz Franco
Antimicrobial peptides (AMPs) have emerged as promising alternatives owing to their broad-spectrum activity and reduced potential for resistance. Recent advances have highlighted the role of peptide self-assembly in enhancing the stability, bioavailability, and efficacy of AMPs. Through non-covalent interactions, self-assembly enables the formation of nanostructures, including nanofibers, nanotubes, and micelles. This process can enhance antimicrobial activity by increasing AMP stability, facilitating membrane interactions, and modulating the mechanisms of bacterial disruption. Physicochemical features, including hydrophobicity, charge distribution, and aromatic interactions, allow the creation of tailored nanostructures with enhanced antimicrobial performance. Furthermore, self-assembled AMPs offer controlled drug release, targeted delivery, and synergistic strategies. This review examines the molecular mechanisms underlying peptide self-assembly and highlights their influence on AMP functionality and potential applications in combating infections.
抗菌肽(AMPs)由于其广谱活性和降低耐药性的潜力而成为有希望的替代品。最近的进展强调了肽自组装在提高amp的稳定性,生物利用度和功效方面的作用。通过非共价相互作用,自组装可以形成纳米结构,包括纳米纤维、纳米管和胶束。该过程可以通过增加AMP稳定性、促进膜相互作用和调节细菌破坏机制来增强抗菌活性。物理化学特性,包括疏水性、电荷分布和芳香相互作用,允许创建具有增强抗菌性能的定制纳米结构。此外,自组装amp提供控制药物释放,靶向递送和协同策略。本文综述了肽自组装的分子机制,并强调了它们对AMP功能的影响及其在抗感染方面的潜在应用。
{"title":"Molecular design drives nanoarchitecture in self-assembling antimicrobial peptides","authors":"Thuanny Borba Rios ,&nbsp;Mariana Rocha Maximiano ,&nbsp;Nelson Gomes de Oliveira Junior ,&nbsp;Alessandro S. Nascimento ,&nbsp;Octávio Luiz Franco","doi":"10.1016/j.tibs.2025.08.003","DOIUrl":"10.1016/j.tibs.2025.08.003","url":null,"abstract":"<div><div>Antimicrobial peptides (AMPs) have emerged as promising alternatives owing to their broad-spectrum activity and reduced potential for resistance. Recent advances have highlighted the role of peptide self-assembly in enhancing the stability, bioavailability, and efficacy of AMPs. Through non-covalent interactions, self-assembly enables the formation of nanostructures, including nanofibers, nanotubes, and micelles. This process can enhance antimicrobial activity by increasing AMP stability, facilitating membrane interactions, and modulating the mechanisms of bacterial disruption. Physicochemical features, including hydrophobicity, charge distribution, and aromatic interactions, allow the creation of tailored nanostructures with enhanced antimicrobial performance. Furthermore, self-assembled AMPs offer controlled drug release, targeted delivery, and synergistic strategies. This review examines the molecular mechanisms underlying peptide self-assembly and highlights their influence on AMP functionality and potential applications in combating infections.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"50 11","pages":"Pages 977-988"},"PeriodicalIF":11.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144938090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell-specific mitoproteomics reveals mitochondrial plasticity and applications 细胞特异性线粒体蛋白质组学揭示了线粒体的可塑性和应用。
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-11-01 DOI: 10.1016/j.tibs.2025.06.010
Domingos F.M. Neto , Rita de Cassia Monteiro-Batista , Adriano Nunes-Nesi , Wagner L. Araújo
Understanding the tissue-specific mitochondrial proteome is essential for advancing understanding of plant biology. In a recent study, Boussardon et al. applied Isolation of Mitochondria Tagged in Specific Cell Types (IMTACT) to investigate mitoproteome dynamics during pollen development. Here, we explore the broader potential of high-purity mitochondrial isolation in elucidating specific roles across tissues and developmental stages.
了解组织特异性线粒体蛋白质组对于提高对植物生物学的理解至关重要。在最近的一项研究中,Boussardon等人采用了IMTACT (Isolation of Mitochondria Tagged In Specific Cell Types)技术来研究花粉发育过程中的线粒体蛋白质动力学。在这里,我们探索高纯度线粒体分离在阐明组织和发育阶段的特定作用方面的更广泛潜力。
{"title":"Cell-specific mitoproteomics reveals mitochondrial plasticity and applications","authors":"Domingos F.M. Neto ,&nbsp;Rita de Cassia Monteiro-Batista ,&nbsp;Adriano Nunes-Nesi ,&nbsp;Wagner L. Araújo","doi":"10.1016/j.tibs.2025.06.010","DOIUrl":"10.1016/j.tibs.2025.06.010","url":null,"abstract":"<div><div>Understanding the tissue-specific mitochondrial proteome is essential for advancing understanding of plant biology. In a recent study, <span><span>Boussardon <em>et al</em>.</span><svg><path></path></svg></span> applied Isolation of Mitochondria Tagged in Specific Cell Types (IMTACT) to investigate mitoproteome dynamics during pollen development. Here, we explore the broader potential of high-purity mitochondrial isolation in elucidating specific roles across tissues and developmental stages.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"50 11","pages":"Pages 953-955"},"PeriodicalIF":11.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144525854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The interplay of the cGAS–STING pathway with the lysosome cGAS-STING途径与溶酶体的相互作用。
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-11-01 DOI: 10.1016/j.tibs.2025.08.010
Yinfeng Xu (许银丰) , Wei Wan (万伟)
The cyclic GMP-AMP (cGAMP) synthase (cGAS)–stimulator of interferon (IFN) genes (STING) pathway detects cytoplasmic DNA and elicits the innate immune response. Several recent studies show that cGAS–STING signaling not only terminates at the lysosome but also regulates lysosomal function. Here, we discuss the interplay of the cGAS–STING pathway with the lysosome.
环GMP-AMP (cGAMP)合成酶(cGAS)-干扰素(IFN)基因刺激因子(STING)途径检测细胞质DNA并引发先天免疫反应。最近的一些研究表明,cGAS-STING信号不仅终止于溶酶体,而且还调节溶酶体的功能。在这里,我们讨论了cGAS-STING途径与溶酶体的相互作用。
{"title":"The interplay of the cGAS–STING pathway with the lysosome","authors":"Yinfeng Xu (许银丰) ,&nbsp;Wei Wan (万伟)","doi":"10.1016/j.tibs.2025.08.010","DOIUrl":"10.1016/j.tibs.2025.08.010","url":null,"abstract":"<div><div>The cyclic GMP-AMP (cGAMP) synthase (cGAS)–stimulator of interferon (IFN) genes (STING) pathway detects cytoplasmic DNA and elicits the innate immune response. Several recent studies show that cGAS–STING signaling not only terminates at the lysosome but also regulates lysosomal function. Here, we discuss the interplay of the cGAS–STING pathway with the lysosome.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"50 11","pages":"Pages 956-959"},"PeriodicalIF":11.0,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145136057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advisory Board and Contents 咨询委员会及内容
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-10-01 DOI: 10.1016/S0968-0004(25)00227-0
{"title":"Advisory Board and Contents","authors":"","doi":"10.1016/S0968-0004(25)00227-0","DOIUrl":"10.1016/S0968-0004(25)00227-0","url":null,"abstract":"","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"50 10","pages":"Pages i-ii"},"PeriodicalIF":11.0,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145204411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tissue expansion enables proteomics at improved spatial resolution 组织扩展使蛋白质组学在提高空间分辨率。
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-10-01 DOI: 10.1016/j.tibs.2025.06.002
Zhen Dong (董振) , Wenhao Jiang (姜玟昊) , Tiannan Guo (郭天南)
{"title":"Tissue expansion enables proteomics at improved spatial resolution","authors":"Zhen Dong (董振) ,&nbsp;Wenhao Jiang (姜玟昊) ,&nbsp;Tiannan Guo (郭天南)","doi":"10.1016/j.tibs.2025.06.002","DOIUrl":"10.1016/j.tibs.2025.06.002","url":null,"abstract":"","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"50 10","pages":"Pages 945-946"},"PeriodicalIF":11.0,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144367783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subscription and Copyright Information 订阅及版权资料
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-10-01 DOI: 10.1016/S0968-0004(25)00230-0
{"title":"Subscription and Copyright Information","authors":"","doi":"10.1016/S0968-0004(25)00230-0","DOIUrl":"10.1016/S0968-0004(25)00230-0","url":null,"abstract":"","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"50 10","pages":"Page e1"},"PeriodicalIF":11.0,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145204366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered protein inhibitors for precise targeting of matrix metalloproteinases 精确靶向基质金属蛋白酶的工程蛋白抑制剂。
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-10-01 DOI: 10.1016/j.tibs.2025.08.002
Naama Rotenberg , Noam Y. Bentolila , Julia M. Shifman
Matrix metalloproteinases (MMPs) are a family of 23 zinc-dependent proteases involved in extracellular matrix (ECM) remodeling and are implicated in diseases such as cancer, arthritis, and cardiovascular disorders. Broad-spectrum MMP inhibitors (MMPIs) have proven counterproductive due to the protective roles of certain MMPs and their expression in healthy tissues. Recent advances in protein engineering have enabled the development of highly specific protein-based MMPIs that precisely target individual MMPs. These engineered proteins, often derived from antibody fragments or endogenous MMPIs, offer enhanced selectivity, reduced off-target effects, and improved therapeutic efficacy. This review highlights novel strategies for the precise targeting of MMPs using engineered proteins and discusses their potential to transform diagnostics and treatment of MMP-driven diseases.
基质金属蛋白酶(MMPs)是一个由23个锌依赖蛋白酶组成的家族,参与细胞外基质(ECM)重塑,并与癌症、关节炎和心血管疾病等疾病有关。由于某些MMP的保护作用及其在健康组织中的表达,广谱MMP抑制剂(MMPIs)已被证明是适得其反的。蛋白质工程的最新进展使得开发高度特异性的基于蛋白质的mmpi能够精确地靶向单个MMPs。这些工程蛋白通常来源于抗体片段或内源性mmpi,具有增强的选择性,减少脱靶效应,提高治疗效果。这篇综述强调了利用工程蛋白精确靶向MMPs的新策略,并讨论了它们在改变mmp驱动疾病的诊断和治疗方面的潜力。
{"title":"Engineered protein inhibitors for precise targeting of matrix metalloproteinases","authors":"Naama Rotenberg ,&nbsp;Noam Y. Bentolila ,&nbsp;Julia M. Shifman","doi":"10.1016/j.tibs.2025.08.002","DOIUrl":"10.1016/j.tibs.2025.08.002","url":null,"abstract":"<div><div>Matrix metalloproteinases (MMPs) are a family of 23 zinc-dependent proteases involved in extracellular matrix (ECM) remodeling and are implicated in diseases such as cancer, arthritis, and cardiovascular disorders. Broad-spectrum MMP inhibitors (MMPIs) have proven counterproductive due to the protective roles of certain MMPs and their expression in healthy tissues. Recent advances in protein engineering have enabled the development of highly specific protein-based MMPIs that precisely target individual MMPs. These engineered proteins, often derived from antibody fragments or endogenous MMPIs, offer enhanced selectivity, reduced off-target effects, and improved therapeutic efficacy. This review highlights novel strategies for the precise targeting of MMPs using engineered proteins and discusses their potential to transform diagnostics and treatment of MMP-driven diseases.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"50 10","pages":"Pages 919-930"},"PeriodicalIF":11.0,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145038867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial tRNA processing: a neutral evolutionary ratchet innovation 线粒体tRNA加工:中性进化棘轮创新。
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-10-01 DOI: 10.1016/j.tibs.2025.05.008
Lien B. Lai , Jane E. Jackman , Charles J. Daniels , Venkat Gopalan
Mitochondrial tRNA processing is a chronicle of molecular adaptability. The processing of structurally compromised tRNAs is unexpectedly rescued by a multienzyme complex shaped by constructive neutral evolution. This striking example of biological complexity arising from nonadaptive mechanisms showcases how a potential vulnerability is transformed into a robust, if precarious, innovation.
线粒体tRNA加工是分子适应性的编年史。结构上受损的trna的处理意外地由建设性中性进化形成的多酶复合物拯救。这个由非适应性机制产生的生物复杂性的惊人例子展示了一个潜在的脆弱性是如何转化为一个强大的创新的,如果不稳定的话。
{"title":"Mitochondrial tRNA processing: a neutral evolutionary ratchet innovation","authors":"Lien B. Lai ,&nbsp;Jane E. Jackman ,&nbsp;Charles J. Daniels ,&nbsp;Venkat Gopalan","doi":"10.1016/j.tibs.2025.05.008","DOIUrl":"10.1016/j.tibs.2025.05.008","url":null,"abstract":"<div><div>Mitochondrial tRNA processing is a chronicle of molecular adaptability. The processing of structurally compromised tRNAs is unexpectedly rescued by a multienzyme complex shaped by constructive neutral evolution. This striking example of biological complexity arising from nonadaptive mechanisms showcases how a potential vulnerability is transformed into a robust, if precarious, innovation.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"50 10","pages":"Pages 842-844"},"PeriodicalIF":11.0,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144525856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intrinsic disorder and fuzzy interactions drive multiple functions of HMGB1 HMGB1的内在失序和模糊相互作用驱动其多种功能。
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-10-01 DOI: 10.1016/j.tibs.2025.08.001
Michela Ghitti , Liam Sean Colley , Malisa Vittoria Mantonico , Giovanna Musco , Marco Emilio Bianchi
HMGB1, a multitasking protein, is scrutinized here through the lens of the 'fuzzy interactions' driven by its intrinsically disordered regions (IDRs). Although the multiple intracellular and extracellular functions of this protein have been studied for decades, viewing HMGB1 as fuzzy and dynamic provides a novel perspective. Recent breakthroughs emphasize the crucial role of its IDRs, especially the acidic C-terminal tail, in mediating dynamic multivalent interactions. This fuzziness enables HMGB1 to modulate DNA and chromatin binding, to chaperone other proteins such as p53, and to tune inflammatory signals via receptors such as TLR4 and CXCR4. Understanding the fuzzy nature of HMGB1 unlocks new therapeutic strategies targeting both its structured and unstructured regions to tackle a range of diseases.
HMGB1是一种多任务蛋白,本文通过其内在无序区域(idr)驱动的“模糊相互作用”的视角对其进行了仔细研究。虽然该蛋白的多种细胞内和细胞外功能已经研究了几十年,但将HMGB1视为模糊和动态的视角提供了一个新的视角。最近的突破强调了其idr的关键作用,特别是酸性c端尾,在介导动态多价相互作用中。这种模糊性使HMGB1能够调节DNA和染色质结合,陪伴其他蛋白质(如p53),并通过TLR4和CXCR4等受体调节炎症信号。了解HMGB1的模糊性可以开启针对其结构化和非结构化区域的新治疗策略,以治疗一系列疾病。
{"title":"Intrinsic disorder and fuzzy interactions drive multiple functions of HMGB1","authors":"Michela Ghitti ,&nbsp;Liam Sean Colley ,&nbsp;Malisa Vittoria Mantonico ,&nbsp;Giovanna Musco ,&nbsp;Marco Emilio Bianchi","doi":"10.1016/j.tibs.2025.08.001","DOIUrl":"10.1016/j.tibs.2025.08.001","url":null,"abstract":"<div><div>HMGB1, a multitasking protein, is scrutinized here through the lens of the 'fuzzy interactions' driven by its intrinsically disordered regions (IDRs). Although the multiple intracellular and extracellular functions of this protein have been studied for decades, viewing HMGB1 as fuzzy and dynamic provides a novel perspective. Recent breakthroughs emphasize the crucial role of its IDRs, especially the acidic C-terminal tail, in mediating dynamic multivalent interactions. This fuzziness enables HMGB1 to modulate DNA and chromatin binding, to chaperone other proteins such as p53, and to tune inflammatory signals via receptors such as TLR4 and CXCR4. Understanding the fuzzy nature of HMGB1 unlocks new therapeutic strategies targeting both its structured and unstructured regions to tackle a range of diseases.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"50 10","pages":"Pages 906-918"},"PeriodicalIF":11.0,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144938131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in Biochemical Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1