首页 > 最新文献

Trends in Biochemical Sciences最新文献

英文 中文
Regulation of plant NLRs by post-translational modifications 植物nlr的翻译后修饰调控。
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-01 DOI: 10.1016/j.tibs.2025.10.008
Chenchen Zhong , Xinchen Wang , Yi Li , Savithramma P. Dinesh-Kumar , Yongliang Zhang
The discovery of resistosomes has revolutionized our understanding of plant immunity by elucidating the structural and mechanistic basis of nucleotide-binding leucine-rich repeat receptor (NLR)-mediated defense. Recent structural insights and mechanistic studies highlight the pivotal role of post-translational modifications (PTMs), including phosphorylation, ubiquitination, lipidation, acetylation, and SUMOylation in regulating NLR function. Kinases, E3 ubiquitin ligases, and other PTM-modifying enzymes have emerged as key regulators that control NLR conformational dynamics, stability, and immune signaling. These findings underscore the importance of spatiotemporal regulation in balancing growth–defense trade-off during NLR-mediated immunity and provide new insights for engineering NLRs to enhance crop disease resistance.
抗性小体的发现通过阐明核苷酸结合富亮氨酸重复受体(NLR)介导的防御的结构和机制基础,彻底改变了我们对植物免疫的理解。最近的结构见解和机制研究强调了翻译后修饰(PTMs)在调节NLR功能中的关键作用,包括磷酸化、泛素化、脂化、乙酰化和sumo化。激酶、E3泛素连接酶和其他ptm修饰酶已成为控制NLR构象动力学、稳定性和免疫信号传导的关键调节因子。这些发现强调了nlr介导的免疫过程中时空调节在平衡生长-防御平衡中的重要性,并为nlr工程提高作物抗病性提供了新的见解。
{"title":"Regulation of plant NLRs by post-translational modifications","authors":"Chenchen Zhong ,&nbsp;Xinchen Wang ,&nbsp;Yi Li ,&nbsp;Savithramma P. Dinesh-Kumar ,&nbsp;Yongliang Zhang","doi":"10.1016/j.tibs.2025.10.008","DOIUrl":"10.1016/j.tibs.2025.10.008","url":null,"abstract":"<div><div>The discovery of resistosomes has revolutionized our understanding of plant immunity by elucidating the structural and mechanistic basis of nucleotide-binding leucine-rich repeat receptor (NLR)-mediated defense. Recent structural insights and mechanistic studies highlight the pivotal role of post-translational modifications (PTMs), including phosphorylation, ubiquitination, lipidation, acetylation, and SUMOylation in regulating NLR function. Kinases, E3 ubiquitin ligases, and other PTM-modifying enzymes have emerged as key regulators that control NLR conformational dynamics, stability, and immune signaling. These findings underscore the importance of spatiotemporal regulation in balancing growth–defense trade-off during NLR-mediated immunity and provide new insights for engineering NLRs to enhance crop disease resistance.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"51 1","pages":"Pages 51-63"},"PeriodicalIF":11.0,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145601442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular mechanisms of the mammalian fatty acid cycle 哺乳动物脂肪酸循环的分子机制。
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-01 DOI: 10.1016/j.tibs.2025.09.005
Christian Gusenda , Martin Grininger
Mammalian fatty acid synthase (mFAS) supplies cells with saturated fatty acids for energy storage, membrane formation, and protein modifications. Structural studies over the past two decades have identified conformational variability as a hallmark feature of the multidomain mFAS, but how does this structural flexibility influence fatty acid synthesis? Cryo-electron microscopy (cryo-EM) snapshots of human FAS (hFAS) and a homologous polyketide synthase (PKS) reveal that efficiency is governed less by large-scale flexibility and more by the precise docking choreography of the acyl carrier protein (ACP). Three principles appear to influence the propagation of the fatty acid cycle: inherent conformational variability, scaffolding that steers ACP towards productive interactions, and ACP:domain interface complementarity.
哺乳动物脂肪酸合成酶(mFAS)为细胞提供饱和脂肪酸,用于能量储存、膜形成和蛋白质修饰。过去二十年的结构研究已经确定了构象变异性是多结构域mFAS的一个标志性特征,但是这种结构灵活性是如何影响脂肪酸合成的?人类FAS (hFAS)和同源聚酮合成酶(PKS)的冷冻电镜(cryo-EM)快照显示,效率较少受大规模灵活性的影响,更多地受酰基载体蛋白(ACP)的精确对接设计的影响。影响脂肪酸循环传播的三个原理是:固有的构象变异性,引导ACP产生相互作用的支架,以及ACP:结构域界面互补性。
{"title":"Molecular mechanisms of the mammalian fatty acid cycle","authors":"Christian Gusenda ,&nbsp;Martin Grininger","doi":"10.1016/j.tibs.2025.09.005","DOIUrl":"10.1016/j.tibs.2025.09.005","url":null,"abstract":"<div><div>Mammalian fatty acid synthase (mFAS) supplies cells with saturated fatty acids for energy storage, membrane formation, and protein modifications. Structural studies over the past two decades have identified conformational variability as a hallmark feature of the multidomain mFAS, but how does this structural flexibility influence fatty acid synthesis? Cryo-electron microscopy (cryo-EM) snapshots of human FAS (hFAS) and a homologous polyketide synthase (PKS) reveal that efficiency is governed less by large-scale flexibility and more by the precise docking choreography of the acyl carrier protein (ACP). Three principles appear to influence the propagation of the fatty acid cycle: inherent conformational variability, scaffolding that steers ACP towards productive interactions, and ACP:domain interface complementarity.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"51 1","pages":"Pages 39-50"},"PeriodicalIF":11.0,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145470453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TiBS at 50 xbs 50
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-01 DOI: 10.1016/j.tibs.2025.11.007
Sannie Culbertson
{"title":"TiBS at 50","authors":"Sannie Culbertson","doi":"10.1016/j.tibs.2025.11.007","DOIUrl":"10.1016/j.tibs.2025.11.007","url":null,"abstract":"","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"51 1","pages":"Pages 1-2"},"PeriodicalIF":11.0,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145915132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated approaches for discovery and functional annotation of proteins of unknown function 未知功能蛋白的发现和功能注释的综合方法。
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-01 DOI: 10.1016/j.tibs.2025.11.001
Tanishi Moitra , Gerald Larrouy-Maumus
Proteins of unknown function (PUFs) remain a persistent blind spot in molecular biology. Emerging evidence implicates many PUFs in crucial but poorly characterised roles in biomedical contexts, particularly cancer and infectious diseases. Here, we explore integrative strategies combining high-throughput experimental platforms with computational models to address this gap. We outline how functional insights can be derived across a molecular hierarchy, spanning individual proteins, interaction networks, and transient assemblies, and evaluate the distinct opportunities and challenges faced at each level. Framing these advances within a systems biology lens, we argue that characterising PUFs could redefine therapeutic discovery pipelines. We call for data-driven discovery methods and community efforts to support reproducible, scalable annotation of the ‘dark’ proteome.
未知功能蛋白(PUFs)一直是分子生物学中的一个盲点。新出现的证据表明,许多puf在生物医学领域,特别是在癌症和传染病领域,发挥着关键但特征不明确的作用。在这里,我们探索将高通量实验平台与计算模型相结合的综合策略来解决这一差距。我们概述了如何通过分子层次,跨越单个蛋白质,相互作用网络和瞬态组装来获得功能见解,并评估每个层次面临的独特机遇和挑战。从系统生物学的角度来看,我们认为表征puf可以重新定义治疗发现管道。我们呼吁数据驱动的发现方法和社区的努力,以支持“黑暗”蛋白质组的可复制,可扩展的注释。
{"title":"Integrated approaches for discovery and functional annotation of proteins of unknown function","authors":"Tanishi Moitra ,&nbsp;Gerald Larrouy-Maumus","doi":"10.1016/j.tibs.2025.11.001","DOIUrl":"10.1016/j.tibs.2025.11.001","url":null,"abstract":"<div><div>Proteins of unknown function (PUFs) remain a persistent blind spot in molecular biology. Emerging evidence implicates many PUFs in crucial but poorly characterised roles in biomedical contexts, particularly cancer and infectious diseases. Here, we explore integrative strategies combining high-throughput experimental platforms with computational models to address this gap. We outline how functional insights can be derived across a molecular hierarchy, spanning individual proteins, interaction networks, and transient assemblies, and evaluate the distinct opportunities and challenges faced at each level. Framing these advances within a systems biology lens, we argue that characterising PUFs could redefine therapeutic discovery pipelines. We call for data-driven discovery methods and community efforts to support reproducible, scalable annotation of the ‘dark’ proteome.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"51 1","pages":"Pages 80-92"},"PeriodicalIF":11.0,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145627479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The evolution and future of protein science 蛋白质科学的发展与未来
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-01 DOI: 10.1016/j.tibs.2025.11.004
Shina Caroline Lynn Kamerlin , Salvador Ventura
{"title":"The evolution and future of protein science","authors":"Shina Caroline Lynn Kamerlin ,&nbsp;Salvador Ventura","doi":"10.1016/j.tibs.2025.11.004","DOIUrl":"10.1016/j.tibs.2025.11.004","url":null,"abstract":"","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"51 1","pages":"Pages 3-5"},"PeriodicalIF":11.0,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145915133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advisory Board and Contents 咨询委员会及内容
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-01 DOI: 10.1016/S0968-0004(25)00310-X
{"title":"Advisory Board and Contents","authors":"","doi":"10.1016/S0968-0004(25)00310-X","DOIUrl":"10.1016/S0968-0004(25)00310-X","url":null,"abstract":"","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"51 1","pages":"Pages i-ii"},"PeriodicalIF":11.0,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145915131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subscription and Copyright Information 订阅及版权资料
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-01 DOI: 10.1016/S0968-0004(25)00313-5
{"title":"Subscription and Copyright Information","authors":"","doi":"10.1016/S0968-0004(25)00313-5","DOIUrl":"10.1016/S0968-0004(25)00313-5","url":null,"abstract":"","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"51 1","pages":"Page e1"},"PeriodicalIF":11.0,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145915135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein codes and mobility together shape cellular function and disease 蛋白质编码和移动共同塑造细胞功能和疾病。
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-01 DOI: 10.1016/j.tibs.2025.10.009
Henry R. Kilgore , Shannon Moreno , Richard A. Young
Cells organize their biochemical activities by assembling proteins into both membrane-bound organelles and membrane-less condensates. These compartments enable specialized chemical environments that support unique biochemical functions. Recent evidence indicates that proteins carry encoded instructions for not only protein folding, but also selective distribution into condensate compartments. The dynamic movement of proteins into and within compartments is essential for normal function, while disruptions that reduce protein mobility can impair biochemical rates and cause dysfunction and disease. Here, we review these principles of condensate compartmentalization, emphasizing how encoded protein properties, chemical environments, and dynamic movement shape both cellular health and disease pathology.
细胞通过将蛋白质组装成膜结合细胞器和无膜凝聚体来组织其生化活动。这些隔室使特殊的化学环境支持独特的生化功能。最近的证据表明,蛋白质不仅携带蛋白质折叠的编码指令,而且还携带选择性分布到凝聚区。蛋白质在隔室内的动态运动对正常功能至关重要,而减少蛋白质流动性的破坏会损害生化速率并导致功能障碍和疾病。在这里,我们回顾了凝析液区隔化的这些原理,强调了编码蛋白特性、化学环境和动态运动如何影响细胞健康和疾病病理。
{"title":"Protein codes and mobility together shape cellular function and disease","authors":"Henry R. Kilgore ,&nbsp;Shannon Moreno ,&nbsp;Richard A. Young","doi":"10.1016/j.tibs.2025.10.009","DOIUrl":"10.1016/j.tibs.2025.10.009","url":null,"abstract":"<div><div>Cells organize their biochemical activities by assembling proteins into both membrane-bound organelles and membrane-less condensates. These compartments enable specialized chemical environments that support unique biochemical functions. Recent evidence indicates that proteins carry encoded instructions for not only protein folding, but also selective distribution into condensate compartments. The dynamic movement of proteins into and within compartments is essential for normal function, while disruptions that reduce protein mobility can impair biochemical rates and cause dysfunction and disease. Here, we review these principles of condensate compartmentalization, emphasizing how encoded protein properties, chemical environments, and dynamic movement shape both cellular health and disease pathology.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"51 1","pages":"Pages 8-26"},"PeriodicalIF":11.0,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145627459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial transformation 细菌转化
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-01 DOI: 10.1016/j.tibs.2025.11.006
Dominika Dobosz
{"title":"Bacterial transformation","authors":"Dominika Dobosz","doi":"10.1016/j.tibs.2025.11.006","DOIUrl":"10.1016/j.tibs.2025.11.006","url":null,"abstract":"","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"51 1","pages":"Page 93"},"PeriodicalIF":11.0,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145915134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subscription and Copyright Information 订阅及版权资料
IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-12-01 DOI: 10.1016/S0968-0004(25)00284-1
{"title":"Subscription and Copyright Information","authors":"","doi":"10.1016/S0968-0004(25)00284-1","DOIUrl":"10.1016/S0968-0004(25)00284-1","url":null,"abstract":"","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"50 12","pages":"Page e1"},"PeriodicalIF":11.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145665543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in Biochemical Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1