首页 > 最新文献

Trends in Biochemical Sciences最新文献

英文 中文
Constructive neutral evolution of homodimer to heterodimer transition. 同源二聚体向异源二聚体过渡的建设性中性进化。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-23 DOI: 10.1016/j.tibs.2024.10.003
Lin Chou, Carly J Houghton, Aaron Wacholder, Anne-Ruxandra Carvunis

Complexification of macrobiomolecules, such as homodimer to heterodimer transitions, are common during evolution. Is such complexification always adaptive? Using large-scale experiments and in-depth biochemical analyses, Després et al. recently demonstrated that an obligate heterodimer can evolve from a homodimer through neutral, nonadaptive events, and quantified key parameters required for such transitions.

在进化过程中,大生物大分子的复杂化(如同源二聚体向异源二聚体的转变)很常见。这种复合是否总是适应性的?最近,Després 等人利用大规模实验和深入的生化分析证明,强制性异源二聚体可以通过中性、非适应性事件从同源二聚体进化而来,并量化了这种转变所需的关键参数。
{"title":"Constructive neutral evolution of homodimer to heterodimer transition.","authors":"Lin Chou, Carly J Houghton, Aaron Wacholder, Anne-Ruxandra Carvunis","doi":"10.1016/j.tibs.2024.10.003","DOIUrl":"https://doi.org/10.1016/j.tibs.2024.10.003","url":null,"abstract":"<p><p>Complexification of macrobiomolecules, such as homodimer to heterodimer transitions, are common during evolution. Is such complexification always adaptive? Using large-scale experiments and in-depth biochemical analyses, Després et al. recently demonstrated that an obligate heterodimer can evolve from a homodimer through neutral, nonadaptive events, and quantified key parameters required for such transitions.</p>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":" ","pages":""},"PeriodicalIF":11.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functionalized DNA secondary structures and nanostructures for specific protein modifications. 用于特定蛋白质修饰的功能化 DNA 二级结构和纳米结构。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-22 DOI: 10.1016/j.tibs.2024.09.003
Bauke Albada

The development of non-biological applications of DNA has not only resulted in delicately shaped DNA-based nano-objects with complex functions but also spawned their use for novel catalytic applications. From the multitude of applications of DNAzymes that operate on a relatively simple substrate, we have witnessed the emergence of multifunctional catalytically active DNA-based nanostructures for one of the most challenging tasks known to a chemist: the controlled and precise modification of a wild-type protein in its natural environment. By incorporating various elements associated with post-translational modification (PTM) writer enzymes into complex nanostructures, it is now possible to chemically modify a specific protein in cell lysates under the influence of an externally added trigger, clearly illustrating the promising future for this approach.

脱氧核糖核酸(DNA)非生物应用的发展不仅造就了形状精致、功能复杂的脱氧核糖核酸(DNA)纳米物体,还催生了它们在新型催化应用中的使用。从 DNA 酶在相对简单的底物上的大量应用中,我们看到了多功能催化活性 DNA 纳米结构的出现,这种结构可用于化学家已知的最具挑战性的任务之一:在自然环境中对野生型蛋白质进行可控和精确的修饰。通过在复杂的纳米结构中加入与翻译后修饰(PTM)作者酶相关的各种元素,现在有可能在外部添加触发器的影响下,对细胞裂解物中的特定蛋白质进行化学修饰,这清楚地表明了这种方法的美好前景。
{"title":"Functionalized DNA secondary structures and nanostructures for specific protein modifications.","authors":"Bauke Albada","doi":"10.1016/j.tibs.2024.09.003","DOIUrl":"https://doi.org/10.1016/j.tibs.2024.09.003","url":null,"abstract":"<p><p>The development of non-biological applications of DNA has not only resulted in delicately shaped DNA-based nano-objects with complex functions but also spawned their use for novel catalytic applications. From the multitude of applications of DNAzymes that operate on a relatively simple substrate, we have witnessed the emergence of multifunctional catalytically active DNA-based nanostructures for one of the most challenging tasks known to a chemist: the controlled and precise modification of a wild-type protein in its natural environment. By incorporating various elements associated with post-translational modification (PTM) writer enzymes into complex nanostructures, it is now possible to chemically modify a specific protein in cell lysates under the influence of an externally added trigger, clearly illustrating the promising future for this approach.</p>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":" ","pages":""},"PeriodicalIF":11.6,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clues into Wnt cell surface signalosomes and its biogenesis. Wnt 细胞表面信号体及其生物生成的线索。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-22 DOI: 10.1016/j.tibs.2024.09.007
Philip Schmiege, Xiaochun Li

Wnt morphogens induce signaling via binding their extracellular receptors. Here, we discuss several recent structural studies showing how Wnts engage their receptors frizzled (FZD) and low-density lipoprotein receptor-related protein 5/6 (LRP5/6), how Cachd1 has been shown as an alternative initiator of Wnt signaling, and how lipidated Wnt may be produced and secreted from the cell.

Wnt 形态诱导因子通过结合细胞外受体诱导信号传导。在此,我们讨论了最近的几项结构研究,这些研究显示了 Wnt 如何与其受体 frizzled (FZD) 和低密度脂蛋白受体相关蛋白 5/6 (LRP5/6)结合,Cachd1 如何被证明是 Wnt 信号传导的另一种启动器,以及脂质化 Wnt 如何产生并从细胞中分泌出来。
{"title":"Clues into Wnt cell surface signalosomes and its biogenesis.","authors":"Philip Schmiege, Xiaochun Li","doi":"10.1016/j.tibs.2024.09.007","DOIUrl":"https://doi.org/10.1016/j.tibs.2024.09.007","url":null,"abstract":"<p><p>Wnt morphogens induce signaling via binding their extracellular receptors. Here, we discuss several recent structural studies showing how Wnts engage their receptors frizzled (FZD) and low-density lipoprotein receptor-related protein 5/6 (LRP5/6), how Cachd1 has been shown as an alternative initiator of Wnt signaling, and how lipidated Wnt may be produced and secreted from the cell.</p>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":" ","pages":""},"PeriodicalIF":11.6,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anything you can do, glycans do better: deglycosylation and noncanonical ubiquitination vie to rule the proteasome. 你能做的任何事情,聚糖都能做得更好:脱糖基化和非经典泛素化争夺蛋白酶体的统治权。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-16 DOI: 10.1016/j.tibs.2024.10.001
Nicolas Lehrbach

The Nrf1/Nfe2L1 transcription factor is a master regulator of proteasome biogenesis. New work by Yoshida and colleagues reveals a surprising mechanism by which ubiquitination of N-glycosylated Nrf1 controls its function.

Nrf1/Nfe2L1 转录因子是蛋白酶体生物生成的主调节因子。Yoshida 及其同事的新研究揭示了 N-糖基化 Nrf1 泛素化控制其功能的惊人机制。
{"title":"Anything you can do, glycans do better: deglycosylation and noncanonical ubiquitination vie to rule the proteasome.","authors":"Nicolas Lehrbach","doi":"10.1016/j.tibs.2024.10.001","DOIUrl":"https://doi.org/10.1016/j.tibs.2024.10.001","url":null,"abstract":"<p><p>The Nrf1/Nfe2L1 transcription factor is a master regulator of proteasome biogenesis. New work by Yoshida and colleagues reveals a surprising mechanism by which ubiquitination of N-glycosylated Nrf1 controls its function.</p>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":" ","pages":""},"PeriodicalIF":11.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of hydrolysis in perceiving and degrading the plant hormone strigolactones. 水解作用在感知和降解植物激素绞股蓝内酯中的作用。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-08 DOI: 10.1016/j.tibs.2024.09.006
Kawthar F Alashoor, Jian You Wang, Salim Al-Babili

Strigolactones (SLs) perform versatile functions in plants. The different members of the α/β-hydrolase superfamily bind and hydrolyze SLs at varying rates to transduce their signal or maintain SL homeostasis. Recent work by Palayam et al. on SL-degrading carboxylesterases (CXEs) uncovers structural elements that determine the mechanism, efficiency of SL hydrolysis, and biological functions.

硬脂内酯(SLs)在植物体内具有多种功能。α/β-水解酶超家族的不同成员以不同的速率结合和水解 SLs,以传递其信号或维持 SL 的平衡。Palayam 等人最近对 SL 降解羧基酯酶(CXEs)的研究揭示了决定 SL 水解机制、效率和生物功能的结构要素。
{"title":"The role of hydrolysis in perceiving and degrading the plant hormone strigolactones.","authors":"Kawthar F Alashoor, Jian You Wang, Salim Al-Babili","doi":"10.1016/j.tibs.2024.09.006","DOIUrl":"https://doi.org/10.1016/j.tibs.2024.09.006","url":null,"abstract":"<p><p>Strigolactones (SLs) perform versatile functions in plants. The different members of the α/β-hydrolase superfamily bind and hydrolyze SLs at varying rates to transduce their signal or maintain SL homeostasis. Recent work by Palayam et al. on SL-degrading carboxylesterases (CXEs) uncovers structural elements that determine the mechanism, efficiency of SL hydrolysis, and biological functions.</p>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":" ","pages":""},"PeriodicalIF":11.6,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualizing intermediate stages of viral membrane fusion by cryo-electron tomography 通过低温电子断层扫描观察病毒膜融合的中间阶段。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 DOI: 10.1016/j.tibs.2024.06.012
Sally M. Kephart , Nancy Hom , Kelly K. Lee
Protein-mediated membrane fusion is the dynamic process where specialized protein machinery undergoes dramatic conformational changes that drive two membrane bilayers together, leading to lipid mixing and opening of a fusion pore between previously separate membrane-bound compartments. Membrane fusion is an essential stage of enveloped virus entry that results in viral genome delivery into host cells. Recent studies applying cryo-electron microscopy techniques in a time-resolved fashion provide unprecedented glimpses into the interaction of viral fusion proteins and membranes, revealing fusion intermediate states from the initiation of fusion to release of the viral genome. In combination with complementary structural, biophysical, and computation modeling approaches, these advances are shedding new light on the mechanics and dynamics of protein-mediated membrane fusion.
蛋白质介导的膜融合是一个动态过程,在这一过程中,专门的蛋白质机制会发生巨大的构象变化,从而推动两层膜结合在一起,导致脂质混合,并在先前分离的膜结合区之间打开一个融合孔。膜融合是包膜病毒进入宿主细胞的重要阶段,它能将病毒基因组送入宿主细胞。最近的研究以时间分辨的方式应用冷冻电镜技术,提供了病毒融合蛋白与膜相互作用的前所未有的一瞥,揭示了从开始融合到释放病毒基因组的融合中间状态。结合互补的结构、生物物理和计算建模方法,这些进展为蛋白质介导的膜融合的力学和动力学提供了新的启示。
{"title":"Visualizing intermediate stages of viral membrane fusion by cryo-electron tomography","authors":"Sally M. Kephart ,&nbsp;Nancy Hom ,&nbsp;Kelly K. Lee","doi":"10.1016/j.tibs.2024.06.012","DOIUrl":"10.1016/j.tibs.2024.06.012","url":null,"abstract":"<div><div>Protein-mediated membrane fusion is the dynamic process where specialized protein machinery undergoes dramatic conformational changes that drive two membrane bilayers together, leading to lipid mixing and opening of a fusion pore between previously separate membrane-bound compartments. Membrane fusion is an essential stage of enveloped virus entry that results in viral genome delivery into host cells. Recent studies applying cryo-electron microscopy techniques in a time-resolved fashion provide unprecedented glimpses into the interaction of viral fusion proteins and membranes, revealing fusion intermediate states from the initiation of fusion to release of the viral genome. In combination with complementary structural, biophysical, and computation modeling approaches, these advances are shedding new light on the mechanics and dynamics of protein-mediated membrane fusion.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 10","pages":"Pages 916-931"},"PeriodicalIF":11.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455608/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141756459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling intracellular phase separation: advances in optical imaging of biomolecular condensates 揭示细胞内的相分离:生物分子凝聚物光学成像的进展。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 DOI: 10.1016/j.tibs.2024.06.014
Yinfeng Guo (郭寅风) , Xin Zhang (张鑫)
Intracellular biomolecular condensates, which form via phase separation, display a highly organized ultrastructure and complex properties. Recent advances in optical imaging techniques, including super-resolution microscopy and innovative microscopic methods that leverage the intrinsic properties of the molecules observed, have transcended the limitations of conventional microscopies. These advances facilitate the exploration of condensates at finer scales and in greater detail. The deployment of these emerging but sophisticated imaging tools allows for precise observations of the multiphasic organization and physicochemical properties of these condensates, shedding light on their functions in cellular processes. In this review, we highlight recent progress in methodological innovations and their profound implications for understanding the organization and dynamics of intracellular biomolecular condensates.
通过相分离形成的细胞内生物分子凝聚体显示出高度有序的超微结构和复杂的特性。光学成像技术的最新进展,包括超分辨率显微镜和利用所观察分子固有特性的创新显微方法,已经超越了传统显微镜的局限性。这些进步有助于以更精细的尺度和更详细的细节探索凝聚态。利用这些新兴而复杂的成像工具,可以精确观测这些凝聚体的多相组织和理化性质,从而揭示它们在细胞过程中的功能。在这篇综述中,我们将重点介绍方法创新的最新进展及其对理解细胞内生物分子凝聚体的组织和动力学的深远影响。
{"title":"Unveiling intracellular phase separation: advances in optical imaging of biomolecular condensates","authors":"Yinfeng Guo (郭寅风) ,&nbsp;Xin Zhang (张鑫)","doi":"10.1016/j.tibs.2024.06.014","DOIUrl":"10.1016/j.tibs.2024.06.014","url":null,"abstract":"<div><div>Intracellular biomolecular condensates, which form via phase separation, display a highly organized ultrastructure and complex properties. Recent advances in optical imaging techniques, including super-resolution microscopy and innovative microscopic methods that leverage the intrinsic properties of the molecules observed, have transcended the limitations of conventional microscopies. These advances facilitate the exploration of condensates at finer scales and in greater detail. The deployment of these emerging but sophisticated imaging tools allows for precise observations of the multiphasic organization and physicochemical properties of these condensates, shedding light on their functions in cellular processes. In this review, we highlight recent progress in methodological innovations and their profound implications for understanding the organization and dynamics of intracellular biomolecular condensates.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 10","pages":"Pages 901-915"},"PeriodicalIF":11.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advisory Board and Contents 咨询委员会和内容
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 DOI: 10.1016/S0968-0004(24)00212-3
{"title":"Advisory Board and Contents","authors":"","doi":"10.1016/S0968-0004(24)00212-3","DOIUrl":"10.1016/S0968-0004(24)00212-3","url":null,"abstract":"","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 10","pages":"Page i"},"PeriodicalIF":11.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytosine methylation flags mitochondrial RNA for degradation 胞嘧啶甲基化标志着线粒体 RNA 的降解。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 DOI: 10.1016/j.tibs.2024.08.001
Emeline Recazens , Alexis A. Jourdain
Mitochondrial double-stranded RNA (dsRNA) can form spontaneously in mitochondria, blocking mitochondrial gene expression and triggering an immune response. A recent study by Kim, Tan, et al. identified a safeguard mechanism in which NOP2/Sun RNA methyltransferase 4 (NSUN4)-mediated RNA methylation (m5C) recruits the RNA degradation machinery to prevent dsRNA formation.
线粒体双链 RNA(dsRNA)可在线粒体中自发形成,阻碍线粒体基因表达并引发免疫反应。Kim、Tan 等人最近的一项研究发现了一种保障机制,其中 NOP2/Sun RNA 甲基转移酶 4(NSUN4)介导的 RNA 甲基化(m5C)可招募 RNA 降解机制来防止 dsRNA 的形成。
{"title":"Cytosine methylation flags mitochondrial RNA for degradation","authors":"Emeline Recazens ,&nbsp;Alexis A. Jourdain","doi":"10.1016/j.tibs.2024.08.001","DOIUrl":"10.1016/j.tibs.2024.08.001","url":null,"abstract":"<div><div>Mitochondrial double-stranded RNA (dsRNA) can form spontaneously in mitochondria, blocking mitochondrial gene expression and triggering an immune response. A recent study by <span><span>Kim, Tan, <em>et al</em>.</span><svg><path></path></svg></span> identified a safeguard mechanism in which NOP2/Sun RNA methyltransferase 4 (NSUN4)-mediated RNA methylation (m<sup>5</sup>C) recruits the RNA degradation machinery to prevent dsRNA formation.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 10","pages":"Pages 843-845"},"PeriodicalIF":11.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142054525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subscription and Copyright Information 订阅和版权信息
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 DOI: 10.1016/S0968-0004(24)00215-9
{"title":"Subscription and Copyright Information","authors":"","doi":"10.1016/S0968-0004(24)00215-9","DOIUrl":"10.1016/S0968-0004(24)00215-9","url":null,"abstract":"","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 10","pages":"Page e1"},"PeriodicalIF":11.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in Biochemical Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1