Background: Anterior shoulder dislocations are a common injury, especially in the young, active, male population1. Soft-tissue treatment options for shoulder instability include arthroscopic or open Bankart repair, with open Bankart repair historically having lower rates of recurrence and reoperation, faster return to activity2-4, and a similar quality of life compared with arthroscopic repair5. More recent literature has suggested similar recurrence rates between arthroscopic and open procedures6. However, open Bankart repair may be indicated in cases of recurrent instability, especially if the patient participates in high-risk sports, because open repair can provide more capsular shift through the use of extra-capsular knots7. Performing a subscapularis split decreases the likelihood of subscapularis tendon avulsion following subscapularis tendon tenotomy and subsequent repair, as has been described in the literature8.
Description: Indications for open Bankart repair include failure of arthroscopic Bankart repair, multiple dislocations, with subcritical bone loss. This surgical technique is performed via the deltopectoral approach. The subscapularis tendon is exposed and "spared" by splitting the fibers with use of a longitudinal incision between the upper 2/3 and lower 1/3 of the subscapularis. We begin the split medially near the myotendinous junction. Because the subscapularis becomes increasingly difficult to separate from the capsule as it tracks laterally, a RAY-TEC sponge is utilized to bluntly dissect. A T-shaped laterally based capsulotomy is made to expose the glenohumeral joint. The vertical aspect is made first, followed by the horizontal aspect from lateral to medial, extending to the labrum. A Fukuda retractor is placed through the split to hold the humeral head laterally. The labrum is elevated, and the glenoid is prepared with rasp. Then labrum is repaired with knotted suture anchors until it is secure. One anchor is utilized for each "hour" of the clock face, with a minimum of 3 anchors. The anchors are placed on the articular margin of the glenoid. Sutures are passed from the anchor through the capsule and tied outside the capsule. The capsulotomy is then repaired with use of a suture. The suture is utilized to pull the inferior portion superiorly. The inferior portion is taken superiorly, and the superior leaflet is imbricated over the top. Finally, an examination is performed to ensure that the humeral head can be translated to but not over the anterior and posterior glenoid rims. No repair of the subscapularis tendon insertion is required. The incision is closed with deep dermal and subcuticular suture.
Alternatives: Nonoperative treatment options include rotator cuff and periscapular strengthening or immobilization. Operative treatment options include open Bankart repair with subscapularis ten
Background: Percutaneous tripod fixation of periacetabular lesions is performed at our institution for patients with metastatic bone disease and a need for quick return to systemic therapy. We have begun to use the IlluminOss Photodynamic Bone Stabilization System instead of the metal implants previously described in the literature because of the success of the IlluminOss implant in fixing fragility fractures about the pelvis.
Description: At our institution, the procedure is performed in the interventional radiology suite in order to allow for the use of 3D radiographic imaging and vector guidance systems. The patient is positioned prone for the transcolumnar PSIS-to-AIIS implant and posterior column/ischial tuberosity implant or supine for the anterior column/superior pubic ramus implant. Following a small incision, a Jamshidi needle with a trocar is utilized to enter the bone at the chosen start point. A hand drill is utilized to advance the Jamshidi needle according to the planned vector; alternatively, a curved or straight awl can be utilized. The 1.2-mm guidewire is placed and reamed. We place both the transcolumnar and posterior column wires at the same time to ensure that there is no interference. The balloon catheter for the IlluminOss is assembled on the back table and inserted according to the implant technique guide. The balloon is inflated and observed on radiographs in order to ensure that the cavity is filled. Monomer is then cured, and the patient is flipped for the subsequent implant. Following placement of the 3 IlluminOss devices, adjunct treatments such as cement acetabuloplasty or cryoablation can be performed.
Alternatives: Alternative treatments include traditional open fixation of impending or nondisplaced acetabular fractures in the operating room, or percutaneous implant placement in the operating room. Implant placement may be performed with the patient in the supine, lateral, or prone position, depending on surgeon preference. Alternative implants include standard metal implants such as plates and screws, or cement augmentation either alone or with percutaneous screws. Finally, ablation alone may be an alternative option, depending on tumor histology.
Rationale: Open treatment of acetabular fractures is a more morbid procedure, given the larger incision, increased blood loss, longer time under anesthesia, and increased length of recovery. Percutaneous fixation may be performed in either the operating room or interventional radiology suite, depending on the specific equipment setup at an individual institution. At our institution, we prefer utilizing the interventional radiology suite as it allows for more precise implant placement through the use of an image-based vector guidance system and 3D fluoroscopy to accurately identify safe corridors. The use of percutaneous fixation allows for faster recovery and earlier return to systemi
Background: Intramedullary straight nail fixation of proximal humeral fractures using a locking mechanism provides advantages compared with plating, including (1) less soft-tissue dissection, which preserves periosteal blood supply and soft-tissue attachments; (2) improved construct stability for comminuted fractures or osteopenic bone; and (3) shorter operative time for simpler fractures.
Description: The patient is placed in the beach-chair position with the head of the bed elevated approximately 45°. The fracture is reduced with use of closed or percutaneous methods, ideally, or with an open approach if required. Temporary fragment fixation with percutaneous Kirschner wires can be utilized. A 1-cm incision is made just anterior to the acromioclavicular joint, overlying the zenith of the humeral head and in line with the diaphysis. A guide-pin is then placed through this incision and is verified to be centrally located and in line with the humeral diaphysis on fluoroscopic views. The guide-pin is advanced into the diaphysis. A cannulated 9-mm reamer is inserted over the guide-pin to create a starting position. The nail is then inserted, with adequate fragment reduction maintained until the proximal nail portion is buried under the subchondral humeral head. The proximal screw trajectory and alignment are checked fluoroscopically. The proximal locking screws are pre-drilled and inserted first using percutaneous drill sleeves through the radiolucent targeting jig. The screw is inserted through the guide and is advanced into the nail until appropriately seated. This process is then repeated for the other proximal screws as necessary. Finally, the distal diaphyseal screws are pre-drilled and inserted in a similar percutaneous fashion using the jig, and the jig is removed. Final orthogonal images are obtained. Copious irrigation of the incisions is performed and they are closed and dressed with a sterile dressing. The operative arm is placed in an abduction sling.
Alternatives: Alternative treatment options for proximal humeral fractures include nonoperative treatment with use of a sling, percutaneous reduction and internal fixation with Kirschner wires, open reduction and internal fixation with a locking plate and screw construct, hemiarthroplasty, and anatomic or reverse total shoulder arthroplasty1.
Rationale: The presently described technique for proximal humeral fracture fixation using a straight, antegrade, locking nail allows for minimal soft-tissue disruption, preserving vascularity and soft-tissue support and achieving angularly stable fixation in often osteopenic bone. The superior and in-line entry point avoids complications of rotator cuff injury and/or subacromial impingement. The proximal locking screws avoid complications of screw penetration or migration. This technique is appropriate for surgically indicated Neer 2-, 3-, and 4-part hum

