首页 > 最新文献

International Journal of Image and Graphics最新文献

英文 中文
Improved Invasive Weed Social Ski-Driver Optimization-Based Deep Convolution Neural Network for Diabetic Retinopathy Classification 改进的基于深度卷积神经网络的有创杂草社交滑雪驱动程序优化用于糖尿病视网膜病变分类
IF 1.6 Q3 Computer Science Pub Date : 2023-08-03 DOI: 10.1142/s0219467825500123
Padmanayana Bhat, B. Anoop
The eye-related problem of diabetes is called diabetic retinopathy (DR), which is the main factor contributing to visual loss. This research develops an enhanced deep model for DR classification. Here, deep convolutional neural network (Deep CNN) is trained with the improved invasive weed social ski-driver optimization (IISSDO), which is generated by fusing improved invasive weed optimization (IIWO) and social ski-driver (SSD). The IISSDO-based Deep CNN classifies DR severity into normal, mild, non-proliferative DR (NPDR), moderate NPDR, severe NPDR, and proliferative. Initially, a type 2 fuzzy and cuckoo search (T2FCS) filter performs pre-processing and the quality of the data is improved by data augmentation. The lesion is then divided using DeepJoint segmentation. Then, the Deep CNN determines the DR. The analysis uses the Indian DR image database. The IISSDO-based Deep CNN has the highest accuracy, sensitivity, and specificity of 96.566%, 96.773%, and 96.517%, respectively.
糖尿病的眼睛相关问题被称为糖尿病视网膜病变(DR),这是导致视力丧失的主要因素。本研究开发了一种用于DR分类的增强深度模型。在这里,深度卷积神经网络(deep CNN)使用改进的入侵杂草社交滑雪驱动程序优化(IISSDO)进行训练,该优化是通过融合改进的入侵除草优化(IIWO)和社交滑雪驱动(SSD)生成的。基于IISSDO的Deep CNN将DR的严重程度分为正常、轻度、非增殖性DR(NPDR)、中度NPDR、重度NPDR和增殖性。最初,2型模糊杜鹃搜索(T2FCS)滤波器进行预处理,并通过数据扩充来提高数据的质量。然后使用DeepJoint分割对病变进行分割。然后,深度CNN确定DR。分析使用印度DR图像数据库。基于IISSDO的深度CNN具有最高的准确性、敏感性和特异性,分别为96.566%、96.773%和96.517%。
{"title":"Improved Invasive Weed Social Ski-Driver Optimization-Based Deep Convolution Neural Network for Diabetic Retinopathy Classification","authors":"Padmanayana Bhat, B. Anoop","doi":"10.1142/s0219467825500123","DOIUrl":"https://doi.org/10.1142/s0219467825500123","url":null,"abstract":"The eye-related problem of diabetes is called diabetic retinopathy (DR), which is the main factor contributing to visual loss. This research develops an enhanced deep model for DR classification. Here, deep convolutional neural network (Deep CNN) is trained with the improved invasive weed social ski-driver optimization (IISSDO), which is generated by fusing improved invasive weed optimization (IIWO) and social ski-driver (SSD). The IISSDO-based Deep CNN classifies DR severity into normal, mild, non-proliferative DR (NPDR), moderate NPDR, severe NPDR, and proliferative. Initially, a type 2 fuzzy and cuckoo search (T2FCS) filter performs pre-processing and the quality of the data is improved by data augmentation. The lesion is then divided using DeepJoint segmentation. Then, the Deep CNN determines the DR. The analysis uses the Indian DR image database. The IISSDO-based Deep CNN has the highest accuracy, sensitivity, and specificity of 96.566%, 96.773%, and 96.517%, respectively.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41622319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal Multisecret Image Sharing Using Lightweight Visual Sign-Cryptography Scheme With Optimal Key Generation for Gray/Color Images 基于灰度/彩色图像最优密钥生成的轻量级视觉符号密码方案的最优多秘密图像共享
IF 1.6 Q3 Computer Science Pub Date : 2023-07-28 DOI: 10.1142/s0219467825500172
Pramod M. Bachiphale, N. Zulpe
Problem: Digital devices are becoming increasingly powerful and smart, which is improving quality of life, but presents new challenges to privacy protection. Visual cryptographic schemes provide data sharing privacy, but have drawbacks such as extra storage space, lossy secret images, and the need to store permutation keys. Aim: This paper proposes a light-weight visual sign-cryptography scheme based on optimal key generation to address the disadvantages of existing visual cryptographic schemes and improve the security, sharing quality, and time consumption of multisecret images. Methods: The proposed light-weight visual sign-cryptography (LW-VSC) scheme consists of three processes: band separation, shares generation, and signcryption/un-signcryption. The process of separation and shares generation is done by an existing method. The multiple shares of the secret images are then encrypted/decrypted using light-weight sign-cryptography. The proposed scheme uses a novel harpy eagle search optimization (HESO) algorithm to generate optimal keys for both the encrypt/decrypt processes. Results: Simulation results and comparative analysis showed the proposed scheme is more secure and requires less storage space, with faster encryption/decryption and improved key generation quality. Conclusion: The proposed light-weight visual sign-cryptography scheme based on optimal key generation is a promising approach to enhance security and improve data sharing quality. The HESO algorithm shows promise in improving the quality of key generation, providing better privacy protection in the face of increasingly powerful digital devices.
问题:数字设备变得越来越强大和智能,这提高了生活质量,但对隐私保护提出了新的挑战。可视化加密方案提供数据共享隐私,但也有缺点,例如额外的存储空间、有损的秘密图像以及需要存储排列密钥。目的:针对现有视觉密码方案的不足,提出了一种基于最优密钥生成的轻量级视觉符号密码方案,提高了多秘密图像的安全性、共享质量和时间消耗。方法:提出了一种轻量级可视签名密码(LW-VSC)方案,该方案包括三个过程:频带分离、共享生成和签名加密/反签名加密。分离和股份生成过程由现有方法完成。然后使用轻量级符号加密技术对秘密图像的多个共享进行加密/解密。该方案采用一种新颖的鹰搜索优化算法(HESO)为加密/解密过程生成最优密钥。结果:仿真结果和对比分析表明,该方案安全性更高,所需存储空间更少,加解密速度更快,密钥生成质量得到提高。结论:提出的基于最优密钥生成的轻量级视觉符号加密方案是一种很有前途的增强安全性和提高数据共享质量的方法。HESO算法有望提高密钥生成的质量,在面对日益强大的数字设备时提供更好的隐私保护。
{"title":"Optimal Multisecret Image Sharing Using Lightweight Visual Sign-Cryptography Scheme With Optimal Key Generation for Gray/Color Images","authors":"Pramod M. Bachiphale, N. Zulpe","doi":"10.1142/s0219467825500172","DOIUrl":"https://doi.org/10.1142/s0219467825500172","url":null,"abstract":"Problem: Digital devices are becoming increasingly powerful and smart, which is improving quality of life, but presents new challenges to privacy protection. Visual cryptographic schemes provide data sharing privacy, but have drawbacks such as extra storage space, lossy secret images, and the need to store permutation keys. Aim: This paper proposes a light-weight visual sign-cryptography scheme based on optimal key generation to address the disadvantages of existing visual cryptographic schemes and improve the security, sharing quality, and time consumption of multisecret images. Methods: The proposed light-weight visual sign-cryptography (LW-VSC) scheme consists of three processes: band separation, shares generation, and signcryption/un-signcryption. The process of separation and shares generation is done by an existing method. The multiple shares of the secret images are then encrypted/decrypted using light-weight sign-cryptography. The proposed scheme uses a novel harpy eagle search optimization (HESO) algorithm to generate optimal keys for both the encrypt/decrypt processes. Results: Simulation results and comparative analysis showed the proposed scheme is more secure and requires less storage space, with faster encryption/decryption and improved key generation quality. Conclusion: The proposed light-weight visual sign-cryptography scheme based on optimal key generation is a promising approach to enhance security and improve data sharing quality. The HESO algorithm shows promise in improving the quality of key generation, providing better privacy protection in the face of increasingly powerful digital devices.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45471841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive Total-Variation and Nonconvex Low-Rank Model for Image Denoising 自适应全变分和非凸低秩图像去噪模型
IF 1.6 Q3 Computer Science Pub Date : 2023-07-27 DOI: 10.1142/s0219467825500160
Li Fang, Wang Xianghai
In recent years, image denoising methods based on total variational regularization have attracted extensive attention. However, the traditional total variational regularization method is an approximate solution based on convex method, and does not consider the particularity of the region with rich details. In this paper, the adaptive total-variation and nonconvex low-rank model for image denoising is proposed, which is a hybrid regularization model. First, the image is decomposed into sparse terms and low rank terms, and then the total variational regularization is used to denoise. At the same time, an adaptive coefficient based on gradient is constructed to adaptively judge the flat area and detail texture area, slow down the denoising intensity of detail area, and then play the role of preserving detail information. Finally, by constructing a nonconvex function, the optimal solution of the function is obtained by using the alternating minimization method. This method not only effectively removes the image noise, but also retains the detailed information of the image. The experimental results show the effectiveness of the proposed model, and SNR and SSIM of the denoised image are improved.
近年来,基于全变分正则化的图像去噪方法引起了人们的广泛关注。然而,传统的全变分正则化方法是基于凸方法的近似解,没有考虑细节丰富区域的特殊性。本文提出了一种用于图像去噪的自适应全变分非凸低秩模型,这是一种混合正则化模型。首先,将图像分解为稀疏项和低秩项,然后使用全变分正则化进行去噪。同时,构造了一个基于梯度的自适应系数,自适应地判断平面区域和细节纹理区域,减缓细节区域的去噪强度,进而起到保存细节信息的作用。最后,通过构造一个非凸函数,利用交替最小化方法得到该函数的最优解。该方法不仅有效地去除了图像噪声,而且保留了图像的详细信息。实验结果表明了该模型的有效性,并且提高了去噪图像的信噪比和SSIM。
{"title":"Adaptive Total-Variation and Nonconvex Low-Rank Model for Image Denoising","authors":"Li Fang, Wang Xianghai","doi":"10.1142/s0219467825500160","DOIUrl":"https://doi.org/10.1142/s0219467825500160","url":null,"abstract":"In recent years, image denoising methods based on total variational regularization have attracted extensive attention. However, the traditional total variational regularization method is an approximate solution based on convex method, and does not consider the particularity of the region with rich details. In this paper, the adaptive total-variation and nonconvex low-rank model for image denoising is proposed, which is a hybrid regularization model. First, the image is decomposed into sparse terms and low rank terms, and then the total variational regularization is used to denoise. At the same time, an adaptive coefficient based on gradient is constructed to adaptively judge the flat area and detail texture area, slow down the denoising intensity of detail area, and then play the role of preserving detail information. Finally, by constructing a nonconvex function, the optimal solution of the function is obtained by using the alternating minimization method. This method not only effectively removes the image noise, but also retains the detailed information of the image. The experimental results show the effectiveness of the proposed model, and SNR and SSIM of the denoised image are improved.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44839070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remote Sensing Pansharpening with TV-H−1 Decomposition and PSO-Based Adaptive Weighting Method 基于TV-H−1分解和PSO的自适应加权方法的遥感全景锐化
IF 1.6 Q3 Computer Science Pub Date : 2023-07-25 DOI: 10.1142/s021946782450061x
Dharaj. Sangani, R. Thakker, S. Panchal, Rajesh Gogineni
In remote sensing, owing to existing sensors’ limitations and the tradeoff between signal-to-noise ratio (SNR) and instantaneous field of view (IFOV), it is difficult to obtain a single image with good spectral and spatial resolution. Pansharpening (PS) is the technique for sharpening multispectral (MS) images by extracting structural and edge information of panchromatic (PAN) image. Multiscale decomposition methods are used for decomposing image in sub-bands but are affected by ringing artifacts, therefore the resultant image seems to be blurred and misregistered. The proposed method overcomes this drawback by decomposing PAN and four band MS image into cartoon and texture components with total variation (TV) Hilbert[Formula: see text] model. The particle swarm optimization (PSO) algorithm is used for finding the optimum weight for fusing texture and cartoon details of PAN and MS images. The proposed method is practically validated on both full-scale and reduced-scale. Robustness of our proposed approach is tested on different geographical areas such as hilly, urban, and vegetation areas. From the visual analysis and qualitative parameters, the proposed method is proved effective compared with other traditional approaches.
在遥感技术中,由于现有传感器的局限性以及在信噪比(SNR)和瞬时视场(IFOV)之间的权衡,很难获得具有良好光谱分辨率和空间分辨率的单幅图像。Pansharpening (PS)是一种通过提取全色图像的结构信息和边缘信息对多光谱图像进行锐化的技术。多尺度分解方法用于分解子带图像,但受环形伪影的影响,因此所得图像似乎模糊不清和配错。该方法采用全变分(TV) Hilbert[公式:见文]模型,将PAN和四波段MS图像分解为卡通和纹理分量。采用粒子群优化(PSO)算法对PAN和MS图像的纹理和卡通细节进行融合,找出最优权值。该方法在全尺寸和缩小尺寸上都得到了实际验证。我们提出的方法的稳健性在不同的地理区域,如丘陵,城市和植被区进行了测试。从视觉分析和定性参数的角度,与其他传统方法相比,证明了该方法的有效性。
{"title":"Remote Sensing Pansharpening with TV-H−1 Decomposition and PSO-Based Adaptive Weighting Method","authors":"Dharaj. Sangani, R. Thakker, S. Panchal, Rajesh Gogineni","doi":"10.1142/s021946782450061x","DOIUrl":"https://doi.org/10.1142/s021946782450061x","url":null,"abstract":"In remote sensing, owing to existing sensors’ limitations and the tradeoff between signal-to-noise ratio (SNR) and instantaneous field of view (IFOV), it is difficult to obtain a single image with good spectral and spatial resolution. Pansharpening (PS) is the technique for sharpening multispectral (MS) images by extracting structural and edge information of panchromatic (PAN) image. Multiscale decomposition methods are used for decomposing image in sub-bands but are affected by ringing artifacts, therefore the resultant image seems to be blurred and misregistered. The proposed method overcomes this drawback by decomposing PAN and four band MS image into cartoon and texture components with total variation (TV) Hilbert[Formula: see text] model. The particle swarm optimization (PSO) algorithm is used for finding the optimum weight for fusing texture and cartoon details of PAN and MS images. The proposed method is practically validated on both full-scale and reduced-scale. Robustness of our proposed approach is tested on different geographical areas such as hilly, urban, and vegetation areas. From the visual analysis and qualitative parameters, the proposed method is proved effective compared with other traditional approaches.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43317066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatic Breast Mass Lesion Detection in Mammogram Image 乳房x光图像中肿块病灶的自动检测
IF 1.6 Q3 Computer Science Pub Date : 2023-07-22 DOI: 10.1142/s0219467824500566
R. Bania, A. Halder
Mammography imaging is one of the most successful techniques for breast cancer screening and detecting breast lesions. Detection of the Region of Interest (ROI) (where the possible abnormalities could be present) is the backbone for the success of any Computer-Aided Detection or Diagnosis (CADx) system. In this paper, to assist the CADx system, one computational model is proposed to detect breast mass lesions from mammogram images. At the beginning of the process, pectoral muscles from the mammograms are removed as a pre-processing step. Then by applying an automatic thresholding scheme with the required image processing techniques, different regions of breast tissues are ranked to detect the possible suspected region to refine the further segmentation task. One seeded region growing approach is proposed with an automatic seed selection criterion to detect the suspected region to segment the ROI. The proposed model has very less user intervention as maximum of the parameters are computed automatically. To evaluate the performance of the proposed model, it is compared with four different methods with six different evaluation metrics viz., Jaccard & Dice co-efficient, relative error, segmentation accuracy, error and Fowlkes–Mallows index (FMI). On the proposed model, 57 mammogram images are tested, consisting of four different cases that are collected from the publicly available benchmark database. The qualitative and quantitative analyses are performed to evaluate the proposed model. The best dice co-efficient, Jaccard co-efficient, accuracy, error and FMI values observed are 0.9506, 0.9471, 95.62%, 4.38% and 0.932, respectively. The superiority of the model over six state-of-the-art compared methods is well evident from the experimental results.
乳腺造影是癌症筛查和检测乳腺病变最成功的技术之一。感兴趣区域(ROI)的检测(可能存在异常的地方)是任何计算机辅助检测或诊断(CADx)系统成功的支柱。在本文中,为了辅助CADx系统,提出了一个计算模型来从乳房X光图像中检测乳腺肿块病变。在这个过程的开始,乳房X光片中的胸肌被去除,作为预处理步骤。然后,通过应用具有所需图像处理技术的自动阈值化方案,对乳腺组织的不同区域进行排序,以检测可能的可疑区域,从而细化进一步的分割任务。提出了一种基于自动种子选择准则的种子区域生长方法,用于检测可疑区域以分割ROI。所提出的模型具有非常少的用户干预,因为参数的最大值是自动计算的。为了评估所提出的模型的性能,将其与四种不同的方法进行了比较,并采用了六种不同的评估指标,即Jaccard&Dice系数、相对误差、分割精度、误差和Fowlkes–Mallows指数(FMI)。在所提出的模型上,测试了57张乳房X光图像,包括从公开的基准数据库中收集的四个不同病例。对所提出的模型进行了定性和定量分析。观察到的最佳骰子系数、Jaccard系数、准确度、误差和FMI值分别为0.9506、0.9471、95.62%、4.38%和0.932。实验结果表明,该模型优于六种最先进的比较方法。
{"title":"Automatic Breast Mass Lesion Detection in Mammogram Image","authors":"R. Bania, A. Halder","doi":"10.1142/s0219467824500566","DOIUrl":"https://doi.org/10.1142/s0219467824500566","url":null,"abstract":"Mammography imaging is one of the most successful techniques for breast cancer screening and detecting breast lesions. Detection of the Region of Interest (ROI) (where the possible abnormalities could be present) is the backbone for the success of any Computer-Aided Detection or Diagnosis (CADx) system. In this paper, to assist the CADx system, one computational model is proposed to detect breast mass lesions from mammogram images. At the beginning of the process, pectoral muscles from the mammograms are removed as a pre-processing step. Then by applying an automatic thresholding scheme with the required image processing techniques, different regions of breast tissues are ranked to detect the possible suspected region to refine the further segmentation task. One seeded region growing approach is proposed with an automatic seed selection criterion to detect the suspected region to segment the ROI. The proposed model has very less user intervention as maximum of the parameters are computed automatically. To evaluate the performance of the proposed model, it is compared with four different methods with six different evaluation metrics viz., Jaccard & Dice co-efficient, relative error, segmentation accuracy, error and Fowlkes–Mallows index (FMI). On the proposed model, 57 mammogram images are tested, consisting of four different cases that are collected from the publicly available benchmark database. The qualitative and quantitative analyses are performed to evaluate the proposed model. The best dice co-efficient, Jaccard co-efficient, accuracy, error and FMI values observed are 0.9506, 0.9471, 95.62%, 4.38% and 0.932, respectively. The superiority of the model over six state-of-the-art compared methods is well evident from the experimental results.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43630262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fine_Denseiganet: Automatic Medical Image Classification in Chest CT Scan Using Hybrid Deep Learning Framework Fine_Denseiganet:基于混合深度学习框架的胸部CT图像自动分类
IF 1.6 Q3 Computer Science Pub Date : 2023-07-22 DOI: 10.1142/s0219467825500044
Hemlata Sahu, R. Kashyap
Medical image classification is one of the most significant tasks in computer-aided diagnosis. In the era of modern healthcare, the progress of digitalized medical images has led to a crucial role in analyzing medical image analysis. Recently, accurate disease recognition from medical Computed Tomography (CT) images remains a challenging scenario which is important in rendering effective treatment to patients. The infectious COVID-19 disease is highly contagious and leads to a rapid increase in infected individuals. Some drawbacks noticed with RT-PCR kits are high false negative rate (FNR) and a shortage in the number of test kits. Hence, a Chest CT scan is introduced instead of RT-PCR which plays an important role in diagnosing and screening COVID-19 infections. However, manual examination of CT scans performed by radiologists can be time-consuming, and a manual review of each individual CT image may not be feasible in emergencies. Therefore, there is a need to perform automated COVID-19 detection with the advances in AI-based models. This work presents effective and automatic Deep Learning (DL)-based COVID-19 detection using Chest CT images. Initially, the data is gathered and pre-processed through Spatial Weighted Bilateral Filter (SWBF) to eradicate unwanted distortions. The extraction of deep features is processed using Fine_Dense Convolutional Network (Fine_DenseNet). For classification, the Softmax layer of Fine_DenseNet is replaced using Improved Generative Adversarial Network_Artificial Hummingbird (IGAN_AHb) model in order to train the data on the labeled and unlabeled dataset. The loss in the network model is optimized using Artificial Hummingbird (AHb) optimization algorithm. Here, the proposed DL model (Fine_DenseIGANet) is used to perform automated multi-class classification of COVID-19 using CT scan images and attained a superior classification accuracy of 95.73% over other DL models.
医学图像分类是计算机辅助诊断中最重要的任务之一。在现代医疗保健时代,数字化医学图像的进步在分析医学图像分析中发挥了至关重要的作用。最近,从医学计算机断层扫描(CT)图像中准确识别疾病仍然是一个具有挑战性的场景,这对于为患者提供有效治疗非常重要。传染性新冠肺炎疾病具有高度传染性,并导致感染者迅速增加。RT-PCR试剂盒的一些缺点是假阴性率高(FNR)和检测试剂盒数量短缺。因此,引入了胸部CT扫描,而不是在诊断和筛查新冠肺炎感染中发挥重要作用的RT-PCR。然而,放射科医生对CT扫描进行的手动检查可能很耗时,在紧急情况下,对每个单独的CT图像进行手动检查可能不可行。因此,随着人工智能模型的进步,有必要进行新冠肺炎的自动检测。这项工作提出了有效和自动的基于深度学习(DL)的新冠肺炎检测使用胸部CT图像。最初,数据通过空间加权双边滤波器(SWBF)进行收集和预处理,以消除不必要的失真。深度特征的提取使用Fine_Dense卷积网络(Fine_DenseNet)进行处理。对于分类,使用改进的生成对抗性网络-人工蜂鸟(IGAN_AHb)模型替换Fine_DenseNet的Softmax层,以便在标记和未标记的数据集上训练数据。使用人工蜂鸟(AHb)优化算法对网络模型中的损耗进行优化。在此,所提出的DL模型(Fine_DenseIGANet)用于使用CT扫描图像对新冠肺炎进行自动多类别分类,并获得了比其他DL模型高95.73%的分类精度。
{"title":"Fine_Denseiganet: Automatic Medical Image Classification in Chest CT Scan Using Hybrid Deep Learning Framework","authors":"Hemlata Sahu, R. Kashyap","doi":"10.1142/s0219467825500044","DOIUrl":"https://doi.org/10.1142/s0219467825500044","url":null,"abstract":"Medical image classification is one of the most significant tasks in computer-aided diagnosis. In the era of modern healthcare, the progress of digitalized medical images has led to a crucial role in analyzing medical image analysis. Recently, accurate disease recognition from medical Computed Tomography (CT) images remains a challenging scenario which is important in rendering effective treatment to patients. The infectious COVID-19 disease is highly contagious and leads to a rapid increase in infected individuals. Some drawbacks noticed with RT-PCR kits are high false negative rate (FNR) and a shortage in the number of test kits. Hence, a Chest CT scan is introduced instead of RT-PCR which plays an important role in diagnosing and screening COVID-19 infections. However, manual examination of CT scans performed by radiologists can be time-consuming, and a manual review of each individual CT image may not be feasible in emergencies. Therefore, there is a need to perform automated COVID-19 detection with the advances in AI-based models. This work presents effective and automatic Deep Learning (DL)-based COVID-19 detection using Chest CT images. Initially, the data is gathered and pre-processed through Spatial Weighted Bilateral Filter (SWBF) to eradicate unwanted distortions. The extraction of deep features is processed using Fine_Dense Convolutional Network (Fine_DenseNet). For classification, the Softmax layer of Fine_DenseNet is replaced using Improved Generative Adversarial Network_Artificial Hummingbird (IGAN_AHb) model in order to train the data on the labeled and unlabeled dataset. The loss in the network model is optimized using Artificial Hummingbird (AHb) optimization algorithm. Here, the proposed DL model (Fine_DenseIGANet) is used to perform automated multi-class classification of COVID-19 using CT scan images and attained a superior classification accuracy of 95.73% over other DL models.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42842277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Aspect-Based Sentiment Analysis Using Fabricius Ringlet-Based Hybrid Deep Learning for Online Reviews 使用基于Fabricius Ringlet的混合深度学习进行基于方面的情绪分析用于在线评论
IF 1.6 Q3 Computer Science Pub Date : 2023-07-22 DOI: 10.1142/s0219467825500056
Santoshi Kumari, T. P. Pushphavathi
The sentiment analysis relying on the aspect of online reviews is utilized for identifying the polarity of the given review. Nowadays, many methods are introduced for aspect-based sentiment analysis (ABSA) using neural networks, and many methods failed to consider contextual information exploitation to make the performance more accurate. Hence, this research proposed an optimized deep learning method for the detection of the aspect and to identify the polarity. Hence, in this research, an optimized deep learning technique for the ABSA is introduced by considering the online reviews, in which the deep learning classifiers are trained with the proposed Fabricius ringlet optimization (FRO) algorithm to reduce the loss that helps to enhance the accuracy of sentiment polarity prediction. The proposed FRO is developed by the hybridization of the behavioral nature of the Fabricius and the ringlet in feeding for the determination of the global best solution. The tuning of the weights and biases of the classifier enhance the performance of the classifier. The objective behind the tuning is to minimize the loss function while training and to enhance the accuracy of aspect extraction and polarity prediction of sentiment. Based on a study of the existing approach, the suggested FRO-based hybrid deep learning method is significantly improved; its accuracy, sensitivity, and specificity are 87.06%, 90.83%, and 79.37%, respectively, with a training percentage of 40%. The accuracy, sensitivity, and specificity of the existing technique have also been enhanced for aspect restaurant values, which are 87.53%, 96.06%, and 79.88% with a 60% training percentage. Similar to that, Twitter values for accuracy, sensitivity, and specificity are reported to be 89.08%, 99.35%, and 79.70%, respectively, with an 80% training percentage. The proposed method obtained the 90.13%, 99.35%, and 81.10% accuracy, sensitivity, and specificity from the assessment of the FRO-based hybrid deep learning.
依赖于在线评论方面的情绪分析用于识别给定评论的极性。目前,使用神经网络进行基于方面的情感分析(ABSA)的方法很多,但许多方法都没有考虑上下文信息的利用来提高性能。因此,本研究提出了一种优化的深度学习方法,用于方位检测和极性识别。因此,在本研究中,通过考虑在线评论,引入了一种用于ABSA的优化深度学习技术,其中使用所提出的Fabricius小环优化(FRO)算法训练深度学习分类器,以减少有助于提高情绪极性预测准确性的损失。所提出的FRO是通过将法布里丘斯和小环在进食中的行为性质杂交来确定全局最佳解决方案而开发的。分类器的权重和偏差的调整提高了分类器的性能。调整背后的目标是在训练时最小化损失函数,并提高情绪的方面提取和极性预测的准确性。在研究现有方法的基础上,提出的基于FRO的混合深度学习方法得到了显著改进;其准确性、敏感性和特异性分别为87.06%、90.83%和79.37%,训练率为40%。现有技术对方面餐厅值的准确性、敏感性和特异性也得到了提高,分别为87.53%、96.06%和79.88%,训练百分比为60%。与此类似,Twitter的准确性、敏感性和特异性分别为89.08%、99.35%和79.70%,训练百分比为80%。通过对基于FRO的混合深度学习的评估,所提出的方法获得了90.13%、99.35%和81.10%的准确率、灵敏度和特异性。
{"title":"Aspect-Based Sentiment Analysis Using Fabricius Ringlet-Based Hybrid Deep Learning for Online Reviews","authors":"Santoshi Kumari, T. P. Pushphavathi","doi":"10.1142/s0219467825500056","DOIUrl":"https://doi.org/10.1142/s0219467825500056","url":null,"abstract":"The sentiment analysis relying on the aspect of online reviews is utilized for identifying the polarity of the given review. Nowadays, many methods are introduced for aspect-based sentiment analysis (ABSA) using neural networks, and many methods failed to consider contextual information exploitation to make the performance more accurate. Hence, this research proposed an optimized deep learning method for the detection of the aspect and to identify the polarity. Hence, in this research, an optimized deep learning technique for the ABSA is introduced by considering the online reviews, in which the deep learning classifiers are trained with the proposed Fabricius ringlet optimization (FRO) algorithm to reduce the loss that helps to enhance the accuracy of sentiment polarity prediction. The proposed FRO is developed by the hybridization of the behavioral nature of the Fabricius and the ringlet in feeding for the determination of the global best solution. The tuning of the weights and biases of the classifier enhance the performance of the classifier. The objective behind the tuning is to minimize the loss function while training and to enhance the accuracy of aspect extraction and polarity prediction of sentiment. Based on a study of the existing approach, the suggested FRO-based hybrid deep learning method is significantly improved; its accuracy, sensitivity, and specificity are 87.06%, 90.83%, and 79.37%, respectively, with a training percentage of 40%. The accuracy, sensitivity, and specificity of the existing technique have also been enhanced for aspect restaurant values, which are 87.53%, 96.06%, and 79.88% with a 60% training percentage. Similar to that, Twitter values for accuracy, sensitivity, and specificity are reported to be 89.08%, 99.35%, and 79.70%, respectively, with an 80% training percentage. The proposed method obtained the 90.13%, 99.35%, and 81.10% accuracy, sensitivity, and specificity from the assessment of the FRO-based hybrid deep learning.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43349570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combined Tri-Classifiers for IoT Botnet Detection with Tuned Training Weights 调整训练权值的物联网僵尸网络检测组合三分类器
IF 1.6 Q3 Computer Science Pub Date : 2023-07-22 DOI: 10.1142/s021946782550007x
Abhilash Kayyidavazhiyil
Although IoT sectors seem more popular and pervasively, they struggle with hazards. The botnet is one of the largest security dangers associated with IoT. It enables malicious software to administer and attack private network equipment collectively without the owners’ knowledge. Although many studies have used ML to detect botnets, these are either not very effective or only work with specific types of botnets or devices. As a result, the detection model for deep learning ideas is the focus of this research. It entails three key processes: (a) preprocessing, (b) feature extraction, and (c) classification. The input data are initially preprocessed using an improved data normalization approach. The preprocessed data are used to extract a number of features, including Tanimoto coefficient features, improved differential holoentropy-based features, Pearson r correlation-based features, and others. The detection process will be completed by an ensemble classification model that randomly shuffles models like the Deep Belief Network (DBN) model, Bidirectional Gated Recurrent Unit (Bi-GRU), and Long Short-Term Memory (LSTM). Bi-GRU, DBN, and LSTM will be averaged to provide the ensemble results. Bi-GRU is trained using the Self Improved Blue Monkey Optimization (SIBMO) Algorithm by selecting the optimal weights, which increases the detection accuracy. The overall performance of the suggested work is then evaluated in relation to other existing models using various methodologies. In comparison to existing methods, the created ensemble classifier [Formula: see text] SIBMO scheme obtains the highest accuracy (93%) at a learning percentage of 90%.
尽管物联网行业似乎更受欢迎和普遍,但它们也面临着风险。僵尸网络是与物联网相关的最大安全隐患之一。它使恶意软件能够在所有者不知情的情况下集体管理和攻击专用网络设备。尽管许多研究已经使用ML来检测僵尸网络,但这些要么不是很有效,要么只适用于特定类型的僵尸网络或设备。因此,深度学习思想的检测模型是本研究的重点。它包括三个关键过程:(a)预处理,(b)特征提取和(c)分类。输入数据最初使用改进的数据规范化方法进行预处理。预处理后的数据用于提取许多特征,包括谷本系数特征、改进的基于微分全熵的特征、基于Pearson或相关的特征等。检测过程将由一个集成分类模型完成,该模型随机洗刷深度信念网络(DBN)模型、双向门控制循环单元(Bi-GRU)和长短期记忆(LSTM)等模型。Bi-GRU, DBN和LSTM将被平均以提供集合结果。Bi-GRU采用自改进蓝猴优化算法(SIBMO)进行训练,通过选择最优权值,提高了检测精度。然后使用不同的方法来评估与其他现有模型相关的建议工作的总体性能。与现有方法相比,所创建的集成分类器[公式:见文本]SIBMO方案在90%的学习率下获得了最高的准确率(93%)。
{"title":"Combined Tri-Classifiers for IoT Botnet Detection with Tuned Training Weights","authors":"Abhilash Kayyidavazhiyil","doi":"10.1142/s021946782550007x","DOIUrl":"https://doi.org/10.1142/s021946782550007x","url":null,"abstract":"Although IoT sectors seem more popular and pervasively, they struggle with hazards. The botnet is one of the largest security dangers associated with IoT. It enables malicious software to administer and attack private network equipment collectively without the owners’ knowledge. Although many studies have used ML to detect botnets, these are either not very effective or only work with specific types of botnets or devices. As a result, the detection model for deep learning ideas is the focus of this research. It entails three key processes: (a) preprocessing, (b) feature extraction, and (c) classification. The input data are initially preprocessed using an improved data normalization approach. The preprocessed data are used to extract a number of features, including Tanimoto coefficient features, improved differential holoentropy-based features, Pearson r correlation-based features, and others. The detection process will be completed by an ensemble classification model that randomly shuffles models like the Deep Belief Network (DBN) model, Bidirectional Gated Recurrent Unit (Bi-GRU), and Long Short-Term Memory (LSTM). Bi-GRU, DBN, and LSTM will be averaged to provide the ensemble results. Bi-GRU is trained using the Self Improved Blue Monkey Optimization (SIBMO) Algorithm by selecting the optimal weights, which increases the detection accuracy. The overall performance of the suggested work is then evaluated in relation to other existing models using various methodologies. In comparison to existing methods, the created ensemble classifier [Formula: see text] SIBMO scheme obtains the highest accuracy (93%) at a learning percentage of 90%.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45568914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Overview of Speech Enhancement Based on Deep Learning Techniques 基于深度学习技术的语音增强综述
IF 1.6 Q3 Computer Science Pub Date : 2023-07-22 DOI: 10.1142/s0219467825500019
Chaitanya Jannu, S. Vanambathina
Recent years have seen a significant amount of studies in the area of speech enhancement. This review looks at several speech improvement methods as well as Deep Neural Network (DNN) functions in speech enhancement. Speech transmissions are frequently distorted by ambient noise, background noise, and reverberations. There are processing methods, such as Short-time Fourier Transform, Short-time Autocorrelation, and Short-time Energy (STE), that can be used to enhance speech. To reduce speech noise, features such as the Mel-Frequency Cepstral Coefficients (MFCCs), Logarithmic Power Spectrum (LPS), and Gammatone Frequency Cepstral Coefficients (GFCCs) can be retrieved and input to a DNN. DNN is essential to speech improvement since it builds models using a lot of training data and evaluates the efficacy of the enhanced speech using certain performance metrics. Since the beginning of deep learning publications in 1993, a variety of speech enhancement methods have been examined in this study. This review provides a thorough examination of the several neural network topologies, training algorithms, activation functions, training targets, acoustic features, and databases that were employed for the job of speech enhancement and were gathered from various articles published between 1993 and 2022.
近年来,在语音增强领域进行了大量的研究。本文综述了几种语音增强方法以及深度神经网络(DNN)在语音增强中的作用。语音传输经常受到环境噪声、背景噪声和混响的干扰。有短时傅里叶变换、短时自相关和短时能量(STE)等处理方法可用于增强语音。为了降低语音噪声,可以检索Mel-Frequency Cepstral系数(MFCCs),对数功率谱(LPS)和gamma - one Frequency Cepstral系数(GFCCs)等特征并将其输入到DNN中。深度神经网络对语音改进至关重要,因为它使用大量训练数据构建模型,并使用某些性能指标评估增强语音的效果。自1993年深度学习出版物开始以来,本研究对各种语音增强方法进行了研究。本文对1993年至2022年间发表的各种文章中用于语音增强工作的几种神经网络拓扑、训练算法、激活函数、训练目标、声学特征和数据库进行了全面的研究。
{"title":"An Overview of Speech Enhancement Based on Deep Learning Techniques","authors":"Chaitanya Jannu, S. Vanambathina","doi":"10.1142/s0219467825500019","DOIUrl":"https://doi.org/10.1142/s0219467825500019","url":null,"abstract":"Recent years have seen a significant amount of studies in the area of speech enhancement. This review looks at several speech improvement methods as well as Deep Neural Network (DNN) functions in speech enhancement. Speech transmissions are frequently distorted by ambient noise, background noise, and reverberations. There are processing methods, such as Short-time Fourier Transform, Short-time Autocorrelation, and Short-time Energy (STE), that can be used to enhance speech. To reduce speech noise, features such as the Mel-Frequency Cepstral Coefficients (MFCCs), Logarithmic Power Spectrum (LPS), and Gammatone Frequency Cepstral Coefficients (GFCCs) can be retrieved and input to a DNN. DNN is essential to speech improvement since it builds models using a lot of training data and evaluates the efficacy of the enhanced speech using certain performance metrics. Since the beginning of deep learning publications in 1993, a variety of speech enhancement methods have been examined in this study. This review provides a thorough examination of the several neural network topologies, training algorithms, activation functions, training targets, acoustic features, and databases that were employed for the job of speech enhancement and were gathered from various articles published between 1993 and 2022.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46800367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image Processing-Based Method of Evaluation of Stress from Grain Structures of Through Silicon Via (TSV) 基于图像处理的硅通孔(TSV)晶粒结构应力评估方法
IF 1.6 Q3 Computer Science Pub Date : 2023-07-22 DOI: 10.1142/s0219467825500081
Mamvinder Sharma, Sudhakara Reddy Saripalli, A. Gupta, Pankaj Palta, D. Pandey
Visualization of material composition across numerous grains and complicated networks of grain boundaries using image processing techniques can reveal fresh insights into the material’s structural evolution and upcoming functional capabilities for a variety of applications. Three-dimensional integrated circuits (3D IC) are the most practical technology for increasing transistor density in future semiconductor applications. One of the key benefits of 3D IC is heterogeneous integration, which results in shorter interconnections due to vertical stacking. However, one of the most significant challenges in building higher-density microelectronics devices is the stress generated by material mismatches in the coefficient of thermal expansion (CTE). The purpose of this study is to analyze grain boundary migration caused by variations in strain energy density using image processing methods for 3D grain continuum modeling. Temperature changes in polycrystalline structures generate stresses and strain energy densities, which may be calculated using FEM software. Single crystal Cu’s anisotropic elastic properties are twisted to suit grain orientation in space and each grain is treated as a single crystal. Grain boundary speeds are calculated using a simple model that relates grain boundary mobility to variations in strain energy density on both sides of grain boundaries. Using the grain continuum model, researchers will be able to investigate the effect of thermally generated stresses on grain boundary motion caused by atomic flux driven by strain energy. Using finite-element modeling of the grain structure in a Through Silicon Via, the stress effect on grain boundaries caused by grain rotation due to CTE mismatch was investigated (TSV). The structure must be modeled using a scanning electron microscopes Electron Backscatter Diffraction (EBSD) image (SEM). Grain growth and subsequent grain boundary rotation can be performed using the appropriate extrapolation method to measure their influence on stress and, as a result, the TSV’s overall reliability.
使用图像处理技术对众多晶粒和复杂晶界网络的材料组成进行可视化,可以揭示材料结构演变的新见解,以及各种应用即将具备的功能。三维集成电路(3DIC)是在未来半导体应用中提高晶体管密度的最实用的技术。3D IC的主要优点之一是异构集成,这会由于垂直堆叠而导致更短的互连。然而,在构建更高密度微电子器件时,最重大的挑战之一是由热膨胀系数(CTE)中的材料失配产生的应力。本研究的目的是利用图像处理方法对三维晶粒连续体建模,分析应变能密度变化引起的晶界迁移。多晶结构中的温度变化产生应力和应变能量密度,可以使用FEM软件计算。单晶Cu的各向异性弹性特性被扭曲以适应空间中的晶粒取向,并且每个晶粒都被视为单晶。晶界速度是使用一个简单的模型计算的,该模型将晶界迁移率与晶界两侧应变能量密度的变化联系起来。使用晶粒连续体模型,研究人员将能够研究热产生的应力对应变能驱动的原子通量引起的晶界运动的影响。通过对硅通孔中晶粒结构的有限元建模,研究了CTE失配引起的晶粒旋转对晶界的应力效应。该结构必须使用扫描电子显微镜电子背散射衍射(EBSD)图像(SEM)进行建模。晶粒生长和随后的晶界旋转可以使用适当的外推方法来测量它们对应力的影响,从而测量TSV的整体可靠性。
{"title":"Image Processing-Based Method of Evaluation of Stress from Grain Structures of Through Silicon Via (TSV)","authors":"Mamvinder Sharma, Sudhakara Reddy Saripalli, A. Gupta, Pankaj Palta, D. Pandey","doi":"10.1142/s0219467825500081","DOIUrl":"https://doi.org/10.1142/s0219467825500081","url":null,"abstract":"Visualization of material composition across numerous grains and complicated networks of grain boundaries using image processing techniques can reveal fresh insights into the material’s structural evolution and upcoming functional capabilities for a variety of applications. Three-dimensional integrated circuits (3D IC) are the most practical technology for increasing transistor density in future semiconductor applications. One of the key benefits of 3D IC is heterogeneous integration, which results in shorter interconnections due to vertical stacking. However, one of the most significant challenges in building higher-density microelectronics devices is the stress generated by material mismatches in the coefficient of thermal expansion (CTE). The purpose of this study is to analyze grain boundary migration caused by variations in strain energy density using image processing methods for 3D grain continuum modeling. Temperature changes in polycrystalline structures generate stresses and strain energy densities, which may be calculated using FEM software. Single crystal Cu’s anisotropic elastic properties are twisted to suit grain orientation in space and each grain is treated as a single crystal. Grain boundary speeds are calculated using a simple model that relates grain boundary mobility to variations in strain energy density on both sides of grain boundaries. Using the grain continuum model, researchers will be able to investigate the effect of thermally generated stresses on grain boundary motion caused by atomic flux driven by strain energy. Using finite-element modeling of the grain structure in a Through Silicon Via, the stress effect on grain boundaries caused by grain rotation due to CTE mismatch was investigated (TSV). The structure must be modeled using a scanning electron microscopes Electron Backscatter Diffraction (EBSD) image (SEM). Grain growth and subsequent grain boundary rotation can be performed using the appropriate extrapolation method to measure their influence on stress and, as a result, the TSV’s overall reliability.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45018506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Image and Graphics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1