首页 > 最新文献

Statistics in Biosciences最新文献

英文 中文
A Resampling Approach for Causal Inference on Novel Two-Point Time-Series with Application to Identify Risk Factors for Type-2 Diabetes and Cardiovascular Disease 新两点时间序列因果推断的重采样方法及其在2型糖尿病和心血管疾病危险因素识别中的应用
Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-10-16 DOI: 10.1007/s12561-023-09390-w
Xiaowu Dai, Saad Mouti, Marjorie Lima do Vale, Sumantra Ray, Jeffrey Bohn, Lisa Goldberg
Abstract Two-point time-series data, characterized by baseline and follow-up observations, are frequently encountered in health research. We study a novel two-point time-series structure without a control group, which is driven by an observational routine clinical dataset collected to monitor key risk markers of type-2 diabetes (T2D) and cardiovascular disease (CVD). We propose a resampling approach called “I-Rand” for independently sampling one of the two-time points for each individual and making inferences on the estimated causal effects based on matching methods. The proposed method is illustrated with data from a service-based dietary intervention to promote a low-carbohydrate diet (LCD), designed to impact risk of T2D and CVD. Baseline data contain a pre-intervention health record of study participants, and health data after LCD intervention are recorded at the follow-up visit, providing a two-point time-series pattern without a parallel control group. Using this approach we find that obesity is a significant risk factor of T2D and CVD, and an LCD approach can significantly mitigate the risks of T2D and CVD. We provide code that implements our method.
以基线和随访观察为特征的两点时间序列数据在卫生研究中经常遇到。我们研究了一种新的两点时间序列结构,没有对照组,该结构由收集的观察性常规临床数据驱动,用于监测2型糖尿病(T2D)和心血管疾病(CVD)的关键风险标志物。我们提出了一种称为“I-Rand”的重新采样方法,用于对每个个体的两个时间点中的一个进行独立采样,并根据匹配方法对估计的因果效应进行推断。通过一项以服务为基础的饮食干预来促进低碳水化合物饮食(LCD),旨在影响T2D和CVD的风险。基线数据包含研究参与者的干预前健康记录,LCD干预后的健康数据在随访时记录,提供两点时间序列模式,而不需要平行对照组。通过该方法,我们发现肥胖是T2D和CVD的重要危险因素,LCD方法可以显著降低T2D和CVD的风险。我们提供了实现方法的代码。
{"title":"A Resampling Approach for Causal Inference on Novel Two-Point Time-Series with Application to Identify Risk Factors for Type-2 Diabetes and Cardiovascular Disease","authors":"Xiaowu Dai, Saad Mouti, Marjorie Lima do Vale, Sumantra Ray, Jeffrey Bohn, Lisa Goldberg","doi":"10.1007/s12561-023-09390-w","DOIUrl":"https://doi.org/10.1007/s12561-023-09390-w","url":null,"abstract":"Abstract Two-point time-series data, characterized by baseline and follow-up observations, are frequently encountered in health research. We study a novel two-point time-series structure without a control group, which is driven by an observational routine clinical dataset collected to monitor key risk markers of type-2 diabetes (T2D) and cardiovascular disease (CVD). We propose a resampling approach called “I-Rand” for independently sampling one of the two-time points for each individual and making inferences on the estimated causal effects based on matching methods. The proposed method is illustrated with data from a service-based dietary intervention to promote a low-carbohydrate diet (LCD), designed to impact risk of T2D and CVD. Baseline data contain a pre-intervention health record of study participants, and health data after LCD intervention are recorded at the follow-up visit, providing a two-point time-series pattern without a parallel control group. Using this approach we find that obesity is a significant risk factor of T2D and CVD, and an LCD approach can significantly mitigate the risks of T2D and CVD. We provide code that implements our method.","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136113434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tweedie Distributions for Biological Sequences Alignments 生物序列比对的Tweedie分布
Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-10-09 DOI: 10.1007/s12561-023-09388-4
Ben Hassen Hanen, Masmoudi Khalil, Masmoudi Afif
{"title":"Tweedie Distributions for Biological Sequences Alignments","authors":"Ben Hassen Hanen, Masmoudi Khalil, Masmoudi Afif","doi":"10.1007/s12561-023-09388-4","DOIUrl":"https://doi.org/10.1007/s12561-023-09388-4","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"94 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135093524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking Cellular Insights Through Cell-Type Decomposition 通过细胞类型分解解锁细胞洞察力
Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-10-04 DOI: 10.1007/s12561-023-09389-3
Xiaoyu Song
{"title":"Unlocking Cellular Insights Through Cell-Type Decomposition","authors":"Xiaoyu Song","doi":"10.1007/s12561-023-09389-3","DOIUrl":"https://doi.org/10.1007/s12561-023-09389-3","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135597032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Power Analysis of Exposure Mixture Studies Via Monte Carlo Simulations 基于蒙特卡罗模拟的暴露混合物功率分析研究
Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-10-01 DOI: 10.1007/s12561-023-09385-7
Phuc H. Nguyen, Amy H. Herring, Stephanie M. Engel
{"title":"Power Analysis of Exposure Mixture Studies Via Monte Carlo Simulations","authors":"Phuc H. Nguyen, Amy H. Herring, Stephanie M. Engel","doi":"10.1007/s12561-023-09385-7","DOIUrl":"https://doi.org/10.1007/s12561-023-09385-7","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"171 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135408814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Improving the Power to Detect Indirect Effects in Mediation Analysis 提高中介分析中间接影响的检测能力
Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-09-27 DOI: 10.1007/s12561-023-09386-6
John Kidd, Dan-Yu Lin
{"title":"Improving the Power to Detect Indirect Effects in Mediation Analysis","authors":"John Kidd, Dan-Yu Lin","doi":"10.1007/s12561-023-09386-6","DOIUrl":"https://doi.org/10.1007/s12561-023-09386-6","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"101-102 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135537903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting Disease Outbreak Regions Using Multiple Data Streams 使用多个数据流检测疾病爆发区域
Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-09-16 DOI: 10.1007/s12561-023-09387-5
Sesha Dassanayake, Joshua P. French
{"title":"Detecting Disease Outbreak Regions Using Multiple Data Streams","authors":"Sesha Dassanayake, Joshua P. French","doi":"10.1007/s12561-023-09387-5","DOIUrl":"https://doi.org/10.1007/s12561-023-09387-5","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135308009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mediation Analysis with Random Distribution as Mediator with an Application to iCOMPARE Trial 随机分布作为中介的中介分析及其在iccompare试验中的应用
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-08-30 DOI: 10.1007/s12561-023-09383-9
Jingru Zhang, M. Basner, Christopher W Jones, D. Dinges, H. Shou, Hongzhe Li
{"title":"Mediation Analysis with Random Distribution as Mediator with an Application to iCOMPARE Trial","authors":"Jingru Zhang, M. Basner, Christopher W Jones, D. Dinges, H. Shou, Hongzhe Li","doi":"10.1007/s12561-023-09383-9","DOIUrl":"https://doi.org/10.1007/s12561-023-09383-9","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44600654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous Denoising and Heterogeneity Learning for Time Series Data 时间序列数据的同时去噪和异质性学习
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-08-24 DOI: 10.1007/s12561-023-09384-8
Xiwen Jiang, Weining Shen
{"title":"Simultaneous Denoising and Heterogeneity Learning for Time Series Data","authors":"Xiwen Jiang, Weining Shen","doi":"10.1007/s12561-023-09384-8","DOIUrl":"https://doi.org/10.1007/s12561-023-09384-8","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47622830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding Effective Virus Control Policies for Covid-19 with the Q-learning Method 用q -学习方法理解Covid-19有效的病毒控制策略
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-08-11 DOI: 10.1007/s12561-023-09382-w
Yasin Khadem Charvadeh, G. Yi
{"title":"Understanding Effective Virus Control Policies for Covid-19 with the Q-learning Method","authors":"Yasin Khadem Charvadeh, G. Yi","doi":"10.1007/s12561-023-09382-w","DOIUrl":"https://doi.org/10.1007/s12561-023-09382-w","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44014981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semiparametric Trend Analysis for Stratified Recurrent Gap Times Under Weak Comparability Constraint. 弱可比性约束下分层循环间隙时间的半参数趋势分析
IF 0.8 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2023-07-01 Epub Date: 2023-06-03 DOI: 10.1007/s12561-023-09376-8
Peng Liu, Yijian Huang, Kwun Chuen Gary Chan, Ying Qing Chen

Recurrent event data are frequently encountered in many longitudinal studies where each individual may experience more than one event. Wang and Chen (Biometrics 56(3):789-794, 2000) proposed a comparability constraint to estimate the time trend for the gap times, where the gap time pairs that satisfy the constraint have the same conditional distribution. However, the comparable paired gap times are also independent. Therefore, the comparable gap time pairs will be subject to a stronger constraint than needed for the estimation. Thus their procedure is subject to information loss. Under the accelerated failure time model, we propose a new comparability constraint that can overcome the drawback mentioned above. The gap time pairs being selected by the proposed comparability constraint will still have the same distribution, but they do not need to be independent of each other. We showed that the proposed comparability constraint will utilize more gap time data pairs than the strong comparability. And we showed via various simulation studies that the variance will be smaller than Wang and Chen's (2000) estimator. We apply the proposed method to the HIV Prevention Trial Network 052 study.

在许多纵向研究中经常会遇到重复事件数据,每个人可能会经历不止一次事件。Wang 和 Chen(Biometrics 56(3):789-794,2000 年)提出了一个可比性约束来估计间隙时间的时间趋势,满足该约束的间隙时间对具有相同的条件分布。然而,可比较的成对间隙时间也是独立的。因此,可比间隙时间对受到的约束将比估计所需的约束更强。因此,他们的程序会造成信息损失。在加速故障时间模型下,我们提出了一种新的可比性约束,可以克服上述缺点。根据所提出的可比性约束所选择的间隙时间对仍然具有相同的分布,但它们不需要相互独立。我们证明,与强可比性相比,建议的可比性约束将利用更多的间隙时间数据对。我们还通过各种模拟研究表明,方差将小于 Wang 和 Chen(2000 年)的估计方法。我们将提出的方法应用于艾滋病预防试验网络 052 研究。
{"title":"Semiparametric Trend Analysis for Stratified Recurrent Gap Times Under Weak Comparability Constraint.","authors":"Peng Liu, Yijian Huang, Kwun Chuen Gary Chan, Ying Qing Chen","doi":"10.1007/s12561-023-09376-8","DOIUrl":"10.1007/s12561-023-09376-8","url":null,"abstract":"<p><p>Recurrent event data are frequently encountered in many longitudinal studies where each individual may experience more than one event. Wang and Chen (Biometrics 56(3):789-794, 2000) proposed a comparability constraint to estimate the time trend for the gap times, where the gap time pairs that satisfy the constraint have the same conditional distribution. However, the comparable paired gap times are also independent. Therefore, the comparable gap time pairs will be subject to a stronger constraint than needed for the estimation. Thus their procedure is subject to information loss. Under the accelerated failure time model, we propose a new comparability constraint that can overcome the drawback mentioned above. The gap time pairs being selected by the proposed comparability constraint will still have the same distribution, but they do not need to be independent of each other. We showed that the proposed comparability constraint will utilize more gap time data pairs than the strong comparability. And we showed via various simulation studies that the variance will be smaller than Wang and Chen's (2000) estimator. We apply the proposed method to the HIV Prevention Trial Network 052 study.</p>","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"15 1","pages":"455-474"},"PeriodicalIF":0.8,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45506409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Statistics in Biosciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1