首页 > 最新文献

Statistics in Biosciences最新文献

英文 中文
A generalized interrupted time series model for assessing complex health care interventions. 用于评估复杂医疗干预措施的广义间断时间序列模型。
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2022-12-01 Epub Date: 2022-05-25 DOI: 10.1007/s12561-022-09346-6
Maricela Cruz, Hernando Ombao, Daniel L Gillen

Assessing the impact of complex interventions on measurable health outcomes is a growing concern in health care and health policy. Interrupted time series (ITS) designs borrow from traditional case-crossover designs and function as quasi-experimental methodology able to retrospectively analyze the impact of an intervention. Statistical models used to analyze ITS designs primarily focus on continuous-valued outcomes. We propose the "Generalized Robust ITS" (GRITS) model appropriate for outcomes whose underlying distribution belongs to the exponential family of distributions, thereby expanding the available methodology to adequately model binary and count responses. GRITS formally implements a test for the existence of a change point in discrete ITS. The methodology proposed is able to test for the existence of and estimate the change point, borrow information across units in multi-unit settings, and test for differences in the mean function and correlation pre- and post-intervention. The methodology is illustrated by analyzing patient falls from a hospital that implemented and evaluated a new care delivery model in multiple units.

评估复杂干预措施对可测量健康结果的影响是医疗保健和卫生政策领域日益关注的问题。中断时间序列(ITS)设计借鉴了传统的病例交叉设计,是一种准实验方法,能够回顾性地分析干预措施的影响。用于分析 ITS 设计的统计模型主要关注连续值结果。我们提出了 "广义稳健 ITS"(GRITS)模型,该模型适用于基本分布属于指数分布族的结果,从而将现有方法扩展到二元和计数反应模型。GRITS 正式实现了离散 ITS 中变化点存在性的检验。所提出的方法能够检验变化点是否存在并对其进行估计,在多单位设置中借用跨单位信息,并检验干预前后平均函数和相关性的差异。该方法通过分析一家医院的病人跌倒情况来说明,该医院在多个单位实施并评估了一种新的医疗服务模式。
{"title":"A generalized interrupted time series model for assessing complex health care interventions.","authors":"Maricela Cruz, Hernando Ombao, Daniel L Gillen","doi":"10.1007/s12561-022-09346-6","DOIUrl":"10.1007/s12561-022-09346-6","url":null,"abstract":"<p><p>Assessing the impact of complex interventions on measurable health outcomes is a growing concern in health care and health policy. Interrupted time series (ITS) designs borrow from traditional case-crossover designs and function as quasi-experimental methodology able to retrospectively analyze the impact of an intervention. Statistical models used to analyze ITS designs primarily focus on continuous-valued outcomes. We propose the \"Generalized Robust ITS\" (GRITS) model appropriate for outcomes whose underlying distribution belongs to the exponential family of distributions, thereby expanding the available methodology to adequately model binary and count responses. GRITS formally implements a test for the existence of a change point in discrete ITS. The methodology proposed is able to test for the existence of and estimate the change point, borrow information across units in multi-unit settings, and test for differences in the mean function and correlation pre- and post-intervention. The methodology is illustrated by analyzing patient falls from a hospital that implemented and evaluated a new care delivery model in multiple units.</p>","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"14 3","pages":"582-610"},"PeriodicalIF":1.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10208393/pdf/nihms-1884816.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9558674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semiparametric Density Ratio Model for Survival Data with a Cure Fraction 带有治愈分数的生存数据的半参数密度比模型
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2022-10-07 DOI: 10.1007/s12561-022-09357-3
Weibin Zhong, G. Diao
{"title":"Semiparametric Density Ratio Model for Survival Data with a Cure Fraction","authors":"Weibin Zhong, G. Diao","doi":"10.1007/s12561-022-09357-3","DOIUrl":"https://doi.org/10.1007/s12561-022-09357-3","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"15 1","pages":"217 - 241"},"PeriodicalIF":1.0,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46697910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Step-Wise Multiple Testing for Linear Regression Models with Application to the Study of Resting Energy Expenditure 线性回归模型的逐步多重检验及其在静息能量消耗研究中的应用
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2022-09-17 DOI: 10.1007/s12561-022-09355-5
Junyi Zhang, Zimian Wang, Zhezhen Jin, Zhiliang Ying
{"title":"A Step-Wise Multiple Testing for Linear Regression Models with Application to the Study of Resting Energy Expenditure","authors":"Junyi Zhang, Zimian Wang, Zhezhen Jin, Zhiliang Ying","doi":"10.1007/s12561-022-09355-5","DOIUrl":"https://doi.org/10.1007/s12561-022-09355-5","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"15 1","pages":"163 - 192"},"PeriodicalIF":1.0,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42982280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Framework for Causal Inference with Principal Stratification and Clusters 具有主分层和聚类的贝叶斯因果推理框架
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2022-07-23 DOI: 10.1007/s12561-022-09351-9
Li He, Yu-Bo Wang, W. Bridges, Zhulin He, S. Che
{"title":"Bayesian Framework for Causal Inference with Principal Stratification and Clusters","authors":"Li He, Yu-Bo Wang, W. Bridges, Zhulin He, S. Che","doi":"10.1007/s12561-022-09351-9","DOIUrl":"https://doi.org/10.1007/s12561-022-09351-9","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"15 1","pages":"114 - 140"},"PeriodicalIF":1.0,"publicationDate":"2022-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41559868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction to Special Issue on Leveraging External Data to Improve Trial Efficiency 《利用外部数据提高审判效率》特刊导言
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2022-06-08 DOI: 10.1007/s12561-022-09348-4
Lanju Zhang, Naitee Ting
{"title":"Introduction to Special Issue on Leveraging External Data to Improve Trial Efficiency","authors":"Lanju Zhang, Naitee Ting","doi":"10.1007/s12561-022-09348-4","DOIUrl":"https://doi.org/10.1007/s12561-022-09348-4","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"14 1","pages":"193 - 196"},"PeriodicalIF":1.0,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43439217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Detection of Cell Separation-Induced Gene Expression Through a Penalized Deconvolution Approach 通过惩罚反褶积方法检测细胞分离诱导的基因表达
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2022-05-20 DOI: 10.1007/s12561-022-09344-8
An-Shun Tai, Chun-Chao Wang, Wen-Ping Hsieh
{"title":"Detection of Cell Separation-Induced Gene Expression Through a Penalized Deconvolution Approach","authors":"An-Shun Tai, Chun-Chao Wang, Wen-Ping Hsieh","doi":"10.1007/s12561-022-09344-8","DOIUrl":"https://doi.org/10.1007/s12561-022-09344-8","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45317080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Discriminatory capacity of prenatal ultrasound measures for large-for-gestational-age birth: A Bayesian approach to ROC analysis using placement values. 产前超声测量对大胎龄分娩的歧视性能力:使用放置值的贝叶斯方法进行ROC分析。
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2022-04-01 DOI: 10.1007/s12561-021-09311-9
Soutik Ghosal, Zhen Chen

Predicting large fetuses at birth is of great interest to obstetricians. Using an NICHD Scandinavian Study that collected longitudinal ultrasound examination data during pregnancy, we estimate diagnostic accuracy parameters of estimated fetal weight (EFW) at various times during pregnancy in predicting large-for-gestational-age. We adopt a placement value based Bayesian regression model with random effects to estimate ROC curves. The use of placement values allows us to model covariate effects directly on the ROC curves and the adoption of a Bayesian approach accommodates the a priori constraint that an ROC curve of EFW near delivery should dominate another further away. The proposed methodology is shown to perform better than some alternative approaches in simulations and its application to the Scandinavian Study data suggests that diagnostic accuracy of EFW can improve about 65% from week 17 to 37 of gestation.

在出生时预测胎儿的大小是产科医生非常感兴趣的。利用一项NICHD斯堪的纳维亚研究,收集了妊娠期间的纵向超声检查数据,我们估计了妊娠期间不同时间估计胎儿体重(EFW)预测大胎龄的诊断准确性参数。我们采用基于放置值的随机效应贝叶斯回归模型来估计ROC曲线。放置值的使用使我们能够直接在ROC曲线上对协变量效应进行建模,并且采用贝叶斯方法适应了一个先验约束,即接近交付的EFW的ROC曲线应该支配更远的另一个。所提出的方法在模拟中比一些替代方法表现得更好,其在斯堪的纳维亚研究数据中的应用表明,从妊娠第17周到第37周,EFW的诊断准确性可以提高约65%。
{"title":"Discriminatory capacity of prenatal ultrasound measures for large-for-gestational-age birth: A Bayesian approach to ROC analysis using placement values.","authors":"Soutik Ghosal,&nbsp;Zhen Chen","doi":"10.1007/s12561-021-09311-9","DOIUrl":"https://doi.org/10.1007/s12561-021-09311-9","url":null,"abstract":"<p><p>Predicting large fetuses at birth is of great interest to obstetricians. Using an NICHD Scandinavian Study that collected longitudinal ultrasound examination data during pregnancy, we estimate diagnostic accuracy parameters of estimated fetal weight (EFW) at various times during pregnancy in predicting large-for-gestational-age. We adopt a placement value based Bayesian regression model with random effects to estimate ROC curves. The use of placement values allows us to model covariate effects directly on the ROC curves and the adoption of a Bayesian approach accommodates the <i>a priori</i> constraint that an ROC curve of EFW near delivery should dominate another further away. The proposed methodology is shown to perform better than some alternative approaches in simulations and its application to the Scandinavian Study data suggests that diagnostic accuracy of EFW can improve about 65% from week 17 to 37 of gestation.</p>","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"14 1","pages":"1-22"},"PeriodicalIF":1.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12561-021-09311-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9233024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Simple Approach to Incorporating Historical Control Data in Clinical Trial Design and Analysis 将历史对照数据纳入临床试验设计和分析的一种简单方法
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2022-03-31 DOI: 10.1007/s12561-022-09342-w
Lanju Zhang, Zailong Wang, Li Wang, Lu Cui, J. Sokolove, Ivan S. F. Chan
{"title":"A Simple Approach to Incorporating Historical Control Data in Clinical Trial Design and Analysis","authors":"Lanju Zhang, Zailong Wang, Li Wang, Lu Cui, J. Sokolove, Ivan S. F. Chan","doi":"10.1007/s12561-022-09342-w","DOIUrl":"https://doi.org/10.1007/s12561-022-09342-w","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"14 1","pages":"216 - 236"},"PeriodicalIF":1.0,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43178218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical Trials with External Control: Beyond Propensity Score Matching 临床试验与外部控制:超越倾向得分匹配
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2022-03-24 DOI: 10.1007/s12561-022-09341-x
Hongwei Wang, Yixin Fang, Weili He, Ruizhe Chen, Su Chen
{"title":"Clinical Trials with External Control: Beyond Propensity Score Matching","authors":"Hongwei Wang, Yixin Fang, Weili He, Ruizhe Chen, Su Chen","doi":"10.1007/s12561-022-09341-x","DOIUrl":"https://doi.org/10.1007/s12561-022-09341-x","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"14 1","pages":"304 - 317"},"PeriodicalIF":1.0,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48725713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of the Proportional Mean Residual Life Model with Internal and Longitudinal Covariates 含内、纵向协变量的比例平均剩余寿命模型的估计
IF 1 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2022-03-04 DOI: 10.1007/s12561-022-09339-5
Ruiwen Zhou, Jianguo Sun
{"title":"Estimation of the Proportional Mean Residual Life Model with Internal and Longitudinal Covariates","authors":"Ruiwen Zhou, Jianguo Sun","doi":"10.1007/s12561-022-09339-5","DOIUrl":"https://doi.org/10.1007/s12561-022-09339-5","url":null,"abstract":"","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"14 1","pages":"550 - 563"},"PeriodicalIF":1.0,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43677213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Statistics in Biosciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1