首页 > 最新文献

Journal of Astronomical Instrumentation最新文献

英文 中文
FORCAST: A Mid-Infrared Camera for SOFIA 预报:索菲亚将有一台中红外照相机
IF 1.3 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2018-12-01 DOI: 10.1142/S2251171718400056
T. Herter, J. Adams, G. Gull, J. Schoenwald, L. Keller, B. Pirger, C. Henderson, G. Stacey, T. Nikola, J. D. De Buizer, W. Vacca, K. Ennico
We describe the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST) which is presently operating as a facility instrument on the Stratospheric Observatory For Infrared Astronomy (SOFIA). FORCAST provides imaging and moderate resolution spectroscopy capability over the 5–40[Formula: see text][Formula: see text]m wavelength range. In imaging mode, FORCAST has a 3.4[Formula: see text] field-of-view with 0.768[Formula: see text] pixels. Using grisms, FORCAST provides long-slit low-resolution ([Formula: see text]–300) and short-slit, cross-dispersed medium-resolution spectroscopic modes ([Formula: see text]–1200) over select wavelengths. Preceded by both Spitzer and Herschel, the discovery phase space for FORCAST lies in providing unique photometric bands and/or spectroscopic coverage, higher spatial resolution and exploration of the brightest sources which typically saturate space observatories.
我们描述了SOFIA望远镜(FORCAST)的微弱物体红外相机,该望远镜目前作为红外天文平流层天文台(SOFIA)的设施仪器运行。FORCAST在5–40[公式:见正文][公式:见文本]m波长范围内提供成像和中等分辨率光谱功能。在成像模式下,FORCAST有一个3.4[公式:见文本]的视场,像素为0.768[公式:见图文本]。FORCAST使用灰度,在选定的波长上提供长缝低分辨率([公式:见正文]–300)和短缝交叉分散中等分辨率光谱模式([公式,见正文]-1200)。在Spitzer和Herschel之前,FORCAST的发现阶段空间在于提供独特的光度带和/或光谱覆盖范围、更高的空间分辨率以及探索通常使空间天文台饱和的最亮光源。
{"title":"FORCAST: A Mid-Infrared Camera for SOFIA","authors":"T. Herter, J. Adams, G. Gull, J. Schoenwald, L. Keller, B. Pirger, C. Henderson, G. Stacey, T. Nikola, J. D. De Buizer, W. Vacca, K. Ennico","doi":"10.1142/S2251171718400056","DOIUrl":"https://doi.org/10.1142/S2251171718400056","url":null,"abstract":"We describe the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST) which is presently operating as a facility instrument on the Stratospheric Observatory For Infrared Astronomy (SOFIA). FORCAST provides imaging and moderate resolution spectroscopy capability over the 5–40[Formula: see text][Formula: see text]m wavelength range. In imaging mode, FORCAST has a 3.4[Formula: see text] field-of-view with 0.768[Formula: see text] pixels. Using grisms, FORCAST provides long-slit low-resolution ([Formula: see text]–300) and short-slit, cross-dispersed medium-resolution spectroscopic modes ([Formula: see text]–1200) over select wavelengths. Preceded by both Spitzer and Herschel, the discovery phase space for FORCAST lies in providing unique photometric bands and/or spectroscopic coverage, higher spatial resolution and exploration of the brightest sources which typically saturate space observatories.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171718400056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42298217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
The SOFIA Focal Plane Imager: A Highly Sensitive and Fast Photometer for the Wavelength Range 0.4 to 1 Micron SOFIA焦平面成像仪:适用于0.4至1微米波长范围的高灵敏度快速光度计
IF 1.3 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2018-12-01 DOI: 10.1142/S2251171718400068
E. Pfüller, J. Wolf, M. Wiedemann
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a heavily modified Boeing 747SP aircraft, accommodating a 2.7[Formula: see text]m infrared telescope. This airborne observation platform operates at flight altitudes of up to 13.7[Formula: see text]km (45,000[Formula: see text]ft) and therefore allows a nearly unobstructed view of the visible and infrared universe at wavelengths between 0.4[Formula: see text]μm and 1600[Formula: see text]μm. The Focal Plane Imager (FPI+) is SOFIA’s main tracking camera. It uses a commercial, off-the-shelf camera with a thermoelectrically cooled EMCCD. The back-illuminated sensor has a peak quantum efficiency greater than 95% at 550[Formula: see text]nm and the dark current is as low as 0.001 e-/pix/sec. Since 2015, the FPI[Formula: see text] has been available to the community as a Facility Science Instrument (FSI), and can be used as a high speed photometer for events in the visual wavelength range. This paper presents a detailed overview of the design and optical configuration of the FPI+. Different settings and specifications of the camera are explained and the focal plane sensor is described. The camera’s performance in regards to sensitivity and frame rate is shown. The operation of the instrument is described as well as the support for guest observers throughout the process from proposing to data analysis. To date, SOFIA has conducted multiple FPI+ observations of stellar occultations, e.g. occultations by Pluto in 2011 and 2015, the occultation by 2014MU69 in July 2017 and the occultation by Triton in October 2017. Additionally, multiple observations of exo-planet transits have been observed with the FPI+. Throughout these observations, the FPI+ has proven to be an excellent photometer for astronomical events that have challenging requirements for sensitivity and temporal resolution.
平流层红外天文观测站(SOFIA)是一架经过大量改装的波音747SP飞机,配备了2.7米红外望远镜。该机载观测平台的飞行高度高达13.7[公式:见正文]公里(45000[公式,见正文]英尺),因此可以在0.4[公式:参见正文]μm至1600[公式,见图]μm的波长范围内几乎畅通无阻地观察可见光和红外宇宙。焦平面成像仪(FPI+)是SOFIA的主要跟踪相机。它使用了一台商用现成的带有热电冷却EMCCD的相机。背照式传感器在550[公式:见正文]nm处的峰值量子效率大于95%,暗电流低至0.001 e-/pix/sec。自2015年以来,FPI[公式:见正文]已作为设施科学仪器(FSI)向社区提供,并可作为视觉波长范围内事件的高速光度计。本文详细介绍了FPI+的设计和光学配置。解释了相机的不同设置和规格,并描述了焦平面传感器。显示了相机在灵敏度和帧速率方面的性能。介绍了该仪器的操作,以及从提议到数据分析的整个过程中对客座观察员的支持。迄今为止,SOFIA已经对恒星掩星进行了多次FPI+观测,例如2011年和2015年冥王星的掩星、2017年7月2014MU69的掩星和2017年10月海卫一的掩星。此外,FPI+还观测到了多次外行星凌日的观测。在这些观测过程中,FPI+已被证明是一种出色的光度计,适用于对灵敏度和时间分辨率有挑战性要求的天文事件。
{"title":"The SOFIA Focal Plane Imager: A Highly Sensitive and Fast Photometer for the Wavelength Range 0.4 to 1 Micron","authors":"E. Pfüller, J. Wolf, M. Wiedemann","doi":"10.1142/S2251171718400068","DOIUrl":"https://doi.org/10.1142/S2251171718400068","url":null,"abstract":"The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a heavily modified Boeing 747SP aircraft, accommodating a 2.7[Formula: see text]m infrared telescope. This airborne observation platform operates at flight altitudes of up to 13.7[Formula: see text]km (45,000[Formula: see text]ft) and therefore allows a nearly unobstructed view of the visible and infrared universe at wavelengths between 0.4[Formula: see text]μm and 1600[Formula: see text]μm. The Focal Plane Imager (FPI+) is SOFIA’s main tracking camera. It uses a commercial, off-the-shelf camera with a thermoelectrically cooled EMCCD. The back-illuminated sensor has a peak quantum efficiency greater than 95% at 550[Formula: see text]nm and the dark current is as low as 0.001 e-/pix/sec. Since 2015, the FPI[Formula: see text] has been available to the community as a Facility Science Instrument (FSI), and can be used as a high speed photometer for events in the visual wavelength range. This paper presents a detailed overview of the design and optical configuration of the FPI+. Different settings and specifications of the camera are explained and the focal plane sensor is described. The camera’s performance in regards to sensitivity and frame rate is shown. The operation of the instrument is described as well as the support for guest observers throughout the process from proposing to data analysis. To date, SOFIA has conducted multiple FPI+ observations of stellar occultations, e.g. occultations by Pluto in 2011 and 2015, the occultation by 2014MU69 in July 2017 and the occultation by Triton in October 2017. Additionally, multiple observations of exo-planet transits have been observed with the FPI+. Throughout these observations, the FPI+ has proven to be an excellent photometer for astronomical events that have challenging requirements for sensitivity and temporal resolution.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171718400068","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49050282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
A Review of Science Ground Operations for the Stratospheric Observatory for Infrared Astronomy (SOFIA) 平流层红外天文观测站(SOFIA)科学地面运行综述
IF 1.3 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2018-12-01 DOI: 10.1142/S2251171718400020
Z. Ali, P. Alvarez, A. Cheng, K. Hanna, M. Kandlagunta, J. Lott, G. Perryman, L. Tanaka, C. Kaminski, M. Woodworth, J. Wong, N. McKown
The NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5[Formula: see text]m telescope in a modified Boeing 747SP aircraft that is flown at high altitude to do unique astronomy in the infrared. SOFIA is a singular integration of aircraft operations, telescope design, and science instrumentation that delivers observational opportunities outside the capability of any other facility. The science ground operations are the transition and integration point of the science, aircraft, and telescope. We present the ground operations themselves and the tools used to prepare for mission success. Specifically, we will discuss operations from science instrument delivery to aircraft operation and mission readiness. We will also provide a discussion of instrument life cycle including maintenance and repair, both before and after acceptance by the observatory as well as retirement. Included in that will be a description of the facilities and their development, an overview of the SOFIA telescope assembly simulator, our deployment capabilities, as well as an outlook to the future of novel science instrument support for SOFIA.
美国宇航局平流层红外天文观测站(SOFIA)是一个2.5米的望远镜,安装在一架改装过的波音747SP飞机上,在高空飞行,进行独特的红外天文观测。SOFIA是飞机操作、望远镜设计和科学仪器的单一集成,提供任何其他设施能力之外的观测机会。科学地面作业是科学、飞行器和望远镜的过渡和融合点。我们介绍了地面行动本身和用于准备任务成功的工具。具体来说,我们将讨论从科学仪器交付到飞机操作和任务准备的操作。我们亦会讨论仪器的生命周期,包括仪器被天文台接收前后的保养和维修,以及仪器的退役。其中包括对设施及其发展的描述,对SOFIA望远镜组装模拟器的概述,我们的部署能力,以及对SOFIA未来新型科学仪器支持的展望。
{"title":"A Review of Science Ground Operations for the Stratospheric Observatory for Infrared Astronomy (SOFIA)","authors":"Z. Ali, P. Alvarez, A. Cheng, K. Hanna, M. Kandlagunta, J. Lott, G. Perryman, L. Tanaka, C. Kaminski, M. Woodworth, J. Wong, N. McKown","doi":"10.1142/S2251171718400020","DOIUrl":"https://doi.org/10.1142/S2251171718400020","url":null,"abstract":"The NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5[Formula: see text]m telescope in a modified Boeing 747SP aircraft that is flown at high altitude to do unique astronomy in the infrared. SOFIA is a singular integration of aircraft operations, telescope design, and science instrumentation that delivers observational opportunities outside the capability of any other facility. The science ground operations are the transition and integration point of the science, aircraft, and telescope. We present the ground operations themselves and the tools used to prepare for mission success. Specifically, we will discuss operations from science instrument delivery to aircraft operation and mission readiness. We will also provide a discussion of instrument life cycle including maintenance and repair, both before and after acceptance by the observatory as well as retirement. Included in that will be a description of the facilities and their development, an overview of the SOFIA telescope assembly simulator, our deployment capabilities, as well as an outlook to the future of novel science instrument support for SOFIA.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171718400020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48163508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The upGREAT Dual Frequency Heterodyne Arrays for SOFIA 用于SOFIA的upGREAT双频外差阵列
IF 1.3 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2018-12-01 DOI: 10.1142/S2251171718400147
C. Risacher, R. Güsten, J. Stutzki, H. Hübers, R. Aladro, A. Bell, C. Buchbender, D. Büchel, T. Csengeri, C. Durán, U. Graf, R. Higgins, C. Honingh, K. Jacobs, M. Justen, B. Klein, M. Mertens, Y. Okada, A. Parikka, P. Pütz, Nicolás Reyes, Nicolás Reyes, H. Richter, Oliver Ricken, D. Riquelme, N. Rothbart, N. Schneider, R. Simon, M. Wienold, H. Wiesemeyer, M. Ziebart, Paul Fusco, S. Rosner, S. Rosner, B. Wohler, B. Wohler
We present the performance of the upGREAT heterodyne array receivers on the SOFIA telescope after several years of operations. This instrument is a multi-pixel high resolution ([Formula: see text]) spectrometer for the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA). The receivers use 7-pixel subarrays configured in a hexagonal layout around a central pixel. The low frequency array receiver (LFA) has [Formula: see text] pixels (dual polarization), and presently covers the 1.83–2.07[Formula: see text]THz frequency range, which allows to observe the [CII] and [OI] lines at 158[Formula: see text][Formula: see text]m and 145[Formula: see text][Formula: see text]m wavelengths. The high frequency array (HFA) covers the [OI] line at 63[Formula: see text][Formula: see text]m and is equipped with one polarization at the moment (7 pixels, which can be upgraded in the near future with a second polarization array). The 4.7[Formula: see text]THz array has successfully flown using two separate quantum-cascade laser local oscillators from two different groups. NASA completed the development, integration and testing of a dual-channel closed-cycle cryocooler system, with two independently operable He compressors, aboard SOFIA in early 2017 and since then, both arrays can be operated in parallel using a frequency separating dichroic mirror. This configuration is now the prime GREAT configuration and has been added to SOFIA’s instrument suite since observing cycle 6.
本文介绍了经过几年的运行,upGREAT外差阵列接收机在SOFIA望远镜上的性能。该仪器是平流层远红外天文观测台(SOFIA)的多像素高分辨率光谱仪。接收器使用围绕中心像素以六边形布局配置的7像素子阵列。低频阵列接收器(LFA)具有[公式:见文]像素(双偏振),目前覆盖1.83-2.07[公式:见文]太赫兹频率范围,允许在158[公式:见文][公式:见文]m和145[公式:见文][公式:见文]m波长处观察[CII]和[OI]线。高频阵列(high frequency array, HFA)覆盖63 m[公式:见文][公式:见文]m处的[OI]线,目前配备一个极化(7像素,可在不久的将来升级为第二个极化阵列)。4.7太赫兹阵列已经成功地使用来自两个不同组的两个单独的量子级联激光局部振荡器飞行。2017年初,NASA在SOFIA上完成了双通道闭式循环制冷机系统的开发、集成和测试,该系统具有两个独立可操作的He压缩机,从那时起,两个阵列可以使用频率分离二向色镜并行运行。这种配置现在是主要的GREAT配置,并且自观测周期6以来已添加到SOFIA的仪器套件中。
{"title":"The upGREAT Dual Frequency Heterodyne Arrays for SOFIA","authors":"C. Risacher, R. Güsten, J. Stutzki, H. Hübers, R. Aladro, A. Bell, C. Buchbender, D. Büchel, T. Csengeri, C. Durán, U. Graf, R. Higgins, C. Honingh, K. Jacobs, M. Justen, B. Klein, M. Mertens, Y. Okada, A. Parikka, P. Pütz, Nicolás Reyes, Nicolás Reyes, H. Richter, Oliver Ricken, D. Riquelme, N. Rothbart, N. Schneider, R. Simon, M. Wienold, H. Wiesemeyer, M. Ziebart, Paul Fusco, S. Rosner, S. Rosner, B. Wohler, B. Wohler","doi":"10.1142/S2251171718400147","DOIUrl":"https://doi.org/10.1142/S2251171718400147","url":null,"abstract":"We present the performance of the upGREAT heterodyne array receivers on the SOFIA telescope after several years of operations. This instrument is a multi-pixel high resolution ([Formula: see text]) spectrometer for the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA). The receivers use 7-pixel subarrays configured in a hexagonal layout around a central pixel. The low frequency array receiver (LFA) has [Formula: see text] pixels (dual polarization), and presently covers the 1.83–2.07[Formula: see text]THz frequency range, which allows to observe the [CII] and [OI] lines at 158[Formula: see text][Formula: see text]m and 145[Formula: see text][Formula: see text]m wavelengths. The high frequency array (HFA) covers the [OI] line at 63[Formula: see text][Formula: see text]m and is equipped with one polarization at the moment (7 pixels, which can be upgraded in the near future with a second polarization array). The 4.7[Formula: see text]THz array has successfully flown using two separate quantum-cascade laser local oscillators from two different groups. NASA completed the development, integration and testing of a dual-channel closed-cycle cryocooler system, with two independently operable He compressors, aboard SOFIA in early 2017 and since then, both arrays can be operated in parallel using a frequency separating dichroic mirror. This configuration is now the prime GREAT configuration and has been added to SOFIA’s instrument suite since observing cycle 6.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171718400147","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48242845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 44
Preface 前言
IF 1.3 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2018-12-01 DOI: 10.1142/s2251171718020014
P. Temi
{"title":"Preface","authors":"P. Temi","doi":"10.1142/s2251171718020014","DOIUrl":"https://doi.org/10.1142/s2251171718020014","url":null,"abstract":"","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s2251171718020014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45915287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EXES: The Echelon-cross-echelle Spectrograph for SOFIA EXES: SOFIA的梯队-交叉梯队光谱仪
IF 1.3 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2018-12-01 DOI: 10.1142/S2251171718400135
M. Richter, C. DeWitt, M. McKelvey, E. Montiel, R. Mcmurray, M. Case
The Echelon-cross-echelle spectrograph (EXES) is a high spectral resolution, mid-infrared spectrograph designed for and operated on the Stratospheric Observatory for Infrared Astronomy (SOFIA). EXES has multiple operational modes, but is optimized for high spectral resolution. The heart of the instrument is a one meter long, diamond-machined echelon grating. EXES also uses a 10242 Si:As detector optimized for low-background flux. We will discuss the design, operation and performance of EXES.
梯队-交叉梯队光谱仪(EXES)是为平流层红外天文观测站(SOFIA)设计并运行的高光谱分辨率中红外光谱仪。EXES具有多种工作模式,但针对高光谱分辨率进行了优化。仪器的核心是一个一米长的钻石加工梯队光栅。EXES还使用了针对低背景通量优化的10242 Si:As探测器。我们将讨论EXES的设计、操作和性能。
{"title":"EXES: The Echelon-cross-echelle Spectrograph for SOFIA","authors":"M. Richter, C. DeWitt, M. McKelvey, E. Montiel, R. Mcmurray, M. Case","doi":"10.1142/S2251171718400135","DOIUrl":"https://doi.org/10.1142/S2251171718400135","url":null,"abstract":"The Echelon-cross-echelle spectrograph (EXES) is a high spectral resolution, mid-infrared spectrograph designed for and operated on the Stratospheric Observatory for Infrared Astronomy (SOFIA). EXES has multiple operational modes, but is optimized for high spectral resolution. The heart of the instrument is a one meter long, diamond-machined echelon grating. EXES also uses a 10242 Si:As detector optimized for low-background flux. We will discuss the design, operation and performance of EXES.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171718400135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41600776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Spectral and Spatial Characterization and Calibration of FIFI-LS — The Field Imaging Spectrometer on SOFIA SOFIA上FIFI-LS -场成像光谱仪的光谱和空间表征及标定
IF 1.3 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2018-12-01 DOI: 10.1142/s2251171718400044
S. Colditz, S. Beckmann, A. Bryant, C. Fischer, F. Fumi, N. Geis, M. Hamidouche, T. Henning, R. Hönle, C. Iserlohe, R. Klein, A. Krabbe, L. Looney, A. Poglitsch, W. Raab, F. Rebell, D. Rosenthal, M. Savage, M. Schweitzer, W. Vacca
The field-imaging far-infrared line spectrometer (FIFI-LS) is a science instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA). FIFI-LS allows simultaneous observations in two spectral channels. The “blue” channel is sensitive from 51[Formula: see text][Formula: see text]m to 125[Formula: see text][Formula: see text]m and the “red” channel from 115[Formula: see text][Formula: see text]m to 203[Formula: see text][Formula: see text]m. The instantaneous spectral coverage is 1000–3000[Formula: see text]km/s in the blue and 800–2500[Formula: see text]km/s in the red channel with a spectral resolution between 150[Formula: see text]km/s and 600[Formula: see text]km/s. Each spectral channel observes a field of five by five spatial pixels on the sky. The pixel size in the blue channel is 6.14 by 6.25 square arc seconds and it is 12.2 by 12.5 square arc seconds in the red channel. FIFI-LS has been operating on SOFIA since 2014. It is available to the astronomical community as a facility science instrument. We present the results of the spectral and spatial characterization of the instrument based on laboratory measurements. This includes the measured spectral resolution and examples of the line spread function in the spectral domain. In the spatial domain, a model of the instrument’s point spread function (PSF) and the description of a second pass ghost are presented. We also provide an overview of the procedures used to measure the instrument’s field of view geometry and spectral calibration. The spectral calibration yields an accuracy of 15–60[Formula: see text]km/s depending on wavelength.
场成像远红外线光谱仪(FIFI-LS)是平流层红外天文观测站(SOFIA)的一种科学仪器。FIFI-LS允许在两个光谱通道中同时进行观测。“蓝色”通道从51[公式:见文本][公式:参见文本]m到125[公式:见图文本]m敏感,“红色”通道从115[公式:详见文本][配方:参见文本]m到203[公式:请见文本][方程式:见文本]m敏感。瞬时光谱覆盖范围在蓝色通道中为1000–3000[公式:见文本]km/s,在红色通道中为800–2500[公式:见图文本]km/s.光谱分辨率在150[公式:参见文本]km/s和600[公式:详见文本]km/s。每个光谱通道观测天空中五乘五的空间像素场。蓝色通道中的像素大小为6.14乘6.25平方弧秒,红色通道中的为12.2乘12.5平方弧秒。FIFI-LS自2014年以来一直在SOFIA上运营。它可作为设施科学仪器提供给天文学界。我们介绍了基于实验室测量的仪器光谱和空间特征的结果。这包括测量的光谱分辨率和谱域中的线扩展函数的示例。在空间域中,给出了仪器的点扩散函数(PSF)模型和二次通过重影的描述。我们还概述了用于测量仪器视场几何结构和光谱校准的程序。光谱校准的精度为15–60[公式:见正文]km/s,具体取决于波长。
{"title":"Spectral and Spatial Characterization and Calibration of FIFI-LS — The Field Imaging Spectrometer on SOFIA","authors":"S. Colditz, S. Beckmann, A. Bryant, C. Fischer, F. Fumi, N. Geis, M. Hamidouche, T. Henning, R. Hönle, C. Iserlohe, R. Klein, A. Krabbe, L. Looney, A. Poglitsch, W. Raab, F. Rebell, D. Rosenthal, M. Savage, M. Schweitzer, W. Vacca","doi":"10.1142/s2251171718400044","DOIUrl":"https://doi.org/10.1142/s2251171718400044","url":null,"abstract":"The field-imaging far-infrared line spectrometer (FIFI-LS) is a science instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA). FIFI-LS allows simultaneous observations in two spectral channels. The “blue” channel is sensitive from 51[Formula: see text][Formula: see text]m to 125[Formula: see text][Formula: see text]m and the “red” channel from 115[Formula: see text][Formula: see text]m to 203[Formula: see text][Formula: see text]m. The instantaneous spectral coverage is 1000–3000[Formula: see text]km/s in the blue and 800–2500[Formula: see text]km/s in the red channel with a spectral resolution between 150[Formula: see text]km/s and 600[Formula: see text]km/s. Each spectral channel observes a field of five by five spatial pixels on the sky. The pixel size in the blue channel is 6.14 by 6.25 square arc seconds and it is 12.2 by 12.5 square arc seconds in the red channel. FIFI-LS has been operating on SOFIA since 2014. It is available to the astronomical community as a facility science instrument. We present the results of the spectral and spatial characterization of the instrument based on laboratory measurements. This includes the measured spectral resolution and examples of the line spread function in the spectral domain. In the spatial domain, a model of the instrument’s point spread function (PSF) and the description of a second pass ghost are presented. We also provide an overview of the procedures used to measure the instrument’s field of view geometry and spectral calibration. The spectral calibration yields an accuracy of 15–60[Formula: see text]km/s depending on wavelength.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s2251171718400044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47716003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
FIFI-LS: The Field-Imaging Far-Infrared Line Spectrometer on SOFIA FIFI-LS:SOFIA上的场成像远红外线谱仪
IF 1.3 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2018-12-01 DOI: 10.1142/S2251171718400032
C. Fischer, S. Beckmann, A. Bryant, S. Colditz, F. Fumi, N. Geis, M. Hamidouche, T. Henning, R. Hönle, C. Iserlohe, R. Klein, A. Krabbe, L. Looney, A. Poglitsch, W. Raab, F. Rebell, D. Rosenthal, M. Savage, M. Schweitzer, C. Trinh, W. Vacca
We describe the design of the Field-Imaging Far-Infrared Line Spectrometer (FIFI-LS), operated as a Facility-Class instrument on the Stratospheric Observatory for Infrared Astronomy (SOFIA). FIFI-LS is an imaging spectrometer for medium resolution spectroscopy. Since being commissioned in 2014, it has performed over 50 SOFIA commissioning and science flights. After operating as a principal investigator instrument in 2014 and early 2015, it was accepted as a Facility Science Instrument in 2015. In addition to the description of the design, we report on the in-flight performance and the concept of operation. We also provide an overview of the science opportunities with FIFI-LS and describe how FIFI-LS observations complement and complete observations with the PACS instrument on the Herschel observatory.
我们描述了场成像远红外线光谱仪(FIFI-LS)的设计,该光谱仪是平流层红外天文观测站(SOFIA)的一个设施级仪器。FIFI-LS是一种用于中分辨率光谱的成像光谱仪。自2014年投入使用以来,它已经进行了50多次SOFIA调试和科学飞行。在2014年和2015年初作为主要研究仪器运行后,它于2015年被接受为设施科学仪器。除了对设计的描述外,我们还报告了飞行中的性能和操作概念。我们还概述了FIFI-LS的科学机会,并描述了FIFI-LS观测如何与赫歇尔天文台的PACS仪器互补和完成观测。
{"title":"FIFI-LS: The Field-Imaging Far-Infrared Line Spectrometer on SOFIA","authors":"C. Fischer, S. Beckmann, A. Bryant, S. Colditz, F. Fumi, N. Geis, M. Hamidouche, T. Henning, R. Hönle, C. Iserlohe, R. Klein, A. Krabbe, L. Looney, A. Poglitsch, W. Raab, F. Rebell, D. Rosenthal, M. Savage, M. Schweitzer, C. Trinh, W. Vacca","doi":"10.1142/S2251171718400032","DOIUrl":"https://doi.org/10.1142/S2251171718400032","url":null,"abstract":"We describe the design of the Field-Imaging Far-Infrared Line Spectrometer (FIFI-LS), operated as a Facility-Class instrument on the Stratospheric Observatory for Infrared Astronomy (SOFIA). FIFI-LS is an imaging spectrometer for medium resolution spectroscopy. Since being commissioned in 2014, it has performed over 50 SOFIA commissioning and science flights. After operating as a principal investigator instrument in 2014 and early 2015, it was accepted as a Facility Science Instrument in 2015. In addition to the description of the design, we report on the in-flight performance and the concept of operation. We also provide an overview of the science opportunities with FIFI-LS and describe how FIFI-LS observations complement and complete observations with the PACS instrument on the Herschel observatory.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171718400032","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46322716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
HAWC+, the Far-Infrared Camera and Polarimeter for SOFIA HAWC+,SOFIA的远红外相机和偏振仪
IF 1.3 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2018-12-01 DOI: 10.1142/S2251171718400081
D. Harper, M. Runyan, C. Dowell, C. Wirth, M. Amato, T. Ames, M. Amiri, S. Banks, A. Bartels, D. Benford, M. Berthoud, E. Buchanan, S. Casey, N. Chapman, D. Chuss, B. Cook, R. Derro, J. Dotson, R. Evans, D. Fixsen, I. Gatley, J. A. Guerra, M. Halpern, R. Hamilton, L. Hamlin, C. Hansen, S. Heimsath, Alfonso Hermida, G. Hilton, R. Hirsch, M. Hollister, Carl F. Hostetter, K. Irwin, C. Jhabvala, M. Jhabvala, J. Kastner, A. Kovács, Sean Lin, R. Loewenstein, L. Looney, E. Lopez-Rodriguez, S. Maher, J. Michail, T. Miller, S. Moseley, G. Novak, R. Pernic, T. Rennick, H. Rhody, E. Sandberg, Dale Sandford, F. Santos, R. Shafer, E. Sharp, P. Shirron, J. Siah, R. Silverberg, L. Sparr, Robert Spotz, J. Staguhn, Armen S. Toorian, Shannon Towey, J. Tuttle, J. Vaillancourt, G. Voellmer, C. Volpert, Shu I. Wang, Edward J. Wollack
High-resolution Airborne Wide-band Camera (HAWC[Formula: see text]) is the facility far-infrared imager and polarimeter for SOFIA, NASA’s Stratospheric Observatory for Infrared Astronomy. It is designed to cover the portion of the infrared spectrum that is completely inaccessible to ground-based observatories and which is essential for studies of astronomical sources with temperatures between tens and hundreds of degrees Kelvin. Its ability to make polarimetric measurements of aligned dust grains provides a unique new capability for studying interstellar magnetic fields. HAWC[Formula: see text] began commissioning flights in April 2016 and was accepted as a facility instrument in early 2018. In this paper, we describe the instrument, its operational procedures, and its performance on the observatory.
高分辨率机载宽带相机(HAWC[公式:见正文])是美国国家航空航天局红外天文平流层观测站SOFIA的远红外成像仪和偏振仪。它的设计覆盖了地面天文台完全无法到达的红外光谱部分,这对于研究温度在几十到几百开尔文之间的天文源至关重要。它对排列的尘埃颗粒进行偏振测量的能力为研究星际磁场提供了一种独特的新能力。HAWC【公式:见正文】于2016年4月开始调试飞行,并于2018年初被接受为设施仪器。在本文中,我们描述了该仪器,它的操作程序,以及它在天文台上的性能。
{"title":"HAWC+, the Far-Infrared Camera and Polarimeter for SOFIA","authors":"D. Harper, M. Runyan, C. Dowell, C. Wirth, M. Amato, T. Ames, M. Amiri, S. Banks, A. Bartels, D. Benford, M. Berthoud, E. Buchanan, S. Casey, N. Chapman, D. Chuss, B. Cook, R. Derro, J. Dotson, R. Evans, D. Fixsen, I. Gatley, J. A. Guerra, M. Halpern, R. Hamilton, L. Hamlin, C. Hansen, S. Heimsath, Alfonso Hermida, G. Hilton, R. Hirsch, M. Hollister, Carl F. Hostetter, K. Irwin, C. Jhabvala, M. Jhabvala, J. Kastner, A. Kovács, Sean Lin, R. Loewenstein, L. Looney, E. Lopez-Rodriguez, S. Maher, J. Michail, T. Miller, S. Moseley, G. Novak, R. Pernic, T. Rennick, H. Rhody, E. Sandberg, Dale Sandford, F. Santos, R. Shafer, E. Sharp, P. Shirron, J. Siah, R. Silverberg, L. Sparr, Robert Spotz, J. Staguhn, Armen S. Toorian, Shannon Towey, J. Tuttle, J. Vaillancourt, G. Voellmer, C. Volpert, Shu I. Wang, Edward J. Wollack","doi":"10.1142/S2251171718400081","DOIUrl":"https://doi.org/10.1142/S2251171718400081","url":null,"abstract":"High-resolution Airborne Wide-band Camera (HAWC[Formula: see text]) is the facility far-infrared imager and polarimeter for SOFIA, NASA’s Stratospheric Observatory for Infrared Astronomy. It is designed to cover the portion of the infrared spectrum that is completely inaccessible to ground-based observatories and which is essential for studies of astronomical sources with temperatures between tens and hundreds of degrees Kelvin. Its ability to make polarimetric measurements of aligned dust grains provides a unique new capability for studying interstellar magnetic fields. HAWC[Formula: see text] began commissioning flights in April 2016 and was accepted as a facility instrument in early 2018. In this paper, we describe the instrument, its operational procedures, and its performance on the observatory.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":" 6","pages":""},"PeriodicalIF":1.3,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171718400081","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41251851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 53
Increasing the SOFIA Secondary Mirror Mechanism’s Fast Steering Capability by Identification of a Structural Resonance and Its Subsequent Elimination Through Mass Re-Distribution 通过识别结构共振并通过质量重分配消除结构共振,提高SOFIA副镜机构的快速转向能力
IF 1.3 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2018-12-01 DOI: 10.1142/S2251171718400019
Y. Lammen, Andreas Reinacher, Benjamin Greiner, Jörg F. Wagner, A. Krabbe
The Stratospheric Observatory for Infrared Astronomy (SOFIA) consists of a 2.7[Formula: see text]m infrared telescope integrated into a Boeing 747 SP. One of the most complex subsystems of the observatory is the secondary mirror assembly (SMA). This active steering mechanism is used for image stabilization and infrared chopping. Since its integration in 2002, the performance of the mechanism is limited by a structural resonance. Based on Finite Element (FE) simulations and experimental modal surveys, a ring shaped reaction mass was identified to be the causing element of this structural mode. Attenuating the resonance on the hardware level would result in a larger actuation bandwidth for faster chopping and image stabilization. Concentrating mass at the suspension points while keeping the inertia of the ring structure is expected to take strain energy out of the mode. An end-to-end simulation, including a FE model of the mechanism and a controller model was set up to predict the in-flight performance of this concept. A segmented ring made from tungsten and AlSiC (i.e. strong mass redistribution) mounted on the original suspension was selected for the design of a prototype. The prototype was manufactured and thoroughly tested on a full-scale mockup of the mechanism confirming the predicted performance. An actuation bandwidth improvement of 80% was achieved. The settling time for infrared chopping was reduced from 10 to 7[Formula: see text]ms providing about 3.3% higher efficiency for observations with 5[Formula: see text]Hz chopping.
平流层红外天文观测站(SOFIA)由一台2.7米的红外望远镜组成,该望远镜集成在一架波音747 SP中。天文台最复杂的子系统之一是次反射镜组件(SMA)。这种主动转向机构用于图像稳定和红外斩波。自2002年整合以来,该机制的性能受到结构共振的限制。基于有限元(FE)模拟和实验模态调查,环形反应质量被确定为这种结构模式的原因。在硬件层面上衰减谐振将导致更大的致动带宽,用于更快的斩波和图像稳定。将质量集中在悬挂点,同时保持环形结构的惯性,预计会使应变能脱离模式。建立了端到端仿真,包括机构的有限元模型和控制器模型,以预测该概念的飞行性能。原型的设计选择了安装在原始悬架上的由钨和AlSiC(即强质量再分配)制成的分段环。原型被制造出来,并在全尺寸的机构模型上进行了彻底的测试,确认了预测的性能。实现了80%的驱动带宽改进。红外斩波的稳定时间从10毫秒减少到7毫秒[公式:见正文]ms,为5赫兹斩波的观测提供了约3.3%的高效率。
{"title":"Increasing the SOFIA Secondary Mirror Mechanism’s Fast Steering Capability by Identification of a Structural Resonance and Its Subsequent Elimination Through Mass Re-Distribution","authors":"Y. Lammen, Andreas Reinacher, Benjamin Greiner, Jörg F. Wagner, A. Krabbe","doi":"10.1142/S2251171718400019","DOIUrl":"https://doi.org/10.1142/S2251171718400019","url":null,"abstract":"The Stratospheric Observatory for Infrared Astronomy (SOFIA) consists of a 2.7[Formula: see text]m infrared telescope integrated into a Boeing 747 SP. One of the most complex subsystems of the observatory is the secondary mirror assembly (SMA). This active steering mechanism is used for image stabilization and infrared chopping. Since its integration in 2002, the performance of the mechanism is limited by a structural resonance. Based on Finite Element (FE) simulations and experimental modal surveys, a ring shaped reaction mass was identified to be the causing element of this structural mode. Attenuating the resonance on the hardware level would result in a larger actuation bandwidth for faster chopping and image stabilization. Concentrating mass at the suspension points while keeping the inertia of the ring structure is expected to take strain energy out of the mode. An end-to-end simulation, including a FE model of the mechanism and a controller model was set up to predict the in-flight performance of this concept. A segmented ring made from tungsten and AlSiC (i.e. strong mass redistribution) mounted on the original suspension was selected for the design of a prototype. The prototype was manufactured and thoroughly tested on a full-scale mockup of the mechanism confirming the predicted performance. An actuation bandwidth improvement of 80% was achieved. The settling time for infrared chopping was reduced from 10 to 7[Formula: see text]ms providing about 3.3% higher efficiency for observations with 5[Formula: see text]Hz chopping.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171718400019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47555614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
期刊
Journal of Astronomical Instrumentation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1