Pub Date : 2024-09-15DOI: 10.1007/s40195-024-01771-4
Ke Zhao, Zhongying Duan, Jinling Liu, Linan An
It is extremely difficult to strengthen bulk aluminum (Al) by twins, due to its high stacking fault energy under standard loading conditions. In this study, a simple yet effective solution was proposed for introducing twins to strengthen bulk Al. The method involves the addition of nanoparticles with high volume fraction combined with the tailoring of sintering temperature toward the melting point of Al during hot pressing. Sintering temperature plays an important role in forming twins in bulk Al containing high content nanoparticles. The twin content increases with increasing sintering temperature in the range of 590–640 °C. At sintering temperature of 640 °C, the twin content reaches 17%, enabling the significant improvement in the yield strength of the bulk Al from 251 to 400 MPa, compared with the sample with few or no twins. The twin strengthening may serve as a major strengthening mechanism for bulk Al, and its strengthening contribution is comparable to the dominant Orowan strengthening resulting from the added nanoparticles.
{"title":"Achieving Twin Strengthening in Bulk Aluminum via Adding Nanoparticles Combined with Tailoring Hot Pressing Temperature","authors":"Ke Zhao, Zhongying Duan, Jinling Liu, Linan An","doi":"10.1007/s40195-024-01771-4","DOIUrl":"10.1007/s40195-024-01771-4","url":null,"abstract":"<div><p>It is extremely difficult to strengthen bulk aluminum (Al) by twins, due to its high stacking fault energy under standard loading conditions. In this study, a simple yet effective solution was proposed for introducing twins to strengthen bulk Al. The method involves the addition of nanoparticles with high volume fraction combined with the tailoring of sintering temperature toward the melting point of Al during hot pressing. Sintering temperature plays an important role in forming twins in bulk Al containing high content nanoparticles. The twin content increases with increasing sintering temperature in the range of 590–640 °C. At sintering temperature of 640 °C, the twin content reaches 17%, enabling the significant improvement in the yield strength of the bulk Al from 251 to 400 MPa, compared with the sample with few or no twins. The twin strengthening may serve as a major strengthening mechanism for bulk Al, and its strengthening contribution is comparable to the dominant Orowan strengthening resulting from the added nanoparticles.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 12","pages":"2083 - 2093"},"PeriodicalIF":2.9,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To clarify the mechanism of the role of Al element in the additive manufacturing of Ni-based superalloys, ATI 718Plus alloys with varying Al contents (1, 3, and 5 wt%) were fabricated using the laser additive manufacturing and the effects of Al content on the microstructure and mechanical properties were systematically analyzed. The experimental and CALPHAD simulation results show that with the increase in Al addition, the freezing range of the alloys was lowered, but this has a paradoxical effect on the susceptibility of the alloy to hot-tearing and solid-state cracking. The addition of Al increased the γ′ and Laves phase volume fractions and suppressed the precipitation of the η phase. Simultaneously improving γ/γ′ lattice misfits effectively promoted the transformation of γ′ phase from spherical to cubic. The precipitation of NiAl phase in the 5 wt% Al-added alloy was determined, the formation mechanism of NiAl phase was analyzed, and the solidification sequence of the precipitated phase in the alloy was summarized. In addition, with the increase in Al addition, the microhardness of the alloy increased gradually, the tensile strength increased at first and then decreased, but the plasticity deteriorated seriously. The insights gained from this study offer valuable theoretical guidance for the strategic compositional design of additively manufactured Ni-based superalloys destined for deployment under extreme conditions.
{"title":"Effect of Al on Microstructure and Mechanical Properties of ATI 718Plus by Laser Additive Manufacturing","authors":"Zhipeng Zhang, Jide Liu, Xinguang Wang, Zhaokuang Chu, Yizhou Zhou, Jianjun Wang, Jinguo Li","doi":"10.1007/s40195-024-01764-3","DOIUrl":"10.1007/s40195-024-01764-3","url":null,"abstract":"<div><p>To clarify the mechanism of the role of Al element in the additive manufacturing of Ni-based superalloys, ATI 718Plus alloys with varying Al contents (1, 3, and 5 wt%) were fabricated using the laser additive manufacturing and the effects of Al content on the microstructure and mechanical properties were systematically analyzed. The experimental and CALPHAD simulation results show that with the increase in Al addition, the freezing range of the alloys was lowered, but this has a paradoxical effect on the susceptibility of the alloy to hot-tearing and solid-state cracking. The addition of Al increased the <i>γ</i>′ and Laves phase volume fractions and suppressed the precipitation of the <i>η</i> phase. Simultaneously improving <i>γ</i>/<i>γ</i>′ lattice misfits effectively promoted the transformation of <i>γ</i>′ phase from spherical to cubic. The precipitation of NiAl phase in the 5 wt% Al-added alloy was determined, the formation mechanism of NiAl phase was analyzed, and the solidification sequence of the precipitated phase in the alloy was summarized. In addition, with the increase in Al addition, the microhardness of the alloy increased gradually, the tensile strength increased at first and then decreased, but the plasticity deteriorated seriously. The insights gained from this study offer valuable theoretical guidance for the strategic compositional design of additively manufactured Ni-based superalloys destined for deployment under extreme conditions.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 11","pages":"1891 - 1906"},"PeriodicalIF":2.9,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-15DOI: 10.1007/s40195-024-01774-1
Xin Li, Chenglei Wang, Laichang Zhang, Shengfeng Zhou, Jian Huang, Mengyao Gao, Chong Liu, Mei Huang, Yatao Zhu, Hu Chen, Jingya Zhang, Zhujiang Tan
L12 phase-strengthened Fe–Co–Ni-based high-entropy alloys (HEAs) have attracted considerable attention due to their excellent mechanical properties. Improving the properties of HEAs through conventional experimental methods is costly. Therefore, a new method is needed to predict the properties of alloys quickly and accurately. In this study, a comprehensive prediction model for L12 phase-strengthened Fe–Co–Ni-based HEAs was developed. The existence of the L12 phase in the HEAs was first predicted. A link was then established between the microstructure (L12 phase volume fraction) and properties (hardness) of HEAs, and comprehensive prediction was performed. Finally, two mutually exclusive properties (strength and plasticity) of HEAs were coupled and co-optimized. The Shapley additive explained algorithm was also used to interpret the contribution of each model feature to the comprehensive properties of HEAs. The vast compositional and process search space of HEAs was progressively screened in three stages by applying different prediction models. Finally, four HEAs were screened from hundreds of thousands of possible candidate groups, and the prediction results were verified by experiments. In this work, L12 phase-strengthened Fe–Co–Ni-based HEAs with high strength and plasticity were successfully designed. The new method presented herein has a great cost advantage over traditional experimental methods. It is also expected to be applied in the design of HEAs with various excellent properties or to explore the potential factors affecting the microstructure/properties of alloys.
L12 相强化铁-铜-镍基高熵合金(HEAs)因其优异的机械性能而备受关注。通过传统实验方法提高 HEA 的性能成本高昂。因此,需要一种新方法来快速准确地预测合金的性能。本研究建立了 L12 相强化铁-铜-镍基 HEA 的综合预测模型。首先预测了 L12 相在 HEA 中的存在。然后在 HEA 的微观结构(L12 相体积分数)和性能(硬度)之间建立联系,并进行综合预测。最后,对 HEAs 的两种互斥性质(强度和塑性)进行了耦合和共同优化。此外,还使用 Shapley 加法解释算法来解释每个模型特征对 HEA 综合特性的贡献。通过应用不同的预测模型,分三个阶段对 HEAs 的巨大成分和工艺搜索空间进行了逐步筛选。最后,从数十万可能的候选组中筛选出四种 HEA,并通过实验验证了预测结果。在这项工作中,成功设计出了具有高强度和高塑性的 L12 相强化铁-铜-镍基 HEA。与传统的实验方法相比,本文介绍的新方法具有很大的成本优势。它还有望应用于设计具有各种优异性能的 HEA,或探索影响合金微观结构/性能的潜在因素。
{"title":"Machine Learning-Based Comprehensive Prediction Model for L12 Phase-Strengthened Fe–Co–Ni-Based High-Entropy Alloys","authors":"Xin Li, Chenglei Wang, Laichang Zhang, Shengfeng Zhou, Jian Huang, Mengyao Gao, Chong Liu, Mei Huang, Yatao Zhu, Hu Chen, Jingya Zhang, Zhujiang Tan","doi":"10.1007/s40195-024-01774-1","DOIUrl":"10.1007/s40195-024-01774-1","url":null,"abstract":"<div><p>L1<sub>2</sub> phase-strengthened Fe–Co–Ni-based high-entropy alloys (HEAs) have attracted considerable attention due to their excellent mechanical properties. Improving the properties of HEAs through conventional experimental methods is costly. Therefore, a new method is needed to predict the properties of alloys quickly and accurately. In this study, a comprehensive prediction model for L1<sub>2</sub> phase-strengthened Fe–Co–Ni-based HEAs was developed. The existence of the L1<sub>2</sub> phase in the HEAs was first predicted. A link was then established between the microstructure (L1<sub>2</sub> phase volume fraction) and properties (hardness) of HEAs, and comprehensive prediction was performed. Finally, two mutually exclusive properties (strength and plasticity) of HEAs were coupled and co-optimized. The Shapley additive explained algorithm was also used to interpret the contribution of each model feature to the comprehensive properties of HEAs. The vast compositional and process search space of HEAs was progressively screened in three stages by applying different prediction models. Finally, four HEAs were screened from hundreds of thousands of possible candidate groups, and the prediction results were verified by experiments. In this work, L1<sub>2</sub> phase-strengthened Fe–Co–Ni-based HEAs with high strength and plasticity were successfully designed. The new method presented herein has a great cost advantage over traditional experimental methods. It is also expected to be applied in the design of HEAs with various excellent properties or to explore the potential factors affecting the microstructure/properties of alloys.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 11","pages":"1858 - 1874"},"PeriodicalIF":2.9,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-15DOI: 10.1007/s40195-024-01772-3
Li Li, Xiao Kong, Hui Jiang, Wenna Jiao, Di Jiang, Jichao Ren
AlCoCrFeNi2.1-xNi3Al (x = 0, 5.0, 7.5, and 10 wt%, denoted as Ni3Al0, Ni3Al5.0, Ni3Al7.5, and Ni3Al10) eutectic high-entropy alloy (EHEA) matrix composites were fabricated by mechanical alloying and spark plasma sintering methods. The effects of Ni3Al content on the microstructures, mechanical and wear properties of AlCoCrFeNi2.1 EHEA were investigated. The results indicate that the AlCoCrFeNi2.1-xNi3Al composites present cellular grid morphologies composing of FCC/Ll2 and B2 phases, and a small amount of Al2O3 and Cr7C3 phases. The addition of Ni3Al significantly enhanced the compressive yield strength, compressive fracture strength, compressive strain and wear properties of the AlCoCrFeNi2.1 composites. In particular, the Ni3Al10 composite exhibits excellent comprehensive mechanical properties. The compressive yield strength, compressive fracture strength and compressive strain of the Ni3Al10 composite, are 1845 MPa, 2301 MPa and 10.1%, respectively. The friction coefficient, wear width and depth, and mass loss of the Ni3Al10 composite were 0.40, 0.9 mm, 20.5 mm, 0.016 g, respectively. Moreover, the wear mechanism of the Ni3Al10 composite is major abrasive wear with a small amount of adhesive wear.
{"title":"Microstructure, Mechanical and Wear Resistance Properties of AlCoCrFeNi2.1-xNi3Al Eutectic High-Entropy Alloy Matrix Composites","authors":"Li Li, Xiao Kong, Hui Jiang, Wenna Jiao, Di Jiang, Jichao Ren","doi":"10.1007/s40195-024-01772-3","DOIUrl":"10.1007/s40195-024-01772-3","url":null,"abstract":"<div><p>AlCoCrFeNi<sub>2.1</sub>-<i>x</i>Ni<sub>3</sub>Al (<i>x</i> = 0, 5.0, 7.5, and 10 wt%, denoted as Ni<sub>3</sub>Al0, Ni<sub>3</sub>Al5.0, Ni<sub>3</sub>Al7.5, and Ni<sub>3</sub>Al10) eutectic high-entropy alloy (EHEA) matrix composites were fabricated by mechanical alloying and spark plasma sintering methods. The effects of Ni<sub>3</sub>Al content on the microstructures, mechanical and wear properties of AlCoCrFeNi<sub>2.1</sub> EHEA were investigated. The results indicate that the AlCoCrFeNi<sub>2.1</sub>-<i>x</i>Ni<sub>3</sub>Al composites present cellular grid morphologies composing of FCC/Ll<sub>2</sub> and B2 phases, and a small amount of Al<sub>2</sub>O<sub>3</sub> and Cr<sub>7</sub>C<sub>3</sub> phases. The addition of Ni<sub>3</sub>Al significantly enhanced the compressive yield strength, compressive fracture strength, compressive strain and wear properties of the AlCoCrFeNi<sub>2.1</sub> composites. In particular, the Ni<sub>3</sub>Al10 composite exhibits excellent comprehensive mechanical properties. The compressive yield strength, compressive fracture strength and compressive strain of the Ni<sub>3</sub>Al10 composite, are 1845 MPa, 2301 MPa and 10.1%, respectively. The friction coefficient, wear width and depth, and mass loss of the Ni<sub>3</sub>Al10 composite were 0.40, 0.9 mm, 20.5 mm, 0.016 g, respectively. Moreover, the wear mechanism of the Ni<sub>3</sub>Al10 composite is major abrasive wear with a small amount of adhesive wear.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 12","pages":"2019 - 2028"},"PeriodicalIF":2.9,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-15DOI: 10.1007/s40195-024-01767-0
Hui Feng, Shu Yang, Shengyuan Yang, Li Zhou, Junfan Zhang, Zongyi Ma
The refined explicit finite element scheme considering various strengthening mechanisms and damage modes is proposed for simulation of deformation processes and mechanical properties of carbon nanotube (CNT)-reinforced bimodal-grained aluminum matrix nanocomposites. Firstly, the detailed microstructure model is established by constructing the geometry models of CNTs and grain boundaries, which automatically incorporates grain refinement strengthening and load transfer effect. Secondly, a finite element formulation based on the conventional theory of mechanical-based strain gradient plasticity is developed. Furthermore, the deformation and fracture modes for the nanocomposites with various contents and distributions of coarse grains (CGs) are explored based on the scheme. The results indicate that ductility of the composites first increases and then decreases as the content of CGs rises. Moreover, the dispersed distribution exhibits better ductility than concentrated one. Additionally, grain boundaries proved to be the weakest component within the micromodel. A series of interesting phenomena have been observed and discussed upon the refined simulation scheme. This work contributes to the design and further development of CNT/Al nanocomposites, and the proposed scheme can be extended to various bimodal metal composites.
{"title":"Strengthening Mechanisms and Mechanical Characteristics of Heterogeneous CNT/Al Composites by Finite Element Simulation","authors":"Hui Feng, Shu Yang, Shengyuan Yang, Li Zhou, Junfan Zhang, Zongyi Ma","doi":"10.1007/s40195-024-01767-0","DOIUrl":"10.1007/s40195-024-01767-0","url":null,"abstract":"<div><p>The refined explicit finite element scheme considering various strengthening mechanisms and damage modes is proposed for simulation of deformation processes and mechanical properties of carbon nanotube (CNT)-reinforced bimodal-grained aluminum matrix nanocomposites. Firstly, the detailed microstructure model is established by constructing the geometry models of CNTs and grain boundaries, which automatically incorporates grain refinement strengthening and load transfer effect. Secondly, a finite element formulation based on the conventional theory of mechanical-based strain gradient plasticity is developed. Furthermore, the deformation and fracture modes for the nanocomposites with various contents and distributions of coarse grains (CGs) are explored based on the scheme. The results indicate that ductility of the composites first increases and then decreases as the content of CGs rises. Moreover, the dispersed distribution exhibits better ductility than concentrated one. Additionally, grain boundaries proved to be the weakest component within the micromodel. A series of interesting phenomena have been observed and discussed upon the refined simulation scheme. This work contributes to the design and further development of CNT/Al nanocomposites, and the proposed scheme can be extended to various bimodal metal composites.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 12","pages":"2106 - 2120"},"PeriodicalIF":2.9,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-15DOI: 10.1007/s40195-024-01770-5
Jin-Xiu Li, Jun-Xiu Chen, M. A. Siddiqui, S. K. Kolawole, Yang Yang, Ying Shen, Jian-Ping Yang, Jian-Hua Wang, Xu-Ping Su
Nano-zinc oxides (ZnO) demonstrate remarkable antibacterial properties. To further enhance the corrosion resistance and antibacterial efficiency of magnesium alloy micro-arc oxidation (MAO) coatings, this study investigates the preparation of ZnO-containing micro-arc oxidation coatings with dual functionality by incorporating nano-ZnO into MAO electrolyte. The influence of varying ZnO concentrations on the microstructure, corrosion resistance, and antibacterial properties of the coating was examined through microstructure analysis, immersion tests, electrochemical experiments, and antibacterial assays. The findings revealed that the addition of nano-ZnO significantly enhanced the corrosion resistance of the MAO-coated alloy. Specifically, when the ZnO concentration in the electrolyte was 5 g/L, the corrosion rate was more than ten times lower compared to the MAO coatings without ZnO. Moreover, the antibacterial efficacy of ZnO + MAO coating, prepared with a ZnO concentration of 5 g/L, surpassed 95% after 24 h of co-culturing with Staphylococcus aureus (S. aureus). The nano-ZnO + MAO-coated alloy exhibited exceptional degradation resistance, corrosion resistance, and antibacterial effectiveness.
纳米氧化锌(ZnO)具有显著的抗菌性能。为了进一步提高镁合金微弧氧化(MAO)涂层的耐腐蚀性和抗菌效率,本研究通过在 MAO 电解液中加入纳米氧化锌来制备具有双重功能的含氧化锌微弧氧化涂层。通过微观结构分析、浸泡试验、电化学实验和抗菌试验,研究了不同浓度的氧化锌对涂层的微观结构、耐腐蚀性和抗菌性能的影响。研究结果表明,纳米氧化锌的加入显著增强了 MAO 涂层合金的耐腐蚀性。具体来说,当电解液中的 ZnO 浓度为 5 g/L 时,腐蚀速率比不添加 ZnO 的 MAO 涂层低十倍以上。此外,ZnO 浓度为 5 g/L 的 ZnO + MAO 涂层在与金黄色葡萄球菌(S. aureus)共培养 24 小时后,抗菌效果超过 95%。纳米氧化锌 + MAO 涂层合金具有优异的耐降解性、耐腐蚀性和抗菌效果。
{"title":"Enhancing Corrosion Resistance and Antibacterial Properties of ZK60 Magnesium Alloy Using Micro-Arc Oxidation Coating Containing Nano-Zinc Oxide","authors":"Jin-Xiu Li, Jun-Xiu Chen, M. A. Siddiqui, S. K. Kolawole, Yang Yang, Ying Shen, Jian-Ping Yang, Jian-Hua Wang, Xu-Ping Su","doi":"10.1007/s40195-024-01770-5","DOIUrl":"10.1007/s40195-024-01770-5","url":null,"abstract":"<div><p>Nano-zinc oxides (ZnO) demonstrate remarkable antibacterial properties. To further enhance the corrosion resistance and antibacterial efficiency of magnesium alloy micro-arc oxidation (MAO) coatings, this study investigates the preparation of ZnO-containing micro-arc oxidation coatings with dual functionality by incorporating nano-ZnO into MAO electrolyte. The influence of varying ZnO concentrations on the microstructure, corrosion resistance, and antibacterial properties of the coating was examined through microstructure analysis, immersion tests, electrochemical experiments, and antibacterial assays. The findings revealed that the addition of nano-ZnO significantly enhanced the corrosion resistance of the MAO-coated alloy. Specifically, when the ZnO concentration in the electrolyte was 5 g/L, the corrosion rate was more than ten times lower compared to the MAO coatings without ZnO. Moreover, the antibacterial efficacy of ZnO + MAO coating, prepared with a ZnO concentration of 5 g/L, surpassed 95% after 24 h of co-culturing with Staphylococcus aureus (S. aureus). The nano-ZnO + MAO-coated alloy exhibited exceptional degradation resistance, corrosion resistance, and antibacterial effectiveness.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"38 1","pages":"45 - 58"},"PeriodicalIF":2.9,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1007/s40195-024-01761-6
Jiafen Song, Wei Guo, Shiming Xu, Ding Hao, Yajie Du, Jiangtao Xiong, Jinglong Li
In the present study, Ti–Zr–Cu–Ni amorphous filler metal was used to braze MgAl2O4 ceramic and Ti–6Al–4V (TC4) at 875, 900, 925, 950, 975 and 1000 °C for 10 min. The effects of brazing temperature on interfacial microstructure and mechanical properties of the joints were analyzed. The results showed that typical microstructure of the TC4/MgAl2O4 joint was solid solution (SS) α-Ti, acicular α-Ti + (Ti, Zr)2(Ni, Cu) layer, metallic glasses and TiO. With the increase in brazing temperature, (Ti, Zr)2(Ni, Cu) layer gradually dispersed at bonding interface, a continuous layer of TiO appears near MgAl2O4 ceramic. With the increase in brazing temperature, the hard and brittle (Ti, Zr)2(Ni, Cu) layer gradually dispersed, resulting in the maximum shear strength of 39.5 MPa. The high-resolution TEM revealed the presence of amorphous structure, which is composed of Ti, Zr, Cu, Ni and Al. The values of δ and ΔHmix are calculated to be about 8% and −39.82 kJ/mol for the amorphous phase.
{"title":"Interfacial Microstructure Evolution and Mechanical Properties of TC4/MgAl2O4 Joints Brazed with Ti–Zr–Cu–Ni Filler Metal","authors":"Jiafen Song, Wei Guo, Shiming Xu, Ding Hao, Yajie Du, Jiangtao Xiong, Jinglong Li","doi":"10.1007/s40195-024-01761-6","DOIUrl":"10.1007/s40195-024-01761-6","url":null,"abstract":"<div><p>In the present study, Ti–Zr–Cu–Ni amorphous filler metal was used to braze MgAl<sub>2</sub>O<sub>4</sub> ceramic and Ti–6Al–4V (TC4) at 875, 900, 925, 950, 975 and 1000 °C for 10 min. The effects of brazing temperature on interfacial microstructure and mechanical properties of the joints were analyzed. The results showed that typical microstructure of the TC4/MgAl<sub>2</sub>O<sub>4</sub> joint was solid solution (SS) α-Ti, acicular α-Ti + (Ti, Zr)<sub>2</sub>(Ni, Cu) layer, metallic glasses and TiO. With the increase in brazing temperature, (Ti, Zr)<sub>2</sub>(Ni, Cu) layer gradually dispersed at bonding interface, a continuous layer of TiO appears near MgAl<sub>2</sub>O<sub>4</sub> ceramic. With the increase in brazing temperature, the hard and brittle (Ti, Zr)<sub>2</sub>(Ni, Cu) layer gradually dispersed, resulting in the maximum shear strength of 39.5 MPa. The high-resolution TEM revealed the presence of amorphous structure, which is composed of Ti, Zr, Cu, Ni and Al. The values of <i>δ</i> and Δ<i>H</i><sub>mix</sub> are calculated to be about 8% and −39.82 kJ/mol for the amorphous phase.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 12","pages":"2057 - 2067"},"PeriodicalIF":2.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1007/s40195-024-01758-1
Sai Chen, Shuangjie Chu, Bo Mao
Iron-based metal matrix composites (IMMCs) have attracted significant research attention due to their high specific stiffness and strength, making them potentially suitable for various engineering applications. Microstructural design, including the selection of reinforcement and matrix phases, the reinforcement volume fraction, and the interface issues are essential factors determining the engineering performance of IMMCs. A variety of fabrication methods have been developed to manufacture IMMCs in recent years. This paper reviews the recent advances and development of IMMCs with particular focus on microstructure design, fabrication methods, and their engineering performance. The microstructure design issues of IMMC are firstly discussed, including the reinforcement and matrix phase selection criteria, interface geometry and characteristics, and the bonding mechanism. The fabrication methods, including liquid state, solid state, and gas-mixing processing are comprehensively reviewed and compared. The engineering performance of IMMCs in terms of elastic modulus, hardness and wear resistance, tensile and fracture behavior is reviewed. Finally, the current challenges of the IMMCs are highlighted, followed by the discussion and outlook of the future research directions of IMMCs.
{"title":"Iron-Based Metal Matrix Composite: A Critical Review on the Microstructural Design, Fabrication Processes, and Mechanical Properties","authors":"Sai Chen, Shuangjie Chu, Bo Mao","doi":"10.1007/s40195-024-01758-1","DOIUrl":"10.1007/s40195-024-01758-1","url":null,"abstract":"<div><p>Iron-based metal matrix composites (IMMCs) have attracted significant research attention due to their high specific stiffness and strength, making them potentially suitable for various engineering applications. Microstructural design, including the selection of reinforcement and matrix phases, the reinforcement volume fraction, and the interface issues are essential factors determining the engineering performance of IMMCs. A variety of fabrication methods have been developed to manufacture IMMCs in recent years. This paper reviews the recent advances and development of IMMCs with particular focus on microstructure design, fabrication methods, and their engineering performance. The microstructure design issues of IMMC are firstly discussed, including the reinforcement and matrix phase selection criteria, interface geometry and characteristics, and the bonding mechanism. The fabrication methods, including liquid state, solid state, and gas-mixing processing are comprehensively reviewed and compared. The engineering performance of IMMCs in terms of elastic modulus, hardness and wear resistance, tensile and fracture behavior is reviewed. Finally, the current challenges of the IMMCs are highlighted, followed by the discussion and outlook of the future research directions of IMMCs.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"38 1","pages":"1 - 44"},"PeriodicalIF":2.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1007/s40195-024-01731-y
Chao Wang, Xi Zhao, Yayun He, Dingxia Zheng
Although extensive research has been conducted on the strengthening mechanism of rare-earth magnesium alloys, achieving a balance between strength and toughness has proven challenging. This paper introduces a method for regulating the overlapping structure of the lamellar long-period stacking ordered (LPSO) phase and (beta^{prime }) phase to achieve a balance between strength and toughness in the alloy. By focusing on the extruded VW93A alloy cabin component, the study delves into the mechanism of the alloy's strength and toughness through a comparative analysis of the microstructure characteristics and room-temperature mechanical properties of the alloys in various states. Additionally, the molecular dynamics simulation is employed to clarify the mechanism of the alloy's strength and toughness balance induced by the overlapping structure. The findings reveal that when the (beta^{prime }) phase precipitates in the alloy alone, a significant increase in strength is achieved by pinning dislocations, albeit at the expense of reduced plasticity. Conversely, the presence of the lamellar LPSO phase disperses dislocations between the LPSO phase lamellae, thereby enhancing plasticity by avoiding stress concentration resulting from dislocation stacking. When both phases coexist in the alloy and form an overlapping structure, the dispersion of dislocations due to the lamellar LPSO phase weakens the pinning effect of the (beta^{prime }) phase, further reducing dislocation stacking and resulting in a balance of strength and toughness in the alloy. Ultimately, the alloy with the overlapping structure exhibits an ultimate tensile strength and elongation of 421 MPa and 20.1%, respectively.
{"title":"Implementation of Balanced Strength and Toughness of VW93A Rare-Earth Magnesium Alloy with Regulating the Overlapping Structure of Lamellar LPSO Phase and (beta^{prime }) Phase","authors":"Chao Wang, Xi Zhao, Yayun He, Dingxia Zheng","doi":"10.1007/s40195-024-01731-y","DOIUrl":"10.1007/s40195-024-01731-y","url":null,"abstract":"<div><p>Although extensive research has been conducted on the strengthening mechanism of rare-earth magnesium alloys, achieving a balance between strength and toughness has proven challenging. This paper introduces a method for regulating the overlapping structure of the lamellar long-period stacking ordered (LPSO) phase and <span>(beta^{prime })</span> phase to achieve a balance between strength and toughness in the alloy. By focusing on the extruded VW93A alloy cabin component, the study delves into the mechanism of the alloy's strength and toughness through a comparative analysis of the microstructure characteristics and room-temperature mechanical properties of the alloys in various states. Additionally, the molecular dynamics simulation is employed to clarify the mechanism of the alloy's strength and toughness balance induced by the overlapping structure. The findings reveal that when the <span>(beta^{prime })</span> phase precipitates in the alloy alone, a significant increase in strength is achieved by pinning dislocations, albeit at the expense of reduced plasticity. Conversely, the presence of the lamellar LPSO phase disperses dislocations between the LPSO phase lamellae, thereby enhancing plasticity by avoiding stress concentration resulting from dislocation stacking. When both phases coexist in the alloy and form an overlapping structure, the dispersion of dislocations due to the lamellar LPSO phase weakens the pinning effect of the <span>(beta^{prime })</span> phase, further reducing dislocation stacking and resulting in a balance of strength and toughness in the alloy. Ultimately, the alloy with the overlapping structure exhibits an ultimate tensile strength and elongation of 421 MPa and 20.1%, respectively.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 10","pages":"1735 - 1751"},"PeriodicalIF":2.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study unpicks the influence of the glass tube suction casting (GTSC) with different inner diameters (8, 10, 12 and 14 mm) on the solidification process of the hypereutectic Al–Si alloy (A390) and dissects the underlying mechanisms of the Al–Si divorced eutectic and refinement degree of the primary silicon particles (PSPs). The results show that a smaller inner diameter of the glass tube is more favorable for achieving Al–Si divorced eutectic in GTSC A390 alloy. Conversely, a larger inner diameter is more conducive to the formation of the lamellar eutectic Si. The GTSC A390 alloy with an inner diameter of 10 mm achieves the smallest average equivalent diameter (approximately 7.4 μm) of the PSPs. Being the prior diffusion channels for solute atoms, the grain boundaries and twin growth grooves of PSPs attract solute atoms (Cu, Mg, etc.) to enrich. The enriched solute atoms occupy the diffusion destinations of some Si atoms, which limits the overall growth of PSPs. These findings provide new insights into developing a simple and effective manufacturing process to refine the primary and eutectic Si phases in hypereutectic Al–Si alloys.
{"title":"Effect of Glass Tube Suction Casting on Solidification Process and Si Refinement of Hypereutectic Al–Si Alloy","authors":"Chengcheng Han, Yuna Wu, Hao Huang, Chen Chen, Huan Liu, Jinghua Jiang, Aibin Ma, Jing Bai, Hengcheng Liao","doi":"10.1007/s40195-024-01762-5","DOIUrl":"10.1007/s40195-024-01762-5","url":null,"abstract":"<div><p>This study unpicks the influence of the glass tube suction casting (GTSC) with different inner diameters (8, 10, 12 and 14 mm) on the solidification process of the hypereutectic Al–Si alloy (A390) and dissects the underlying mechanisms of the Al–Si divorced eutectic and refinement degree of the primary silicon particles (PSPs). The results show that a smaller inner diameter of the glass tube is more favorable for achieving Al–Si divorced eutectic in GTSC A390 alloy. Conversely, a larger inner diameter is more conducive to the formation of the lamellar eutectic Si. The GTSC A390 alloy with an inner diameter of 10 mm achieves the smallest average equivalent diameter (approximately 7.4 μm) of the PSPs. Being the prior diffusion channels for solute atoms, the grain boundaries and twin growth grooves of PSPs attract solute atoms (Cu, Mg, etc.) to enrich. The enriched solute atoms occupy the diffusion destinations of some Si atoms, which limits the overall growth of PSPs. These findings provide new insights into developing a simple and effective manufacturing process to refine the primary and eutectic Si phases in hypereutectic Al–Si alloys.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 12","pages":"2094 - 2105"},"PeriodicalIF":2.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}