首页 > 最新文献

Mathematical Methods of Statistics最新文献

英文 中文
Validation Data-Located Modification for the Multilevel Analysis of Miscategorized Nominal Response with Covariates Subject to Measurement Error 对带有测量误差变量的误分类名义响应进行多层次分析的验证数据定位修正法
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2023-12-23 DOI: 10.3103/s1066530723040026
Maryam Ahangari, Mousa Golalizadeh, Zahra Rezaei Ghahroodi

Abstract

In many longitudinal and hierarchical epidemiological frameworks, observations regarding to each individual are recorded repeatedly over time. In these follow-ups, accurate measurements of time-dependent covariates might be invalid or expensive to be obtained. In addition, in the recording process, or as a result of other undetected reasons, miscategorization of the response variable might occur, that does not demonstrate the true condition of the response process. In contrast with binary outcome by which classification error occurs between two categories, disorderliness in categorical outcome has more intricate impacts, as a result of the increased number of categories and asymmetric miscategorization matrix. When no modification is made, insensitivity of errors in either covariate or response variable, results in potentially incorrect conclusion, tends to bias the statistical inference and eventually degrades the efficiency of the decision-making procedure. In this article, we provide an approach to simultaneously adjust for misclassification in the correlated nominal response and measurement error in the covariates, incorporating validation data in the estimation of misclassification probabilities, using the multivariate Gauss–Hermite quadrature technique for the approximation of the likelihood function. Simulation results demonstrate the effects of modifying covariate measurement error and response misclassification on the estimation procedure.

摘要 在许多纵向和分层流行病学框架中,有关每个人的观察结果都会随着时间的推移被反复记录。在这些随访中,对随时间变化的协变量的精确测量可能无效或昂贵。此外,在记录过程中,或由于其他未被发现的原因,可能会出现反应变量的误分类,这并不能说明反应过程的真实情况。与二进制结果相比,分类结果中的分类错误发生在两个类别之间,而分类结果中的无序性由于类别数量的增加和不对称的误分类矩阵而产生更复杂的影响。如果不进行修正,协变量或响应变量的误差不敏感,就可能导致错误的结论,使统计推断产生偏差,最终降低决策程序的效率。在本文中,我们提供了一种同时调整相关名义响应中的误分类和协变量中的测量误差的方法,将验证数据纳入误分类概率的估计中,使用多元高斯-赫米特正交技术来逼近似然函数。模拟结果表明了修改协变量测量误差和响应误分类对估计程序的影响。
{"title":"Validation Data-Located Modification for the Multilevel Analysis of Miscategorized Nominal Response with Covariates Subject to Measurement Error","authors":"Maryam Ahangari, Mousa Golalizadeh, Zahra Rezaei Ghahroodi","doi":"10.3103/s1066530723040026","DOIUrl":"https://doi.org/10.3103/s1066530723040026","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In many longitudinal and hierarchical epidemiological frameworks, observations regarding to each individual are recorded repeatedly over time. In these follow-ups, accurate measurements of time-dependent covariates might be invalid or expensive to be obtained. In addition, in the recording process, or as a result of other undetected reasons, miscategorization of the response variable might occur, that does not demonstrate the true condition of the response process. In contrast with binary outcome by which classification error occurs between two categories, disorderliness in categorical outcome has more intricate impacts, as a result of the increased number of categories and asymmetric miscategorization matrix. When no modification is made, insensitivity of errors in either covariate or response variable, results in potentially incorrect conclusion, tends to bias the statistical inference and eventually degrades the efficiency of the decision-making procedure. In this article, we provide an approach to simultaneously adjust for misclassification in the correlated nominal response and measurement error in the covariates, incorporating validation data in the estimation of misclassification probabilities, using the multivariate Gauss–Hermite quadrature technique for the approximation of the likelihood function. Simulation results demonstrate the effects of modifying covariate measurement error and response misclassification on the estimation procedure.</p>","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"24 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139029452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical Inference in Marginalized Zero-inflated Poisson Regression Models with Missing Data in Covariates 具有协变量缺失数据的边际零膨胀泊松回归模型的统计推断
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2023-12-23 DOI: 10.3103/s1066530723040038
Kouakou Mathias Amani, Ouagnina Hili, Konan Jean Geoffroy Kouakou

Abstract

The marginalized zero-inflated poisson (MZIP) regression modelquantifies the effects of an explanatory variable in the mixturepopulation. Also, in practice the variables are usually partiallyobserved. Thus, we first propose to study the maximum likelihoodestimator when all variables are observed. Then, assuming that theprobability of selection is modeled using mixed covariates(continuous, discrete and categorical), we propose asemiparametric inverse-probability weighted (SIPW) method forestimating the parameters of the MZIP model with covariatesmissing at random (MAR). The asymptotic properties (consistency,asymptotic normality) of the proposed estimators are establishedunder certain regularity conditions. Through numerical studies,the performance of the proposed estimators was evaluated. Then theresults of the SIPW are compared to the results obtained bysemiparametric inverse-probability weighted kermel-based (SIPWK)estimator method. Finally, we apply our methodology to a dataseton health care demand in the United States.

摘要 边际零膨胀泊松(MZIP)回归模型可以量化解释变量在混合群体中的影响。同时,在实践中变量通常是部分观测到的。因此,我们首先建议研究所有变量都被观测到时的最大似然估计法。然后,假设使用混合协变量(连续、离散和分类)对选择概率进行建模,我们提出了一种近似反概率加权(SIPW)方法,用于估计具有随机遗漏协变量(MAR)的 MZIP 模型参数。在一定的正则性条件下,建立了所提出估计器的渐近特性(一致性、渐近正态性)。通过数值研究,对所提出的估计器的性能进行了评估。然后,将 SIPW 的结果与基于反概率加权 Kermel 的半参数估计方法(SIPWK)的结果进行比较。最后,我们将我们的方法应用于美国的医疗需求数据集。
{"title":"Statistical Inference in Marginalized Zero-inflated Poisson Regression Models with Missing Data in Covariates","authors":"Kouakou Mathias Amani, Ouagnina Hili, Konan Jean Geoffroy Kouakou","doi":"10.3103/s1066530723040038","DOIUrl":"https://doi.org/10.3103/s1066530723040038","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The marginalized zero-inflated poisson (MZIP) regression model\u0000quantifies the effects of an explanatory variable in the mixture\u0000population. Also, in practice the variables are usually partially\u0000observed. Thus, we first propose to study the maximum likelihood\u0000estimator when all variables are observed. Then, assuming that the\u0000probability of selection is modeled using mixed covariates\u0000(continuous, discrete and categorical), we propose a\u0000semiparametric inverse-probability weighted (SIPW) method for\u0000estimating the parameters of the MZIP model with covariates\u0000missing at random (MAR). The asymptotic properties (consistency,\u0000asymptotic normality) of the proposed estimators are established\u0000under certain regularity conditions. Through numerical studies,\u0000the performance of the proposed estimators was evaluated. Then the\u0000results of the SIPW are compared to the results obtained by\u0000semiparametric inverse-probability weighted kermel-based (SIPWK)\u0000estimator method. Finally, we apply our methodology to a dataset\u0000on health care demand in the United States.</p>","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"28 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139029447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating Sample Skewness from Sample Data Summaries and Associated Evaluation of Normality 从样本数据摘要估算样本偏度及相关的正态性评估
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2023-12-23 DOI: 10.3103/s106653072304004x
Narayanaswamy Balakrishnan, Jan Rychtář, Dewey Taylor

Abstract

We propose a method to estimate a sample skewness from the given summary statistics and give explicit formulas for the most common scenarios. We show that our method provides a nearly unbiased estimator for the non-parametric skewness measure. We empirically evaluate the performance on real-life data sets of COVID-19 vaccination status. We also demonstrate how the method can be applied to detect the skewness of the underlying distribution.

摘要 我们提出了一种根据给定的汇总统计量估计样本偏斜度的方法,并给出了最常见情况的明确公式。我们的研究表明,我们的方法为非参数偏度测量提供了一个几乎无偏的估计值。我们在 COVID-19 疫苗接种情况的真实数据集上对该方法的性能进行了实证评估。我们还演示了如何应用该方法来检测底层分布的偏度。
{"title":"Estimating Sample Skewness from Sample Data Summaries and Associated Evaluation of Normality","authors":"Narayanaswamy Balakrishnan, Jan Rychtář, Dewey Taylor","doi":"10.3103/s106653072304004x","DOIUrl":"https://doi.org/10.3103/s106653072304004x","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We propose a method to estimate a sample skewness from the given summary statistics and give explicit formulas for the most common scenarios. We show that our method provides a nearly unbiased estimator for the non-parametric skewness measure. We empirically evaluate the performance on real-life data sets of COVID-19 vaccination status. We also demonstrate how the method can be applied to detect the skewness of the underlying distribution.</p>","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"3 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139029806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharp Lower Bound for Regression with Measurement Errors and Its Implication for Ill-Posedness of Functional Regression 带有测量误差的回归的尖锐下界及其对函数回归病态性的意义
Q3 STATISTICS & PROBABILITY Pub Date : 2023-09-01 DOI: 10.3103/s1066530723030031
Sam Efromovich
{"title":"Sharp Lower Bound for Regression with Measurement Errors and Its Implication for Ill-Posedness of Functional Regression","authors":"Sam Efromovich","doi":"10.3103/s1066530723030031","DOIUrl":"https://doi.org/10.3103/s1066530723030031","url":null,"abstract":"","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135388530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Information Generating Function of $$boldsymbol{k}$$-Record Values and Its Applications $$boldsymbol{k}$$信息生成功能-记录值及其应用
Q3 STATISTICS & PROBABILITY Pub Date : 2023-09-01 DOI: 10.3103/s106653072303002x
Manoj Chacko, Annie Grace
{"title":"Information Generating Function of $$boldsymbol{k}$$-Record Values and Its Applications","authors":"Manoj Chacko, Annie Grace","doi":"10.3103/s106653072303002x","DOIUrl":"https://doi.org/10.3103/s106653072303002x","url":null,"abstract":"","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135388536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multivariate Doubly Truncated Moments for a Class of Multivariate Location-Scale Mixture of Elliptical Distributions 一类多变量位置尺度混合椭圆分布的多变量双截矩
Q3 STATISTICS & PROBABILITY Pub Date : 2023-09-01 DOI: 10.3103/s1066530723030043
Xiangyu Han, Chuancun Yin
{"title":"Multivariate Doubly Truncated Moments for a Class of Multivariate Location-Scale Mixture of Elliptical Distributions","authors":"Xiangyu Han, Chuancun Yin","doi":"10.3103/s1066530723030043","DOIUrl":"https://doi.org/10.3103/s1066530723030043","url":null,"abstract":"","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135388526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Solution of Stochastic Mixed Volterra–Fredholm Integral Equations Driven by Space-Time Brownian Motion via Two-Dimensional Triangular Functions 时空布朗运动驱动的随机混合Volterra-Fredholm积分方程的二维三角函数数值解
Q3 STATISTICS & PROBABILITY Pub Date : 2023-09-01 DOI: 10.3103/s1066530723030055
F. Hosseini Shekarabi, M. Khodabin
{"title":"Numerical Solution of Stochastic Mixed Volterra–Fredholm Integral Equations Driven by Space-Time Brownian Motion via Two-Dimensional Triangular Functions","authors":"F. Hosseini Shekarabi, M. Khodabin","doi":"10.3103/s1066530723030055","DOIUrl":"https://doi.org/10.3103/s1066530723030055","url":null,"abstract":"","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135388531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved Estimators of Tail Index and Extreme Quantiles under Dependence Serials 相关序列下尾指数和极值分位数的改进估计
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2023-06-01 DOI: 10.3103/S1066530723020011
Mamadou Aliou Barry, E. Deme, A. Diop, S. MANOU-ABI
{"title":"Improved Estimators of Tail Index and Extreme Quantiles under Dependence Serials","authors":"Mamadou Aliou Barry, E. Deme, A. Diop, S. MANOU-ABI","doi":"10.3103/S1066530723020011","DOIUrl":"https://doi.org/10.3103/S1066530723020011","url":null,"abstract":"","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"32 1","pages":"133 - 153"},"PeriodicalIF":0.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48774958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distributions Derived from the Continuous Iteration of the Hyperbolic Sine Function 双曲正弦函数连续迭代的分布
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2023-06-01 DOI: 10.3103/S1066530723020023
Y. Dijoux
{"title":"Distributions Derived from the Continuous Iteration of the Hyperbolic Sine Function","authors":"Y. Dijoux","doi":"10.3103/S1066530723020023","DOIUrl":"https://doi.org/10.3103/S1066530723020023","url":null,"abstract":"","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"32 1","pages":"103 - 121"},"PeriodicalIF":0.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47593836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantile Based Geometric Vitality Function of Order Statistics 基于分位数的订单统计几何活力函数
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2023-03-01 DOI: 10.3103/S1066530723010040
E. I. A. Sathar, Veena L. Vijayan
{"title":"Quantile Based Geometric Vitality Function of Order Statistics","authors":"E. I. A. Sathar, Veena L. Vijayan","doi":"10.3103/S1066530723010040","DOIUrl":"https://doi.org/10.3103/S1066530723010040","url":null,"abstract":"","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"32 1","pages":"88 - 101"},"PeriodicalIF":0.5,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44202385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Mathematical Methods of Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1