首页 > 最新文献

Mathematical Methods of Statistics最新文献

英文 中文
Multi-level Bayes and MAP Monotonicity Testing 多层次贝叶斯和MAP单调性检验
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2019-09-20 DOI: 10.3103/S1066530720010032
Yu. Golubev, C. Pouet
{"title":"Multi-level Bayes and MAP Monotonicity Testing","authors":"Yu. Golubev, C. Pouet","doi":"10.3103/S1066530720010032","DOIUrl":"https://doi.org/10.3103/S1066530720010032","url":null,"abstract":"","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"29 1","pages":"57 - 75"},"PeriodicalIF":0.5,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46760214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Multiple Hypothesis Testing Approach to Detection Changes in Distribution 分布变化检测的多假设检验方法
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2019-08-05 DOI: 10.3103/s1066530719020054
G. Golubev, M. Safarian
Let X1, X2,... be independent random variables observed sequentially and such that X1,..., Xθ−1 have a common probability density p0, while Xθ, Xθ+1,... are all distributed according to p1p0. It is assumed that p0 and p1 are known, but the time change θ ∈ ℤ+ is unknown and the goal is to construct a stopping time τ that detects the change-point θ as soon as possible. The standard approaches to this problem rely essentially on some prior information about θ. For instance, in the Bayes approach, it is assumed that θ is a random variable with a known probability distribution. In the methods related to hypothesis testing, this a priori information is hidden in the so-called average run length. The main goal in this paper is to construct stopping times that are free from a priori information about θ. More formally, we propose an approach to solving approximately the following minimization problem:$$Delta(theta;{tau^alpha})rightarrowmin_{tau^alpha};;text{subject};text{to};;alpha(theta;{tau^alpha})leqalpha;text{for};text{any};thetageq1,$$where α(θ; τ) = Pθ{τ < θ} is the false alarm probability and Δ(θ; τ) = Eθ(τ − θ)+ is the average detection delay computed for a given stopping time τ. In contrast to the standard CUSUM algorithm based on the sequential maximum likelihood test, our approach is related to a multiple hypothesis testing methods and permits, in particular, to construct universal stopping times with nearly Bayes detection delays.
设X1, X2,…是顺序观察到的独立随机变量,使得X1,…, Xθ−1有共同的概率密度p0,而Xθ, Xθ+1,…都按照p1≠p0分布。假设p0和p1是已知的,但时间变化θ∈0 +是未知的,目标是构造一个停止时间τ,以尽快检测到变化点θ。解决这个问题的标准方法基本上依赖于关于θ的一些先验信息。例如,在贝叶斯方法中,假设θ是一个已知概率分布的随机变量。在与假设检验相关的方法中,这种先验信息隐藏在所谓的平均运行长度中。本文的主要目标是构造不受θ先验信息影响的停止时间。更正式地说,我们提出了一种近似解决以下最小化问题的方法:$$Delta(theta;{tau^alpha})rightarrowmin_{tau^alpha};;text{subject};text{to};;alpha(theta;{tau^alpha})leqalpha;text{for};text{any};thetageq1,$$其中α(θ;τ) = Pθ{τ &lt;θ}为虚警概率,Δ(θ;τ) = Eθ(τ−θ)+为给定停止时间τ计算的平均检测延迟。与基于顺序最大似然检验的标准CUSUM算法相比,我们的方法涉及到多个假设检验方法,特别是允许构建具有接近贝叶斯检测延迟的通用停止时间。
{"title":"A Multiple Hypothesis Testing Approach to Detection Changes in Distribution","authors":"G. Golubev, M. Safarian","doi":"10.3103/s1066530719020054","DOIUrl":"https://doi.org/10.3103/s1066530719020054","url":null,"abstract":"Let <i>X</i><sub>1</sub>, <i>X</i><sub>2</sub>,... be independent random variables observed sequentially and such that <i>X</i><sub>1</sub>,..., <i>X</i><sub><i>θ</i>−1</sub> have a common probability density <i>p</i><sub><i>0</i></sub>, while <i>X</i><sub><i>θ</i></sub>, <i>X</i><sub><i>θ</i>+1</sub>,... are all distributed according to <i>p</i><sub>1</sub> ≠ <i>p</i><sub>0</sub>. It is assumed that <i>p</i><sub>0</sub> and <i>p</i><sub>1</sub> are known, but the time change <i>θ</i> ∈ ℤ<sup>+</sup> is unknown and the goal is to construct a stopping time <i>τ</i> that detects the change-point <i>θ</i> as soon as possible. The standard approaches to this problem rely essentially on some prior information about <i>θ</i>. For instance, in the Bayes approach, it is assumed that <i>θ</i> is a random variable with a known probability distribution. In the methods related to hypothesis testing, this a priori information is hidden in the so-called average run length. The main goal in this paper is to construct stopping times that are free from a priori information about <i>θ.</i> More formally, we propose an approach to solving approximately the following minimization problem:<span>$$Delta(theta;{tau^alpha})rightarrowmin_{tau^alpha};;text{subject};text{to};;alpha(theta;{tau^alpha})leqalpha;text{for};text{any};thetageq1,$$</span>where <i>α</i>(<i>θ; τ</i>) = P<sub><i>θ</i></sub>{<i>τ &lt; θ</i>} is <i>the false alarm probability</i> and <i>Δ</i>(<i>θ</i>; <i>τ</i>) = E<sub><i>θ</i></sub>(<i>τ − θ</i>)<sub>+</sub> is <i>the average detection delay</i> computed for a given stopping time <i>τ</i>. In contrast to the standard CUSUM algorithm based on the sequential maximum likelihood test, our approach is related to a multiple hypothesis testing methods and permits, in particular, to construct universal stopping times with nearly Bayes detection delays.","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"52 1","pages":"155-167"},"PeriodicalIF":0.5,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An Asymptotically Optimal Transform of Pearson’s Correlation Statistic Pearson相关统计量的渐近最优变换
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2019-07-26 DOI: 10.3103/S1066530719040057
I. Pinelis
{"title":"An Asymptotically Optimal Transform of Pearson’s Correlation Statistic","authors":"I. Pinelis","doi":"10.3103/S1066530719040057","DOIUrl":"https://doi.org/10.3103/S1066530719040057","url":null,"abstract":"","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"28 1","pages":"307 - 318"},"PeriodicalIF":0.5,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3103/S1066530719040057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47398748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Central Limit Theorems for Conditional Empirical and Conditional U-Processes of Stationary Mixing Sequences 平稳混合序列的条件经验过程和条件U过程的中心极限定理
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2019-07-01 DOI: 10.3103/S1066530719030013
S. Bouzebda, B. Nemouchi
{"title":"Central Limit Theorems for Conditional Empirical and Conditional U-Processes of Stationary Mixing Sequences","authors":"S. Bouzebda, B. Nemouchi","doi":"10.3103/S1066530719030013","DOIUrl":"https://doi.org/10.3103/S1066530719030013","url":null,"abstract":"","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"28 1","pages":"169 - 207"},"PeriodicalIF":0.5,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3103/S1066530719030013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43823131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
State Occupation Probabilities in Non-Markov Models 非马尔可夫模型中的状态占用概率
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2019-05-31 DOI: 10.3103/S1066530719040033
Morten Overgaard
{"title":"State Occupation Probabilities in Non-Markov Models","authors":"Morten Overgaard","doi":"10.3103/S1066530719040033","DOIUrl":"https://doi.org/10.3103/S1066530719040033","url":null,"abstract":"","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"28 1","pages":"279 - 290"},"PeriodicalIF":0.5,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3103/S1066530719040033","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42112674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Density Estimation for RWRE RWRE的密度估计
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2019-05-03 DOI: 10.3103/s1066530719010022
A. Havet, M. Lerasle, É. Moulines
We consider the problem of nonparametric density estimation of a random environment from the observation of a single trajectory of a random walk in this environment. We build several density estimators using the beta-moments of this distribution. Then we apply the Goldenschluger-Lepski method to select an estimator satisfying an oracle type inequality. We obtain non-asymptotic bounds for the supremum norm of these estimators that hold when the RWRE is recurrent or transient to the right. A simulation study supports our theoretical findings.
我们考虑了一个随机环境的非参数密度估计问题,该问题是通过观察随机行走的单个轨迹得到的。我们利用这个分布的矩建立了几个密度估计器。然后应用Goldenschluger-Lepski方法选择一个满足oracle型不等式的估计量。我们得到了当RWRE向右递归或暂态时,这些估计量的最大范数的非渐近界。一项模拟研究支持了我们的理论发现。
{"title":"Density Estimation for RWRE","authors":"A. Havet, M. Lerasle, É. Moulines","doi":"10.3103/s1066530719010022","DOIUrl":"https://doi.org/10.3103/s1066530719010022","url":null,"abstract":"We consider the problem of nonparametric density estimation of a random environment from the observation of a single trajectory of a random walk in this environment. We build several density estimators using the beta-moments of this distribution. Then we apply the Goldenschluger-Lepski method to select an estimator satisfying an oracle type inequality. We obtain non-asymptotic bounds for the supremum norm of these estimators that hold when the RWRE is recurrent or transient to the right. A simulation study supports our theoretical findings.","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"289 ","pages":"18-38"},"PeriodicalIF":0.5,"publicationDate":"2019-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On the Power of Pearson’s Test under Local Alternatives in Autoregression with Outliers 有离群值的自回归中局部选择下Pearson检验的威力
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2019-05-03 DOI: 10.3103/s1066530719010046
M. V. Boldin
We consider a stationary linear AR(p) model with contamination (gross errors in the observations). The autoregression parameters are unknown, as well as the distribution of innovations. Based on the residuals from the parameter estimates, an analog of the empirical distribution function is defined and a test of Pearson’s chi-square type is constructed for testing hypotheses on the distribution of innovations. We obtain the asymptotic power of this test under local alternatives and establish its qualitative robustness under the hypothesis and alternatives.
我们考虑一个带有污染(观测中的严重误差)的平稳线性AR(p)模型。自回归参数是未知的,以及创新的分布。根据参数估计的残差,定义了经验分布函数的类比,并构造了皮尔逊卡方型检验,用于检验创新分布的假设。我们得到了该检验在局部选择下的渐近幂,并建立了它在假设和选择下的定性稳健性。
{"title":"On the Power of Pearson’s Test under Local Alternatives in Autoregression with Outliers","authors":"M. V. Boldin","doi":"10.3103/s1066530719010046","DOIUrl":"https://doi.org/10.3103/s1066530719010046","url":null,"abstract":"We consider a stationary linear <i>AR</i>(<i>p</i>) model with contamination (gross errors in the observations). The autoregression parameters are unknown, as well as the distribution of innovations. Based on the residuals from the parameter estimates, an analog of the empirical distribution function is defined and a test of Pearson’s chi-square type is constructed for testing hypotheses on the distribution of innovations. We obtain the asymptotic power of this test under local alternatives and establish its qualitative robustness under the hypothesis and alternatives.","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"104 ","pages":"57-65"},"PeriodicalIF":0.5,"publicationDate":"2019-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
A Large Deviation Approximation for Multivariate Density Functions 多元密度函数的大偏差近似
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2019-05-03 DOI: 10.3103/s1066530719010058
C. Joutard
We establish a large deviation approximation for the density of an arbitrary sequence of random vectors, by assuming several assumptions on the normalized cumulant generating function and its derivatives. We give two statistical applications to illustrate the result, the first one dealing with a vector of independent sample variances and the second one with a Gaussian multiple linear regression model. Numerical comparisons are eventually provided for these two examples.
通过对归一化累积量生成函数及其导数的若干假设,建立了任意随机向量序列密度的大偏差近似。我们给出了两个统计应用来说明结果,第一个是处理独立样本方差的向量,第二个是高斯多元线性回归模型。最后对这两个例子进行了数值比较。
{"title":"A Large Deviation Approximation for Multivariate Density Functions","authors":"C. Joutard","doi":"10.3103/s1066530719010058","DOIUrl":"https://doi.org/10.3103/s1066530719010058","url":null,"abstract":"We establish a large deviation approximation for the density of an arbitrary sequence of random vectors, by assuming several assumptions on the normalized cumulant generating function and its derivatives. We give two statistical applications to illustrate the result, the first one dealing with a vector of independent sample variances and the second one with a Gaussian multiple linear regression model. Numerical comparisons are eventually provided for these two examples.","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"5 8 1","pages":"66-73"},"PeriodicalIF":0.5,"publicationDate":"2019-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Semi-Parametric Mode Regression with Censored Data 带截尾数据的半参数模式回归
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2019-05-03 DOI: 10.3103/s1066530719010034
S. Khardani
In this work we suppose that the random vector (X, Y) satisfies the regression model Y = m(X) + ϵ, where m(·) belongs to some parametric class {({m_beta}(cdot):beta in mathbb{K})} and the error ϵ is independent of the covariate X. The response Y is subject to random right censoring. Using a nonlinear mode regression, a new estimation procedure for the true unknown parameter vector β0is proposed that extends the classical least squares procedure for nonlinear regression. We also establish asymptotic properties for the proposed estimator under assumptions of the error density. We investigate the performance through a simulation study.
在这项工作中,我们假设随机向量(X, Y)满足回归模型Y = m(X) + λ,其中m(·)属于某个参数类{({m_beta}(cdot):beta in mathbb{K})},并且误差λ独立于协变量X。响应Y受到随机右删减。利用非线性模态回归,提出了一种新的真未知参数向量β0的估计方法,扩展了经典的非线性回归最小二乘估计方法。在误差密度的假设下,我们还建立了所提估计量的渐近性质。我们通过仿真研究来考察其性能。
{"title":"A Semi-Parametric Mode Regression with Censored Data","authors":"S. Khardani","doi":"10.3103/s1066530719010034","DOIUrl":"https://doi.org/10.3103/s1066530719010034","url":null,"abstract":"In this work we suppose that the random vector (<i>X</i>, <i>Y</i>) satisfies the regression model <i>Y</i> = <i>m</i>(<i>X</i>) + <i>ϵ</i>, where <i>m</i>(·) belongs to some parametric class {<span>({m_beta}(cdot):beta in mathbb{K})</span>} and the error <i>ϵ</i> is independent of the covariate <i>X</i>. The response <i>Y</i> is subject to random right censoring. Using a nonlinear mode regression, a new estimation procedure for the true unknown parameter vector <i>β</i><sub>0</sub>is proposed that extends the classical least squares procedure for nonlinear regression. We also establish asymptotic properties for the proposed estimator under assumptions of the error density. We investigate the performance through a simulation study.","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"293 ","pages":"39-56"},"PeriodicalIF":0.5,"publicationDate":"2019-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
On the Asymptotic Power of Tests of Fit under Local Alternatives in Autoregression 自回归中局部选择下拟合检验的渐近幂
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2019-04-01 DOI: 10.3103/S1066530719020042
M. Boldin
{"title":"On the Asymptotic Power of Tests of Fit under Local Alternatives in Autoregression","authors":"M. Boldin","doi":"10.3103/S1066530719020042","DOIUrl":"https://doi.org/10.3103/S1066530719020042","url":null,"abstract":"","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"28 1","pages":"144 - 154"},"PeriodicalIF":0.5,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3103/S1066530719020042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69418834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Mathematical Methods of Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1