首页 > 最新文献

Mathematical Methods of Statistics最新文献

英文 中文
On Predictive Density Estimation under α-Divergence Loss α-发散损失下的预测密度估计
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2019-04-01 DOI: 10.3103/S1066530719020030
A. L’Moudden, É. Marchand
{"title":"On Predictive Density Estimation under α-Divergence Loss","authors":"A. L’Moudden, É. Marchand","doi":"10.3103/S1066530719020030","DOIUrl":"https://doi.org/10.3103/S1066530719020030","url":null,"abstract":"","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"28 1","pages":"127 - 143"},"PeriodicalIF":0.5,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3103/S1066530719020030","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47698685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Gaussian Approximation for Penalized Wasserstein Barycenters 惩罚Wasserstein Barycenters的高斯逼近
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2019-04-01 DOI: 10.3103/S1066530723010039
N. Buzun
{"title":"Gaussian Approximation for Penalized Wasserstein Barycenters","authors":"N. Buzun","doi":"10.3103/S1066530723010039","DOIUrl":"https://doi.org/10.3103/S1066530723010039","url":null,"abstract":"","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"32 1","pages":"1 - 26"},"PeriodicalIF":0.5,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46979901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Empirical Process of Residuals from an Inverse Regression 逆回归残差的经验过程
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2019-02-09 DOI: 10.3103/S1066530719020029
T. Kutta, N. Bissantz, J. Chown, H. Dette
{"title":"The Empirical Process of Residuals from an Inverse Regression","authors":"T. Kutta, N. Bissantz, J. Chown, H. Dette","doi":"10.3103/S1066530719020029","DOIUrl":"https://doi.org/10.3103/S1066530719020029","url":null,"abstract":"","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"28 1","pages":"104 - 126"},"PeriodicalIF":0.5,"publicationDate":"2019-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3103/S1066530719020029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44415720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
On Optimal Cardinal Interpolation 关于最优基数插值
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2019-02-05 DOI: 10.3103/s1066530718040014
B. Levit
For the Hardy classes of functions analytic in the strip around real axis of a size 2β, an optimal method of cardinal interpolation has been proposed within the framework of Optimal Recovery [12]. Below this method, based on the Jacobi elliptic functions, is shown to be optimal according to the criteria of Nonparametric Regression and Optimal Design.In a stochastic non-asymptotic setting, the maximal mean squared error of the optimal interpolant is evaluated explicitly, for all noise levels away from 0. A pivotal role is played by the interference effect, in which the oscillations exhibited by the interpolant’s bias and variance mutually cancel each other. In the limiting case β → ∞, the optimal interpolant converges to the well-knownNyquist–Shannon cardinal series.
对于大小为2β的实轴上的Hardy类解析函数,在最优恢复的框架内提出了基数插值的最优方法[12]。该方法基于Jacobi椭圆函数,根据非参数回归和优化设计准则证明是最优的。在随机非渐近设置中,对于远离0的所有噪声电平,最优插值的最大均方误差被显式地评估。干涉效应起着关键的作用,其中内插器的偏置和方差所表现出的振荡相互抵消。在极限情况β→∞时,最优插值收敛于著名的nyquist - shannon基数级数。
{"title":"On Optimal Cardinal Interpolation","authors":"B. Levit","doi":"10.3103/s1066530718040014","DOIUrl":"https://doi.org/10.3103/s1066530718040014","url":null,"abstract":"For the Hardy classes of functions analytic in the strip around real axis of a size 2<i>β</i>, an optimal method of cardinal interpolation has been proposed within the framework of Optimal Recovery [12]. Below this method, based on the Jacobi elliptic functions, is shown to be optimal according to the criteria of Nonparametric Regression and Optimal Design.In a stochastic non-asymptotic setting, the maximal mean squared error of the optimal interpolant is evaluated explicitly, for all noise levels away from 0. A pivotal role is played by the interference effect, in which the oscillations exhibited by the interpolant’s bias and variance mutually cancel each other. In the limiting case <i>β</i> → ∞, the optimal interpolant converges to the well-knownNyquist–Shannon cardinal series.","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"294 ","pages":"245-267"},"PeriodicalIF":0.5,"publicationDate":"2019-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
On the Empirical Distribution Function of Residuals in Autoregression with Outliers and Pearson’s Chi-Square Type Tests 离群值自回归残差的经验分布函数及Pearson卡方检验
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2019-02-05 DOI: 10.3103/s1066530718040038
M. V. Boldin, M. N. Petriev
We consider a stationary linear AR(p) model with observations subject to gross errors (outliers). The distribution of outliers is unknown and arbitrary, their intensity is γn−1/2 with an unknown γ, n is the sample size. The autoregression parameters are unknown, they are estimated by any estimator which is n1/2-consistent uniformly in γ ≤ Γ < ∞. Using the residuals from the estimated autoregression, we construct a kind of empirical distribution function (e.d.f.), which is a counterpart of the (inaccessible) e.d.f. of the autoregression innovations. We obtain a stochastic expansion of this e.d.f., which enables us to construct a test of Pearson’s chi-square type for testing hypotheses about the distribution of innovations. We establish qualitative robustness of this test in terms of uniform equicontinuity of the limiting level with respect to γ in a neighborhood of γ = 0.
我们考虑一个平稳的线性AR(p)模型,其观测值受到严重误差(异常值)的影响。异常值的分布是未知的和任意的,其强度为γn - 1/2, γ未知,n为样本量。自回归参数是未知的,它们由任意在γ≤Γ <中一致为n1/2相合的估计量估计;∞。利用估计自回归的残差,我们构造了一种经验分布函数(e.d.f.),它是自回归创新的(不可接近的)e.d.f.的对应物。我们得到了这个e.d.f的随机展开式,这使我们能够构造一个皮尔逊卡方检验来检验关于创新分布的假设。我们在γ = 0的邻域内关于γ的极限水平的一致等连续性方面建立了这个检验的定性稳健性。
{"title":"On the Empirical Distribution Function of Residuals in Autoregression with Outliers and Pearson’s Chi-Square Type Tests","authors":"M. V. Boldin, M. N. Petriev","doi":"10.3103/s1066530718040038","DOIUrl":"https://doi.org/10.3103/s1066530718040038","url":null,"abstract":"We consider a stationary linear AR(<i>p</i>) model with observations subject to gross errors (outliers). The distribution of outliers is unknown and arbitrary, their intensity is <i>γn</i><sup>−1/2</sup> with an unknown <i>γ</i>, <i>n</i> is the sample size. The autoregression parameters are unknown, they are estimated by any estimator which is <i>n</i><sup>1/2</sup>-consistent uniformly in <i>γ</i> ≤ Γ &lt; ∞. Using the residuals from the estimated autoregression, we construct a kind of empirical distribution function (e.d.f.), which is a counterpart of the (inaccessible) e.d.f. of the autoregression innovations. We obtain a stochastic expansion of this e.d.f., which enables us to construct a test of Pearson’s chi-square type for testing hypotheses about the distribution of innovations. We establish qualitative robustness of this test in terms of uniform equicontinuity of the limiting level with respect to <i>γ</i> in a neighborhood of <i>γ</i> = 0.","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"20 1","pages":"294-311"},"PeriodicalIF":0.5,"publicationDate":"2019-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Bayesian Predictive Distribution for a Negative Binomial Model 负二项模型的贝叶斯预测分布
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2019-01-01 DOI: 10.3103/S1066530719010010
Y. Hamura, T. Kubokawa
{"title":"Bayesian Predictive Distribution for a Negative Binomial Model","authors":"Y. Hamura, T. Kubokawa","doi":"10.3103/S1066530719010010","DOIUrl":"https://doi.org/10.3103/S1066530719010010","url":null,"abstract":"","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"28 1","pages":"1 - 17"},"PeriodicalIF":0.5,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3103/S1066530719010010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69418784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Density Deconvolution with Small Berkson Errors 具有小Berkson误差的密度反卷积
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2018-10-16 DOI: 10.3103/S1066530719030025
R. Rimal, M. Pensky
{"title":"Density Deconvolution with Small Berkson Errors","authors":"R. Rimal, M. Pensky","doi":"10.3103/S1066530719030025","DOIUrl":"https://doi.org/10.3103/S1066530719030025","url":null,"abstract":"","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"28 1","pages":"208 - 227"},"PeriodicalIF":0.5,"publicationDate":"2018-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3103/S1066530719030025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42599170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Asymptotic Distribution of Least Squares Estimators for Linear Models with Dependent Errors: Regular Designs 具有相关误差的线性模型最小二乘估计量的渐近分布:规则设计
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2018-10-01 DOI: 10.3103/S1066530718040026
E. Caron, S. Dede
{"title":"Asymptotic Distribution of Least Squares Estimators for Linear Models with Dependent Errors: Regular Designs","authors":"E. Caron, S. Dede","doi":"10.3103/S1066530718040026","DOIUrl":"https://doi.org/10.3103/S1066530718040026","url":null,"abstract":"","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"27 1","pages":"268 - 293"},"PeriodicalIF":0.5,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3103/S1066530718040026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48254035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On the Asymptotic Behavior of the Contaminated Sample Mean 污染样本均值的渐近性态
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2018-10-01 DOI: 10.3103/S106653071804004X
B. Berckmoes, G. Molenberghs
{"title":"On the Asymptotic Behavior of the Contaminated Sample Mean","authors":"B. Berckmoes, G. Molenberghs","doi":"10.3103/S106653071804004X","DOIUrl":"https://doi.org/10.3103/S106653071804004X","url":null,"abstract":"","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"27 1","pages":"312 - 323"},"PeriodicalIF":0.5,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3103/S106653071804004X","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48404552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Outliers and the Ostensibly Heavy Tails 异常值和表面上的重尾
IF 0.5 Q3 STATISTICS & PROBABILITY Pub Date : 2018-07-23 DOI: 10.3103/S106653071901006X
L. Klebanov, I. Volchenkova
{"title":"Outliers and the Ostensibly Heavy Tails","authors":"L. Klebanov, I. Volchenkova","doi":"10.3103/S106653071901006X","DOIUrl":"https://doi.org/10.3103/S106653071901006X","url":null,"abstract":"","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"28 1","pages":"74 - 81"},"PeriodicalIF":0.5,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3103/S106653071901006X","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43378283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
Mathematical Methods of Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1